Bounding One-Way Differences

P. Frankl1, Z. Füredi2 and J. Pach2

1 C.N.R.S. 15 Quai Anatole France, Paris, Cedex 75007, France
2 Mathematical Institute of the Hungarian Academy of Science, 1364 Budapest, P.O. Box 127, Hungary

Abstract. Let \(f(n, k) \) denote the maximum length of a sequence \((F_1, F_2, \ldots)\) of distinct subsets of an \(n \)-element set with the property that \(|F_i \setminus F_j| < k\) for all \(i < j \). We determine the exact values of \(f(n, 2) \) and characterize all the extremal sequences. For \(k \geq 3 \) we prove that \(f(n, k) = (1 + o(1)) \binom{n}{k} \). Some related problems are also considered.

1. Introduction

Let \(\mathcal{F} \) be a system of distinct subsets of an \(n \)-element set \(X \), and let \(k \geq 2 \) be a fixed natural number. It is well-known (see [7], [12] or (3) below) that if \(|F_i \setminus F_j| < k\) for all \(F_i, F_j \in \mathcal{F} \) then \(|\mathcal{F}| \leq \sum_{i=0}^{k-1} \binom{n}{i} \) and this bound cannot be improved.

In the present note we consider the following related question (raised in [1], [2] and [7]): What is the maximum length of a sequence \((F_1, F_2, \ldots, F_m)\) of distinct subsets of an \(n \)-element set \(X \) with the property that

\(|F_i \setminus F_j| < k\) for all \(i < j \)?

(1)

Let us denote this maximum by \(f(n, k) \). We can clearly suppose without loss of generality that the \(F_i \)'s are listed in increasing order of their cardinalities, i.e., \(|F_i| \leq |F_j| \) for all \(i \leq j \).

It is easy to show that

\[f(n, k) \geq \binom{n}{k} + 2 \left(\binom{n}{k-1} + \binom{n}{k-2} + \cdots + \binom{n}{k} \right) - \binom{2k-1}{k}, \quad \text{if } n \geq 2k. \]

(2)

To this end fix a chain of subsets \(E_1 \subset E_2 \subset \cdots \subset E_n = X \) with \(|E_i| = i\) (1 \(\leq i \leq n \)) and let \(\mathcal{F}_j := \{ F \subseteq X | |F| = j, F \supseteq E_{j-k+1} \} \) (\(k \leq j \leq n - k \)). Then the number of elements of

\[\mathcal{F} := \{ F \subseteq X | |F| < k \} \cup \left(\bigcup_{j=k}^{n-k} \mathcal{F}_j \right) \cup \{ F \subseteq X | |F| > n - k \} \]
is equal to the right-hand side of (2), and enumerating them in increasing order of size they will obviously satisfy (1), too.

A set-sequence $\mathcal{F} = (F_1, F_2, \ldots, F_m)$ having property (1) is called extremal if $m = f(n, k)$. Set $f_i := |\{ F \in \mathcal{F} | |F| = i \}|$. Two extremal sequences \mathcal{F} and \mathcal{F}' are said to be essentially different if $f_i \neq f_i'$ for some i $(0 \leq i \leq n)$.

Our next two theorems show that the lower bound (2) is sharp if $k = 2$ and is asymptotically sharp for all $k \geq 3$ ($n \to \infty$).

Theorem 1. If $n \geq 4$ then $f(n, 2) = \binom{n}{2} + 2n - 1$. Furthermore, in this case there are exactly 2^{n-3} essentially different extremal sequences.

Theorem 2. $f(n, k) < \binom{n}{k} + 5k^2 \binom{n}{k-1}$ for all $n \geq 2k$.

The above problem can be reformulated in the following more general setting. Given a natural number n and a class \mathcal{L} of $(0, 1)$-matrices (so called ‘forbidden submatrices’), determine the maximum integer m such that there exists an $m \times n$ $(0, 1)$-matrix M without repeated rows and containing no element of \mathcal{L} as a submatrix. Let us denote this maximum by $\text{ex}(n, \mathcal{L})$. In view of the condition that all rows of M should be distinct, we have $\text{ex}(n, \mathcal{L}) \leq 2^n$.

Let A_k denote a $2 \times k$ matrix whose first and second rows contain only 1’s and 0’s, respectively. Using the above notation, we obviously get $\text{ex}(n, \{A_k\}) = f(n, k)$.

Next, let \mathcal{L}_k be the family of all $2^k \times k$ matrices which contain every $(0, 1)$-vector of length k (as a row) exactly once. The members of \mathcal{L}_k differ in the order of rows only, hence $|\mathcal{L}_k| = 2^k$. A well-known theorem of Sauer [12] and Shelah [13] (see also [8], [9]) states that

$$\text{ex}(n, \mathcal{L}_k) = \sum_{i=0}^{k-1} \binom{n}{i}.$$ \hspace{1cm} (3)

From this we can easily deduce the following general result.

Theorem 3. Let \mathcal{L} be any family of forbidden $(0, 1)$-matrices, and suppose that there is a $j \times k$ matrix $L \in \mathcal{L}$. Then

$$\text{ex}(n, \mathcal{L}) \leq \binom{(j-1)n}{k} + 1 \left(\sum_{i=0}^{k-1} \binom{n}{i} + 1 \right) - 1 \leq jn^{2k-1}$$

holds for every natural number n.

Proof. Let M be an $m \times n$ $(0, 1)$-matrix with distinct rows M_1, M_2, \ldots, M_m and suppose that m exceeds the upper bound in the theorem. By repeated application of (3) we obtain that for every $q \left(1 \leq q \leq (j-1)\binom{n}{k} + 1 \right)$ there exists a $2^k \times k$ submatrix L_q of M, which is equivalent to some member of \mathcal{L}_k and whose rows are chosen from among

$$\left\{ M_i \left| (q-1)\left(\sum_{i=1}^{k-1} \binom{n}{i} + 1 \right) < i \leq q \left(\sum_{i=1}^{k-1} \binom{n}{i} + 1 \right) \right. \right\}.$$
Now, by the pigeonhole principle, there are at least j submatrices (say, $L_{a_1}, L_{a_2}, \ldots, L_{a_j}$) sitting on the same set of k columns. Selecting a copy of the i-th row of L from $L_{a_i}(i = 1, 2, \ldots, j)$, we get a submatrix of M equivalent to L.

A weaker upper bound for $\text{ex}(n, \mathcal{L})$ was found by Anstee [2]. For more problems and results of this kind consult [3].

2. Proof of Theorem 1

Let $\mathcal{F} = \{F_1, F_2, \ldots, F_m\}$ be a system of subsets of an n-element set X satisfying condition (1), and put $\mathcal{F}_i = \{F \in \mathcal{F} | |F| = i\}$, $f_i = |\mathcal{F}_i|$, $i = 0, 1, \ldots, n$. For every pair $F_i \in \mathcal{F}_i, F_j \in \mathcal{F}_j$ ($0 \leq i \leq j \leq n$)

$$|F_i \cap F_j| \geq i - k + 1.$$ \hspace{1cm} (4)

In particular, any two members of \mathcal{F}_i have at least $i - k + 1$ elements in common, i.e., \mathcal{F}_i is $(i - k + 1)$-intersecting.

From now on assume $k = 2$.

If \mathcal{F}_i has at least two members F' and F'', say, then there are two possibilities. Either

(i) \hspace{1cm} $F \supseteq F' \cap F''$ for every $F \in \mathcal{F}_i$, or

(ii) \hspace{1cm} $F \subseteq F' \cup F''$ for every $F \in \mathcal{F}_i$.

In the first case we say that \mathcal{F}_i is a sunflower with centre $F' \cap F''$ and the one element sets $F' \setminus (F' \cap F'')$ are its petals. In the second case \mathcal{F}_i is said to be an inverse sunflower, $F' \cap F''$ is its centre and the one element sets $(F' \cup F'') \setminus F$, $F \in \mathcal{F}_i$, are called holes.

Lemma 1. Let \mathcal{F}_i be a sunflower and \mathcal{F}_j be an inverse sunflower for some $i < j$. Then $\min \{f_i, f_j\} \leq j - i + 2$.

Proof. Suppose, for contradiction, that both \mathcal{F}_i and \mathcal{F}_j have at least $j - i + 3$ members. Let C_i and C_j denote the centres of \mathcal{F}_i and \mathcal{F}_j, respectively. Then $|C_i| = i - 1, |C_j| = j + 1$ and $|\bigcup \{F | F \in \mathcal{F}_i\}| \geq (i - 1) + (j - i + 3) = j + 2$, hence there is an $F \in \mathcal{F}_i$ such that $F \not\subseteq C_j$. If $|F \setminus C_j| > 1$, then taking any $F' \in \mathcal{F}_j$, the pair (F, F') will violate condition (1). So we can assume $|F \setminus C_j| = 1$. In this case $|C_j \setminus F| = (j + 1) - (i - 1) = j - i + 2$, thus there is a hole of \mathcal{F}_j in $C_j \cap F$, i.e., there exists an $F' \in \mathcal{F}_j$ with $(F' \setminus F) \cap C_j \neq \emptyset$, again a contradiction.

Lemma 2. Let q be a natural number, $3 \leq q \leq n$. Then

$$|\{i | 2 \leq i \leq n - 2 \text{ and } f_i \geq q\}| \leq n - q.$$

Proof. Suppose without loss of generality that $f_1 = f_{n-1} = n$. Let I_q (and I'_q) denote the set of all indices i ($1 \leq i \leq n - 1$) for which \mathcal{F}_i is a sunflower (an inverse sunflower, resp.) and $f_i \geq q$. Clearly $1 \in I_q, n - 1 \in I_q$. Choose a pair $i \in I_q, j \in I_q, i < j$, such that $j - i$ is minimal. Then there are no elements of $I_q \cup I'_q$ in the interval $J_q = \{i + 1, i + 2, \ldots, j - 1\}$, and by Lemma 1 we have $q \leq j - i + 2$, i.e., $|J_q| \geq q - 3$. Hence $|I_q \cup I'_q| \leq (n - 1) - |J_q| \leq n - q + 2$. \hfill \square
Lemma 2 shows that the i-th largest element of the sequence $(f_2, f_3, \ldots, f_{n-2})$ is at most $n - i$ ($i = 1, 2, \ldots, n - 3$), thus

$$|\mathcal{F}| = f_0 + f_1 + f_{n-1} + f_n + \sum_{i=1}^{n-3} (n-i) \leq 2n + 2 + \frac{(n-3)(n+2)}{2} = \binom{n}{2} + 2n - 1,$$

as desired.

If $|\mathcal{F}| = \binom{n}{2} + 2n - 1$, then $f_0 = f_n = 1$, $f_1 = f_{n-1} = n$ and the sequence $(f_2, f_3, \ldots, f_{n-2})$ is some permutation of the numbers $3, 4, \ldots, n - 1$. Furthermore,

$$J_q = \{ i | 2 \leq i \leq n - 2 \text{ and } f_i < q \}, \quad |J_q| = q - 3$$

and the only element $m_{q+1} \in J_{q+1} \setminus J_q$ is equal either to $\min J_{q+1}$ or to $\max J_{q+1}$ ($q = 3, 4, \ldots, n - 1$). In the first case $m_{q+1} \in I_q$, in the latter one $m_{q+1} \in I'_q$, i.e., $\mathcal{F}_{m_{q+1}}$ is a sunflower or an inverse sunflower, respectively. In view of the fact that $\min J_4 \neq \max J_4$ and for all $q = 3$ we have exactly 2 choices, we obtain that there are at most 2^{n-4} essentially different extremal sequences. It is easy to see that all of them can be realized in exactly 2 non-isomorphic ways (\mathcal{F}_{m_4} can be a sunflower and an inverse sunflower as well). This completes the proof.

3. Proof of Theorem 2

Let $\mathcal{F} = \{ F_1, F_2, \ldots \}$ be a system of distinct subsets of $X = \{1, 2, \ldots, n\}$ satisfying condition (1) for a fixed $k \geq 3$, let $\mathcal{F}_i := \{ F \in \mathcal{F} | |F| = i \}$ and $f_i := |\mathcal{F}_i|, 0 \leq i \leq n$. By (4), \mathcal{F}_i is $(i - k + 1)$-intersecting, hence using a theorem of [6] (see also [10]) we obtain

$$f_i \leq \binom{n}{k-1}, \quad 0 \leq i \leq n.$$

This immediately implies $f(n, k) \leq n \binom{n}{k-1} \sim k \binom{n}{k}.$

To improve on this bound, we will apply first some simple operations (so-called left-shifts, cf. [4]) to our family \mathcal{F}. Given a pair i, j ($1 \leq i < j \leq n$), let

$$C_{ij}(F) := \begin{cases} (F \setminus \{j\}) \cup \{i\} & \text{if } i \notin F, j \in F, (F \setminus \{j\}) \cup \{i\} \notin \mathcal{F} \\ F & \text{otherwise} \end{cases}$$

for any $F \in \mathcal{F}$. Further, set $C_{ij}(\mathcal{F}) := \{ C_{ij}(F) | F \in \mathcal{F} \}$. The following statement can readily be checked.

Lemma 3. $C_{ij}(\mathcal{F})$ also satisfies condition (1). \qed

Repeating this operation for all pairs i, j (possibly several times), after a finite number of steps we obtain a left-shifted family \mathcal{F}', i.e., one for which $C_{ij}(\mathcal{F}') = \mathcal{F}'$ ($1 \leq i < j \leq n$).

Thus we can assume without loss of generality that \mathcal{F} is left-shifted. Then \mathcal{F}_i is left-shifted for all i and we can use the following.
Lemma 4. ([5]) Suppose that $i \geq k$, \mathcal{F}_i is left-shifted and $(i - k + 1)$-intersecting. Then for any $F \in \mathcal{F}_i$ there exists a minimal integer $i = i(F), 0 \leq i \leq k - 1$ such that

$$|F \cap \{1, 2, \ldots, i - k + 1 + 2t\}| = i - k + 1 + t.$$

A set $F \in \mathcal{F}_i$ will be called exceptional if $i \geq k$ and at least one of the following four conditions is satisfied:

(i) $\{i - k - 1 + 2t(F), i - k + 2t(F), i - k + 1 + 2t(F)\} \not\subseteq F$;
(ii) $\{i - k + 2 + 2t(F), i - k + 3 + 2t(F)\} \cap F \neq \emptyset$.
(iii) there exists an $r (1 \leq r \leq i - k + 2t(F))$ such that $r, r + 1 \notin F$;
(iv) there exists an $r (i - k + 2t(F) < r < n)$ such that $r, r + 1 \in F$.

Lemma 5. The number of exceptional members of \mathcal{F} is at most $4k^2 \binom{n}{k-1}$.

Proof. By a simple counting argument. The pair $(t(F), |F|)$ can take at most kn different values. In each case

$$|\{1, 2, \ldots, |F| - k + 1 + 2t(F)\} \setminus F| = t(F),$$
$$|F \cap \{ |F| - k + 2 + 2t(F), \ldots, n\}| = k - 1 - t(F).$$

Thus, e.g. the number of all members of \mathcal{F} which are exceptional because of (i) does not exceed

$$\sum_{t, i} 3 \binom{i - k + 2t}{t - 1} \binom{n - (i - k + 1 + 2t)}{k - 1 - t} \leq 3k \binom{n}{k-1} \leq k^2 \binom{n}{k-1}.$$

The other three cases can be treated similarly.

Each non-exceptional member $F \in \mathcal{F}$ will be assigned with a k-tuple

$$X_F := (\{1, 2, \ldots, |F| - k + 1 + 2t(F)\} \setminus F) \cup \{ |F| - k + 1 + 2t(F)\} \cup \{x - 1 | x \in (F \cap \{ |F| - k + 2 + 2t(F), \ldots, n\})\}.$$

Lemma 6. Let F and G be two distinct non-exceptional members of \mathcal{F}. Then $X_F \neq X_G$.

Proof. Suppose in order to obtain a contradiction that $|F| \leq |G|$ and $X_F = X_G$. $|F| = |G|$ implies $F = G$, thus we may assume that $|F| < |G|$ and $|F| - k + 1 + 2t(F) < |G| - k + 1 + 2t(G)$. Let

$$F' := F \cup (X_F \setminus \{ |G| - k + 1 + 2t(G) \}) \setminus \{x + 1 | x \in X_F \setminus \{ |G| - k + 1 + 2t(G) \}\}.$$

Since \mathcal{F} is left-shifted, obviously $F' \in \mathcal{F}$. On the other hand, all elements of the set

$$(X_F \setminus \{ |G| - k + 1 + 2t(G) \}) \cup \{ |G| - k + 2 + 2t(G) \}$$

belong to $F' \setminus G$. Hence $|F' \setminus G| \geq k$, contradicting (1).

By Lemma 6, \mathcal{F} has at most $\binom{n}{k}$ non-exceptional members. Thus, in view of Lemma 5,
\[|\mathcal{F}| \leq \binom{n}{k} + 4k^2 \binom{n}{k-1} + \sum_{i \leq k} f_i, \]

and the proof of Theorem 2 is complete.

4. Concluding Remarks and Problems

Conjecture 1. There exists a sufficiently large constant \(n_o(k) \geq 2k \) such that if \(n \geq n_o(k) \) then

\[f(n, k) = \binom{n}{k} + 2 \left(\binom{n}{k-1} + \binom{n}{k-2} + \cdots + \binom{n}{0} \right) - \binom{2k-1}{k}. \]

(5)

As it was pointed out by N. Alon [1], (5) is not valid for \(k = 3, n = 7 \). Next we show that this is not an isolated example.

Proposition. If \(k \) is large enough then \(n_o(k) \geq 2k + \sqrt{k}/10 \).

Proof. Let \(t \sim \sqrt{k}/10 \) be an integer such that \(k + t \) is odd, let \(n = 2k + t, X = X_1 \cup X_2 \) an \(n \)-element set, \(|X_1| = k, |X_2| = k + t \). Then

\[\mathcal{F} := \{ F \subseteq X \mid |F| < k \text{ or } |F| > n - k \} \]

\[\bigcup \left\{ F \subseteq X \mid k \leq |F| \leq k + t \text{ and } |F \cap X_1| < \frac{k - t}{2} \right\} \]

(listed in increasing order of cardinality) obviously satisfies (1). Now by the formulas of Stirling and Moivre-Laplace we obtain that

\[|\mathcal{F}| > \frac{3}{2} \binom{n}{k} + 2 \left(\binom{n}{k-1} + \binom{n}{k-2} + \cdots + \binom{n}{0} \right) \]

A set-system \(\mathcal{F} \) is called a Sperner family if \(F \nsubseteq G \) holds for every pair \(F, G \in \mathcal{F} \).

Conjecture 2. Let \(\mathcal{F} = \{ F_1, F_2, \ldots \} \) be a Sperner family of subsets of an \(n \)-element set satisfying condition (1). Then \(|\mathcal{F}| \leq \binom{n}{k-1} \) holds for \(n \geq 2k - 3 \).

Remark. Let us mention that the above inequality follows from Sperner's theorem for \(2k - 3 \leq n \leq 2k - 1 \). We could prove it for \(n = 2k \) as well. Their are four optimal families. Note that this is a stronger version of a conjecture of Frankl [7] which states that the same inequality holds under the condition that \(|F_i \setminus F_j| < k \) for all \(i, j \).

Conjecture 3. Let \(\mathcal{L}, j, k \) denote the same as in Theorem 3. Then \(\text{ex}(n, \mathcal{L}) = 0(j n^k) \).

References

1. Alon, N.: Personal communication 1984

Received: September 25, 1985