NOTE
ON A TURÁN TYPE PROBLEM OF ERDŐS

ZOLTÁN FÜREDI*

Received December 1, 1988
Revised May 26, 1989

Let \(L^k \) be the graph formed by the lowest three levels of the Boolean lattice \(B_k \), i.e., \(V(L^k) = \{0, 1, \ldots, k, 12, 13, \ldots, (k - 1)k\} \) and 0 is connected to \(i \) for all \(1 \leq i \leq k \), and \(ij \) is connected to \(i \) and \(j \) (\(1 \leq i < j \leq k \)).

It is proved that if a graph \(G \) over \(n \) vertices has at least \(k^{3/2}n^{3/2} \) edges, then it contains a copy of \(L^k \).

1. Preliminaries, Results

A hypergraph, \(H \), is a pair \((V, \mathcal{E}) \), where \(\mathcal{E} \) is a family of subsets of \(V \). The elements of \(V \) are called vertices, the \(E \in \mathcal{E} \) are called hyperedges. A hypergraph is called \(t \)-uniform, or a \(t \)-graph, if \(|E| = t \) holds for every \(E \in \mathcal{E} \). The 2-graphs are called graphs. For \(X \subset V \) we set \(\mathcal{E}[X] = \{E : X \subset E \in \mathcal{E}\} \). The degree, \(\deg(H, X) \), or briefly \(\deg(X) \), is the cardinality of \(\mathcal{E}[X] \), \(\deg(\{x\}) \) is abbreviated as \(\deg(x) \). The set \(N(x) = \cup \mathcal{E}[x] \setminus \{x\} \) is called the neighbourhood of \(x \). The family of all \(t \)-subsets of a \(k \)-set is called the complete \(t \)-graph and is denoted by \(K^t_k \).

Given a graph \(F \), what is \(T(n, F) \), the maximum number of edges of a graph with \(n \) vertices not containing \(F \) as a subgraph? This is one of the basic problems of extremal graph theory, the so called Turán problem. The Erdős-Stone-Simonovits theorem ([9], [11], for a survey see Bollobás’ book [1]) says that the order of magnitude of \(T(n, F) \) depends on the chromatic number of \(F \), namely \(\lim_{n \to \infty} T(n, F)/(\binom{n}{2}) = 1 - (\chi(F) - 1)^{-1} \). This theorem gives a sharp estimate, except for bipartite graphs. The case of bipartite graphs seems to be more difficult, and only a very few \(T(n, F) \) are known. Even the exact value of \(T(n, C_4) \) is known only for a quite rare sequence of \(n \)'s [12]. For every bipartite graph \(F \) which is not a forest there is a positive constant \(c \) (not depending on \(n \)) such that

\[
\Omega(n^{1+c}) \leq T(n, F) \leq O(n^{2-c})
\]

holds for all \(n > n_0 \). The first problem is to determine the right exponent of \(n \).

AMS subject classification (1980): 05 C 35, 05 C 65

*Research supported in part by the Hungarian National Science Foundation under Grant No. 1812
Erdős, Rényi and T. Sós [8] and Brown [2] proved that

\begin{align}
T(n, C_4) &= \frac{1}{2} (1 + o(1)) n^{3/2}, \\
T(n, K_{3,3}) &= c_4 n^{5/3}.
\end{align}

Conjecture 1.3. (Erdős [5], also see in [10], [14]) Let F be a bipartite graph such that each induced subgraph has a vertex of degree at most 2. Then $T(n, F) = O(n^{3/2})$.

The aim of this note is to make a small contribution to this direction. Let $k \geq 2, s \geq 1$ be integers, and define the following bipartite graph $L^{k,s}$ with classes X and Y. $X = \{x_0\} \cup \{x_{ij}^\alpha : 1 \leq i < j \leq k, \alpha = 1, \ldots s\}$ and $Y = \{y_1, \ldots, y_k\}$. Join x_0 to each vertex of Y, and join $x_{i,j}^\alpha$ to y_i and y_j. L^k stands for $L^{k,1}$. All $L^{k,s}$ contain four-cycles, so $\Omega(n^{3/2}) \leq T(n, L^{k,s})$. Erdős [4] proved that $T(n, L^3) = O(n^{3/2})$, and conjectured (see in [4], [6], [7]) that this holds for all L^k, (according to the Conjecture 1.3.)

Theorem 1.4. $T(n, L^{k,s}) < n^{k-1} \frac{k-1}{4} + n^{3/2} \sqrt{sk(k-1)^2 + 2(k-2)(k-1)}$.

To give a lower bound consider a C_4-free graph H with maximum number of edges over $v = \lfloor n/(k-1) \rfloor$ vertices. Replace every vertex x with a $k-1$-element set $V(x)$. Join all vertices of $V(x)$ to all vertices of $V(y)$ if and only if $\{x, y\}$ is an edge of H. The obtained graph is L^k-free, so (1.1) yields

\[T(n, L^k) \geq (1 + o(1)) \frac{\sqrt{k-1}}{2} n^{3/2}. \]

Theorem 1.4 is implied by the following lemma.

Lemma 1.5. Suppose that \mathcal{A}, $|\mathcal{A}| = a$, is a collection of subsets of the n-element set S with average size b, (that is, $\sum |A_i|/a = b$). Let $k \geq t \geq 2$ and $d > g \geq 1$ be integers, and suppose that

\[\binom{d-1}{g} \binom{a}{t} \binom{k-1}{t-1} < \binom{n}{g} \binom{a}{g} \binom{n}{g} \binom{n-g}{t-1} \frac{a}{t} \binom{n}{g} - (k-1). \]

Then there exists k members of \mathcal{A}, $A_1, A_2, \ldots, A_k \in \mathcal{A}$, such that $|\bigcap A_i| \geq g$, and the size of the intersection of every t of them is at least d.

The proof of this Lemma is postponed until the second Section. The definition of $\binom{x}{t}$ for real x, as usual, is $x(x-1)\ldots(x-t+1)/t!$ when $x > t-1$ and 0 otherwise.

Proof of Theorem 1.4 from Lemma 1.5. Suppose that G is a graph on n vertices and e edges, where e has the value which is given by the right hand side of inequality in Theorem 1.4. Define \mathcal{A} as the family of the neighbourhoods $N(x)$ ($x \in V(G)$). Then one can apply Lemma 1.5 to \mathcal{A} with the values $a = n$, $b = e/n$, $k = k$, $t = 2$, $g = 1$ and $d = k-1 + s(k)$. We obtain the sets $N(y_1), \ldots, N(y_k)$ with the following properties. There exists a vertex $x_0 \in \bigcap N(y_i)$, and for $1 \leq i <
\(j \leq k \) one has \(|N(y_i) \cap N(y_j)| \geq s^{(k)} + k - 1 \). Then one can find disjoint sets \(V_{i,j} \subset N(y_i) \cap N(y_j) \setminus \{x_0, y_1 \ldots y_k\} \) of size \(s \), i.e., the subgraph of \(\mathcal{G} \) induced on \(\{x_0, y_1 \ldots y_k\} \cup V_{i,j} \) contains a copy of \(L_{k,s}^{k,s} \).

Another corollary of the Lemma, for example, that if \(\sqrt{n} \) sets are given of average size \(5\sqrt{n} \), then one can find four of them whose pairwise intersections have at least 4 elements. (Moreover they have a common element, as well.)

The Lemma also implies that if \(\mathcal{G}[n, \sqrt{n}] \) is a bipartite graph with classes of sizes \(n \) and \(\sqrt{n} \) and with \(c(k,\sqrt{n})n \) edges, then it contains a copy of \(L_{k,s}^{k,s} \). (For this reformulation the author is indebted to P. Erdős.)

2. Proof of the Lemma, and more Corollaries

Let \(m \geq k \geq t \geq 2 \) be integers. Define \(T(m, k, t) \) as the minimum number of \(t \)-sets of an \(m \)-element set \(S \) such that every \(k \)-subset of \(S \) contains a \(t \)-set. The determination of \(T(m, k, t) \) is the classical Turán problem, and with the notations of the previous Section one has \(T(m, k, t) = \binom{m}{t} - T(m, K_t^k) \). We have

\[
T(m, k, t) \geq \binom{m}{t-1} \frac{m-k+1}{t} \frac{(k-1)^{-1}}{(t-1)}.
\]

This lower bound is due to de Caen [3].

Suppose on the contrary, that among every \(k \) members of \(\mathcal{A} \) containing \(g \) common elements one can find \(t \) of them with intersection size at most \(d-1 \). If the intersection of \(t \) members of \(\mathcal{A} \) has at least \(g \) but less than \(d \) elements, then they are called a subsystem of type 0. Let \(X \subset S \), \(|X| = g \) and consider the family \(\mathcal{A}[X] \). The indirect assumption implies that the number of subfamilies of \(\mathcal{A}[X] \) of type 0 is at least \(T(\text{deg}(X), k, t) \). On the other hand, every subfamily of \(\mathcal{A} \) of type 0 can appear at most \(\binom{d-1}{g} \) times in some \(\mathcal{A}[X] \). Then (2.1) and the Jensen’s inequality give that

\[
\binom{d-1}{g} \binom{a}{t} \geq \sum_{X \subset S} T(\text{deg}(X), k, t) \geq \sum_{X \subset S} \binom{\text{deg}(X)}{t-1} \frac{\text{deg}(X) - k + 1}{t} \frac{(k-1)^{-1}}{(t-1)}
\]

\[
\geq \binom{n}{g} \binom{k-1}{t-1} \binom{a}{g} \binom{b}{g} \frac{\text{deg}(X)/\binom{n}{g} - (k-1)}{t} \frac{\binom{n}{g} - (k-1)}{t}.
\]

Define the bipartite graph \(L_t^{k,s} \) over \(X \cup Y \) as follows. \(X = \{x_0\} \cup \{x_I^\alpha : \text{where } I \text{ is a } t \text{ subset of } \{1, 2, \ldots k\} \text{ and } 1 \leq \alpha \leq s\} \), and \(Y = \{y_1, \ldots y_k\} \). Join \(x_0 \) to each \(y_i \); and join \(x_I^\alpha \) to \(y_i \) if \(i \in I \). So \(L_2^{k,s} = L_{k,s}^{k,s} \). Then Lemma 1.5 also implies that there exists a constant \(c_t^{k,s} \) such that

\[
T(n, L_t^{k,s}) \leq c_t^{k,s} n^{2 - \frac{1}{t}}.
\]
The exponent of n in this bound is best possible for $t = 3$ as well by (1.2). Inequality (2.2) is a generalization of an estimate of $T(n, K_{t,t})$ due to Erdős, Kövári, T. Sós and Turán [13], and was also conjectured by Erdős [7].

If we use Lemma 1.5 with $g = t$, $(a = n, d = s(t) + k)$, then we obtain that

$$T(n, G_t^{k,s}) \leq O(n^{2 - \frac{1}{t}}),$$

where $G_t^{k,s}$ is obtained from $L_t^{k,s}$ by replacing x_0 by t new vertices and joining each of them to Y. For example $G_2^{k,1}$ is a graph with vertex-set $\{0, 0', 1, \ldots, k, 12, 13, \ldots, (k - 1)k\}$ and 0 and $0'$ are connected to i for all $1 \leq i \leq k$, and ij is connected to i and j $(1 \leq i < j \leq k)$.

Acknowledgements. The author is indebted to P. Erdős for several fruitful discussions and encouragements.

References

[12] Z. Füredi, Quadrilateral-free graphs with maximum number of edges, to appear

Zoltán Füredi

Mathematical Institute of the Hungarian Academy of Sciences,
1364 Budapest, P. O. B. 127,
Hungary