COVERING ALL SECANTS OF A SQUARE

I. BÁRÁNY* - Z. FÜREDI*

Suppose that \(n \) points are given in the unit square. Then there exists an intersecting line whose \(\ell_\infty \)-distance is at least \(2/3(n+1) \) from each point. This is a slight improvement on the trivial lower bound \(1/2n \) but it is still far from the best possible value \(1/(n+1) \) conjectured by L. Fejes Tóth.

1. INTRODUCTION

Let \(S \) be a square on the plane with side length \(n \) \((\geq 1)\), and let \(\mathcal{H} = \{S_1, S_2, \ldots, S_t\} \) be a collection of unit squares whose sides are parallel to those of \(S \). We say that \(\mathcal{H} \) covers the lines intersecting \(S \) if for every line \(L \) (on the plane) which intersects \(S \) intersects some of the \(S_i \)'s \((i.e., L \cap S \neq \emptyset \) implies \(L \cap S_i \neq \emptyset \) for some \(i \)). Let \(\tau(n) = \tau(n, S) \) denote the minimum cardinality of a cover, and let \(\tau_{\text{int}}(n) \) denote the minimum cardinality of a covering system whose members are located inside \(S \).

* Research supported by Hungarian National Foundation for Scientific Research no. 1238 and 1812.
L. Fejes Tóth [3,7] conjectured that for an odd integer \(n \)
\[\tau_{in}(n) = 2n - 1 \]

(see Figure 1.). Clearly, \(\tau(n) \leq \tau_{in}(n) \leq 2\lceil n \rceil \) where \(\lceil x \rceil \) denotes the upper integer part of the real \(x \). The aim of this note is to improve on the trivial lower bound \(\tau(n) \geq \Gamma n \rceil \) Namely, we will prove \(\tau(n) > (13n-1)/12 \) (Theorem 2.1) and \(\tau_{in}(n) > (4n-1)/3 \) (Theorem 2.3).

The exact results are stated in Section 2. That section also contains examples showing the limit of our methods. Section 3 is devoted to the proof of the lower bounds. These proofs use weight functions, actually we calculate the fractional covering number of a hypergraph. In Section 4 we mention related problems and results.

2. INTERSECTING LINES PARALLEL TO THE SIDES OR THE DIAGONALS

THEOREM 2.1. Let \(S \) be a square with side length \(n \) \((n \geq 1, \text{ real})\) and let \(\mathcal{S} = \{ S_1, \ldots, S_t \} \) be a collection of unit squares in \(S \) whose sides are parallel to those of \(S \). If \(t \leq (4n-1)/3 \) then there exists a line parallel to either a side or a diagonal of \(S \), which intersects \(S \) and avoids every \(S_i \).

The Example 2.2 shows that for \(t \geq (3n+1)/2 \), Theorem 2.1 does not remain true.
EXAMPLE 2.2. Let k be a positive integer, $n = 4k-1$. Suppose that the four vertices of S are given by their coordinates: $(0,0)$, $(0,n)$, $(n,0)$ and (n,n). We will denote by $S(i,j)$ the unit square $\{(x,): i \leq x \leq i+1, j \leq y \leq j+1\}$. Then the following set of squares, \mathcal{S} covers every intersecting line of S with slope 0, 45°, 90° or 135°.

$\mathcal{S} = \{S(i,j):$ where $i,j \geq 0$ integers such that $i = 0, j = 2t$, $0 \leq t \leq k-1$ or $j = 0$, $i = 2(k+t)$, $0 \leq t \leq k-1$ or $i = 2k-2$, $j = 2(k+t)$, $0 \leq t \leq k-1$ or $j = 2k-2$, $i = 2t$, $0 \leq t \leq k-1$ or finally $i = j = 2t+1$, $0 \leq t \leq 2k-2\}$. See Figure 2.

If n is not an integer of the form $4k-1$, then a minor modification of the above example (e.g., let $k = \lfloor (n-1)/4 \rfloor$) demands less than $(3n+9)/2$ unit squares. Denote by $t_\leq(n)$ the minimum value of t for which 2.1 does not hold. Similarly, let $t(n)$ denote the minimum t such that there exists a cover consisting of t unit squares (located arbitrarily, not only inside S) which meets every intersecting line with slope 0, 45°, 90° or 135°.

THEOREM 2.3
\[
\frac{13}{12} n - \frac{1}{12} < t(n) < \frac{4}{3} n + O(1).
\]

The upper bound follows from the following example.

EXAMPLE 2.4. Suppose $n = 6k+3$, where k is an integer. Let $\mathcal{S} = \{S(i,j):$ where i,j are integers and either $i = 3j$, $0 \leq j \leq 3k+1$ or $j = 3i-2$, $1 \leq i \leq 3k+1$ or $(i,j) = (3k+2, 6k+2)$ or $j = i-2$, $i = 3k+3+t$, $0 \leq t \leq 3k-1$, $t \not\equiv 2 (\text{mod } 3)\}$. Then $|\mathcal{S}| = 8k+4$. See Figure 3.

These examples show that our method, i.e., to consider only 4 directions, can not lead to the proof of Fejes Tóth's conjecture.
3. PROOFS

Suppose that S_1, S_2, \ldots, S_t meet every line intersecting S with angle $0^\circ, 45^\circ, 90^\circ$ or 135°. We will show that $t > (4n-1)/3$. Consider a coordinate-system whose axes are parallel to the sides of S. Choose the unit and the origin of this system in such a way that the vertices of S have the coordinates $(\pm 1, \pm 1)$. Then the side length of a square S_i is $2/n$ denoted by $2c$. We define a weight function $w(L)$ on the set of intersecting lines L with slopes $0, 45^\circ, 90^\circ$ or 135° as follows. Actually, this weight-function is a measure on the set of these lines. If the equation of the line L is $y = c$ or $x = c$ then

$$w(L) = \frac{1}{2} - \frac{1}{2c^2}$$

and, if the form of the line L is $y = x + h$ or $y = -x + h$ then

$$w(L) = \frac{1}{8} h^2.$$
As for an intersecting line \(|c| \leq 1, |h| \leq 2\) hold we have \(\frac{1}{2} \geq w(L) \geq 0\). The total weight of the lines in these four directions is:

\[
(1) \quad 2 \int_{-1}^{+1} \left(\frac{1}{2} - \frac{1}{2}c^2 \right) dc + 2 \int_{-2}^{+2} \frac{1}{6}h^2 \, dh = \frac{8}{3}.
\]

Now consider a square \(Q = Q(a,b)\) with center \((a,b)\) \((|a|, |b| \leq 1-\varepsilon)\) and side length \(2\varepsilon\).

We will show that the weight of the lines intersecting \(Q\) is

\[
(2) \quad 2\varepsilon + \frac{2}{3} \varepsilon^3.
\]

Hence (1) and (2) yield that for \(n > 1\)

\[
t \geq \frac{8}{3} / (2\varepsilon + \frac{2}{3} \varepsilon^3) = \frac{4n - \frac{4}{9n + (3/n^2)}}{3} > \frac{4n-1}{3}
\]

proving Theorem 2.1. The proof of (2) is simple because the weight of the lines intersecting \(Q\) and parallel to the axis \(x = 0\) is

\[
(3) \quad \int_{a-\varepsilon}^{a+\varepsilon} \left(\frac{1}{2} - \frac{1}{2}c^2 \right) dc = \varepsilon - a^2 \varepsilon - \frac{1}{3} \varepsilon^3.
\]

See Figure 4. Similarly the weights of the lines intersecting \(Q\) and parallel to the lines \(y = 0, y = x, y = -x\) are

\[
(4) \quad \int_{b-\varepsilon}^{b+\varepsilon} \left(\frac{1}{2} - \frac{1}{2}c^2 \right) dc = \varepsilon - b^2 \varepsilon - \frac{1}{3} \varepsilon^3,
\]
Figure 4

\[
\begin{align*}
\int_{b-a+2\varepsilon}^{b-a-2\varepsilon} \frac{1}{8} h^2 \, dh &= \frac{1}{2} \varepsilon (b-a)^2 + \frac{2}{3} \varepsilon^3, \\
\int_{a+b-2\varepsilon}^{a+b+2\varepsilon} \frac{1}{8} h^2 \, dh &= \frac{1}{2} \varepsilon (a+b)^2 + \frac{2}{3} \varepsilon^3,
\end{align*}
\]

Summing up (3) - (6) we get (2).

The proof of 2.3 is analogous to the above. We modify the weight functions of the lines, because in the previous case a small square outside \(S \), e.g., \(Q(0,2) \) could get too much weight.

If \(y = c \) or \(x = c \) then \(w(L) = \begin{cases}
\frac{1}{2} - \frac{1}{8} c^2 & \text{for } |c| \leq 1 \\
0 & \text{otherwise}
\end{cases} \)

and if \(y = x + h \) then \(w(L) = \begin{cases}
\frac{1}{32} h^2 & \text{for } |h| \leq 2, \\
0 & \text{otherwise}
\end{cases} \).
Then the total weight of the lines is $13/6$ and every small square covers lines with weight at most $2\varepsilon + \frac{1}{6}\varepsilon^3$. Hence $t < \frac{13}{12} - 1/12(12n^2 + 1)$.

4. RELATED PROBLEMS AND RESULTS

We have the following conjectures:

$$t(n) = \frac{4}{3}n + O(1),$$

$$t_{in}(n) = \frac{3}{2}n + O(1).$$

We could not even prove that $\lim_{n \to \infty} t(n)/n$ exists (or $\lim t_{in}(n)/n$, or $\lim \tau(n)/n$ or $\lim \tau_{in}(n)/n$.) The only result we have is if we consider 8 directions of the lines, and define a more sophisticated weight-function, then we obtain

THEOREM 4.1. \(\tau_{in}(n) > 1.43n - O(1).\)

Paul Endős asked what is the minimum number of covering unit squares outside S? It is very likely $3n + O(1)$.

Our problem is a particular case of a problem of Fejes Tóth [2]. Assume K is a convex body on the plane and $\lambda > 0$. Consider a set \mathcal{S} of λ-homothetic copies of K having the property that each line intersecting K intersects at least one member of \mathcal{S}. What is the minimum cardinality of such a set? Fejes Tóth [3] points out further that this question is closely related to the dual of Tarski’s plank problem (see Bang [1] or Fenchel [4]).

Another related problem is the following, considered by Makai and Pach [6]. Let \mathcal{F} be a class of functions $f : \mathbb{R} \to \mathbb{R}^d$. A set of points $\{ (x_i, y_i) \in \mathbb{R} \times \mathbb{R}^d, i = 1, 2, \ldots \}$
is said to be \(\mathcal{F} \)-controlling system if for each \(f \in \mathcal{F} \) there is an \(i \) with \(\| f(x_i) - y_i \| \leq 1 \). So an \(\mathcal{F} \)-controlling system is a set of points \(P \) in \(\mathbb{R}^1 \times \mathbb{R}^d \) with the property that for each \(f \in \mathcal{F} \) one can find a point in \(P \) sufficiently close to the graph of \(f \). The problem is to find an \(\mathcal{F} \)-controlling system with "few" points (or with small density if \(P \) must be infinite). Makai and Pach [6], and Groemer [5] prove several results concerning this problem. In their case the norm is always the Euclidean norm.

When we take in the above formulation \(d = 1 \), \(\mathcal{F} \) to be the class of all linear functions whose graphs intersect the square \(S \), and \(\| \| \) to be the \(L_\infty \) norm, then what we arrive to is exactly our problem about \(\tau(n,S) \).

We end this paper by mentioning a question of Fejes Tóth [2] which we find very appealing and which belongs to the sort of questions considered here. A zone of width \(w \) is defined as the parallel domain of a great circle (of the sphere) with angular distance \(w/2 \). Prove (or disprove) that the total width of any set of zones covering the sphere is at least \(\pi \).

REFERENCES

I. BÁRANY
Budapest 1364 P.O.B. 127,
Hungary

Z. FÜREDI
RUTCOR, RUTGERS
University,
New Brunswick,
NJ 08903, USA