Nordhaus–Gaddum-type theorems for decompositions into many parts

Zoltan Füredi*1,2 Alexandr V. Kostochka††1,3
Riste Škrekovski§4,5 Michael Stiebitz6 Douglas B. West††

1 University of Illinois, Urbana, IL 61801, U.S.A.
2 Rényi Institute of Mathematics, P.O.Box 127, Budapest 1364, Hungary
3 Institute of Mathematics, 630090 Novosibirsk, Russia
4 Charles University, Malostranské nám. 2/23, 118 00, Prague, Czech Republic
5 University of Ljubljana, Jadranska 19, 1111 Ljubljana, Slovenia
6 Technische Universität Ilmenau, D-98693 Ilmenau, Germany

Abstract

A k-decomposition \((G_1, \ldots, G_k)\) of a graph \(G\) is a partition of its edge set to form \(k\) spanning subgraphs \(G_1, \ldots, G_k\). The classical theorem of Nordhaus and Gaddum bounds \(\chi(G_1) + \chi(G_2)\) and \(\chi(G_1)\chi(G_2)\) over all 2-decompositions of \(K_n\). For a graph parameter \(p\), let \(p(G)\) denote the maximum of \(\sum_{i=1}^k p(G_i)\) over all \(k\)-decompositions of the graph \(G\).

The clique number \(\omega\), chromatic number \(\chi\), list chromatic number \(\chi_l\), and Szekeres-Wilf number \(\sigma\) satisfy \(\omega(2; K_n) = \chi(2; K_n) = \chi_l(2; K_n) = \sigma(2; K_n) = n + 1\). We obtain lower and upper bounds for \(\omega(k; K_n)\), \(\chi(k; K_n)\), \(\chi_l(k; K_n)\), and \(\sigma(k; K_n)\). The last three behave differently for large \(k\). We also obtain lower and upper bounds for the maximum of \(\chi(k; G)\) over all graphs embedded on a given surface.

1 Introduction

A k-decomposition of a (hyper)graph \(G\) is a decomposition of \(G\) into \(k\) spanning sub(hyper)graphs \(G_1, \ldots, G_k\). That is, each \(G_i\) has the same vertices as \(G\), and

*Research supported in part by the Hungarian National Science Foundation under grant OTKA T 032452, and by the NSF grant DMS 0140692.
††Research supported in part by the NSF grants DMS-0099608 and DMS-0400498.
§Research supported in part by the Dutch-Russian grant NWO-047-008-006.
§§Research supported in part by the Ministry of Science and Technology of Slovenia (Z1-3129), by the Czech Ministry of Education (LN00A056) and by DLR (SVN 99/003).

J. Graph Theory 50 (2005), 273–292.
every edge of G belongs to exactly one of G_1, \ldots, G_k. Such decompositions can be viewed as unrestricted k-edge-colorings of G (color classes may be empty).

For a parameter p, a positive integer k, and a (hyper)graph G, let

$$p(k; G) = \max\{\sum_{i=1}^{k} p(G_i) : (G_1, \ldots, G_k) \text{ is a } k\text{-decomposition of } G\}.$$

A p-optimal k-decomposition of G is a k-decomposition (G_1, \ldots, G_k) such that $p(k; G) = \sum_{i=1}^{k} p(G_i)$. We will also comment (in Section 2) on the minimum of $\sum_{i=1}^{k} p(G_k)$ and on the extreme values of the product $\prod_{i=1}^{k} p(G_k)$.

The parameters we study are the clique number ω, the chromatic number χ, the list-chromatic number χ_l, and the Szekeres-Wilf number σ, where σ is defined by $\sigma(G) = 1 + \max_{H \subseteq G} \delta(H)$. Every graph G satisfies $\omega(G) \leq \chi(G) \leq \chi_l(G) \leq \sigma(G)$. Therefore, for every k and G,

$$\omega(k; G) \leq \chi(k; G) \leq \chi_l(k; G) \leq \sigma(k; G). \quad (1)$$

Clearly, (G_1, G_2) is a 2-decomposition of the complete graph K_n if and only if G_1 is the complement of G_2 and has n vertices. Thus the Nordhaus–Gaddum Theorem can be stated as follows.

Theorem 1 (Nordhaus–Gaddum [16]) Let n be a positive integer. If (G_1, G_2) is a 2-decomposition of K_n, then the following statements hold:

(a) $\lfloor 2\sqrt{n} \rfloor \leq \chi(G_1) + \chi(G_2) \leq n + 1$;

(b) $n \leq \chi(G_1) \cdot \chi(G_2) \leq \lfloor \left(\frac{n+1}{2}\right)^2 \rfloor$.

The proof of Theorem 1 implies that $\omega(2; K_n) = \chi(2; K_n) = \chi_l(2; K_n) = \sigma(2; K_n) = n + 1$, achieving equalities in (1) (see also Section 5). Finck [9] described the χ-optimal 2-decompositions of K_n.

Plesnák [17] studied $\chi(k; K_n)$ for $k > 2$ and proved that $\chi(k; K_n) \leq n + 2^{(k+1)/2}$ for every n. He also proved (see Lemma 3 in [17]) that

$$n + \binom{k}{2} \leq \omega(k; K_n) \leq \chi(k; K_n) \quad \text{if} \quad n \geq \binom{k}{2} \quad (2)$$

and conjectured (see also Bosák [3]) that $\chi(k; K_n) = n + \binom{k}{2}$. Our first result is

Theorem 2 If k and n are positive integers, then $\omega(k; K_n) \leq n + \binom{k}{2}$. If $n \geq \binom{k}{2}$, then $\omega(k; K_n) = n + \binom{k}{2}$.

Watkinson [24] improved Plesnák’s upper bound to $\chi(k; K_n) \leq n + \frac{k}{2}$. It follows that $\omega(3; K_n) = \chi(3; K_n) = n + 3$ for every $n \geq 3$. Our second result improves Watkinson’s bound for large k.

2
Theorem 3 If k and n are positive integers, then $\chi(k; K_n) \leq n + 7^k$.

Thus for chromatic number the “lower order term” is independent of n. This does not hold for list chromatic number.

Theorem 4 There exists a positive constant c such that, if $k = \left(\frac{t+1}{2}\right)$ and $n = \ell m$ with ℓ and m being integers greater than 1, then
\[
\chi_l(k; K_n) \geq n + ck \ln\left(\frac{n}{\sqrt{k}}\right).
\]

On the other hand, for all positive integers k and n,
\[
\chi_l(k; K_n) \leq n + 3k!\sqrt{1 + 8n \ln n}.
\]

Thus, the leading behavior of $\chi_l(k; K_n)$ for fixed k as $n \to \infty$ is still n, but the additive term grows with n. The leading behavior for $\sigma(k; K_n)$ is larger.

Theorem 5 If $k = p^2 + p + 1$ for some prime power p, and $n \equiv 0 \mod k$, then
\[
\sigma(k; K_n) \geq (\sqrt{k} - 1)n + k,
\]

On the other hand, for all positive integers k and n,
\[
\sigma(k; K_n) \leq \sqrt{kn} + k.
\]

Furthermore, we determine $\sigma(k; K_n)$ exactly for $k \leq 4$.

We consider also decompositions of the complete r-uniform hypergraph K_n^r. Since $\chi(K_n^r) = \left\lceil \frac{n}{r - 1} \right\rceil$, we have $\chi(k; K_n^r) \geq \left\lceil \frac{n}{r - 1} \right\rceil + k - 1$. Although it is easy to improve the bound for large n, we will prove that up to a summand $c_{k,r}$ independent of n, this is the correct value of $\chi(k; K_n^r)$.

Theorem 6 If k and r are positive integers with $r \geq 2$, then there exists an integer $c_{k,r}$ such that, for every positive integer n,
\[
\chi(k; K_n^r) \leq \frac{n}{r - 1} + c_{k,r}.
\]

Finally, we consider decompositions of graphs embedded on a given surface Σ. For a graph parameter p and positive integer k, let $p(k; \Sigma)$ denote the maximum of $p(k; G)$ over all graphs G embeddable on Σ. Let g be the Euler genus of Σ. We show that for fixed k and large g, the values of $\omega(k; \Sigma)$, $\chi(k; \Sigma)$, $\chi_l(k; \Sigma)$, and $\sigma(k; \Sigma)$ are asymptotically equal, unlike $\omega(k; K_n)$ and $\sigma(k; K_n)$.

In the next section, we comment on the analogous problems for maximizing $\prod_{i=1}^{k} p(G_i)$ and for minimizing the sum or product. Section 3 then introduces terminology we use in discussing the problems for maximum sum. In subsequent sections we treat consecutively the clique number, the chromatic number, the list chromatic number, and the Szekeres-Wilf number of graphs. The last two sections are devoted to the chromatic number of r-uniform hypergraphs and to decompositions of graphs embedded on surfaces.
2 Maximum Product and Minimum Sum

To study the problem of maximum product for a parameter p, define

$$p^k(k; G) = \max \{ \prod_{i=1}^{k} p(G_i): (G_1, \ldots, G_k) \text{ is a } k\text{-decomposition of } G \}.$$

Using the Cauchy-Schwarz Inequality, our bounds on $p(k; K_n)$ yield corresponding bounds on $p^k(k; K_n)$. For fixed k,

$$\omega^k(k; K_n) \leq \chi^k(k; K_n) \leq \chi^k_i(k; K_n) \leq (1 + o(1))(n/k)^k,$$

$$\sigma^k(k; K_n) \leq (1 + o(1))(n/\sqrt{k})^k, \quad \text{and} \quad \chi^k(k; K_n^n) \leq (1 + o(1))(n/k(r-1))^k.$$

Decomposing K_n and K_n^r into almost disjoint complete subgraphs of about the same size (pairwise sharing at most $r-1$ vertices) shows that except for the bound on σ^k, these upper bounds are asymptotically tight for fixed k. The construction in Theorem 5 yields that $\sigma^k(k; K_n) \geq e^{-\sqrt{k}(n/\sqrt{k})^k}$. Thus, for $\sigma^k(k; K_n)$ we at least know the order of magnitude.

We can also study the minimum sum or product of the values of p over a decomposition. Let

$$\overline{p}(k; G) = \min \{ \sum_{i=1}^{k} p(G_i): (G_1, \ldots, G_k) \text{ is a } k\text{-decomposition of } G \},$$

and

$$\overline{p}^k(k; G) = \min \{ \prod_{i=1}^{k} p(G_i): (G_1, \ldots, G_k) \text{ is a } k\text{-decomposition of } G \}.$$

Comparing the arithmetic mean and the geometric mean, we infer that

$$k \sqrt[k]{\overline{p}^k(k; G)} \leq \overline{p}(k; G)$$

for every integer $k \geq 2$ and every hypergraph G.

Now consider $\chi(k; G)$ and $\chi^k(k; G)$, the lower bounds for the sum and the product of the chromatic numbers in a k-decomposition. We apply the natural extension of the argument of Nordhaus and Gaddum [16]. If (G_1, \ldots, G_k) is a k-decomposition of a graph G, then $\chi(G) \leq \prod_{i=1}^{k} \chi(G_i)$. For $k \geq 2$, we thus have $\chi^k(k; K_n) \geq n$ and $\chi(k; K_n) \geq k^{n/\sqrt{n}}$.

On the other hand, if $n = p^k$, then K_n has a k-decomposition (G_1, \ldots, G_k) such that each G_i is a p-partite graph with p^{k-1} vertices in each class. Hence the lower bounds for both χ^k and χ are tight infinitely often. For the chromatic number, the simplicity of this solution motivates our focus on the maximization problem.
For the clique number, it is well known that the minimization problem is closely related to the Ramsey numbers. We use $R_k^2(q_1, \ldots, q_k)$ to denote the minimum n such that every k-coloring of the r-sets of an n-set yields, for some i, a q_i-set whose r-sets all receive color i. Since $\bar{\omega}(k; K_n) \leq N$ if and only if some decomposition has clique numbers summing to at most N, we have $\bar{\omega}(k; K_n) \leq N$ if and only if $R_k^2(q_1 + 1, \ldots, q_k + 1) > n$ for some q_1, \ldots, q_k with $\sum_{i=1}^k q_i = N$.

It is generally believed that $R_k^2(q_1, \ldots, q_k)$ is maximized for fixed $\sum_{i=1}^k q_i$ when q_1, \ldots, q_k differ by at most 1. If this holds and $R_k^2(q, \ldots, q) = n$, then $k(q - 1) < \bar{\omega}(k; K_n) \leq k(q; K_{n-1}) + 1 \leq k(q - 1) + 1$.

Although the Ramsey numbers are not known, there are bounds. For example, it is known that $2^{c^2 q^2} \leq R_3^2(q,q,q) \leq 2^{c^2 q}$ for constants c and c' [11]. From the lower bound, we have $\bar{\omega}(k; K_n) < 3 \sqrt{\frac{1}{e}} \log_2 n$. Assuming again that $R_3^2(q,q,q)$ maximizes $R_3^2(q_1, q_2, q_3)$ such that $q_1 + q_2 + q_3 = 3q$, the upper bound yields $\bar{\omega}(k; K_n) > 3 \log_2 \log_2 n - 3$. Improving these bounds would require improving the bounds on the Ramsey numbers, so again we focus henceforth on the maximization problem $\omega(k; K_n)$.

3 Preliminaries

Concepts and notation not defined in this paper are as in standard textbooks. Though the main objects of our study are graphs, we also consider the central concepts for hypergraphs.

A hypergraph G is a pair consisting of a finite set $V(G)$ of vertices and a set $E(G)$ of subsets of $V(G)$, called edges, each having size at least two. A hypergraph G is r-uniform if $|e| = r$ for every $e \in E(G)$. A graph is a 2-uniform hypergraph.

Let G be a hypergraph. The degree $d_G(x)$ of a vertex $x \in V(G)$ is the number of edges in G that contain x. If $d_G(x) = s$ for every vertex $x \in V(G)$, then G is s-regular. Let $\delta(G)$ denote the minimum degree of G.

If H and G are hypergraphs with $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$, then H is a subhypergraph of G. In this case we write $H \subseteq G$.

Let G be a hypergraph. For $X \subseteq V(G)$, the sub(hyper)graph of G induced by X, written $G[X]$, is defined by $V(G[X]) = X$ and $E(G[X]) = \{e \in E(G): e \subseteq X\}$. Let $G - X$ denote $G[V(G) - X]$.

For an r-uniform hypergraph G, a set $X \subseteq V(G)$ is a clique or an independent set if $E(G[X])$ consists of all r-subsets of X or is empty, respectively. For an r-uniform hypergraph G, the clique number $\omega(G)$ is the maximum size of a clique in G. We write K_n^r for an r-uniform complete hypergraph on n vertices (the edges are all r-subsets of the vertices). Thus K_n^2 denotes simply a complete graph K_n.

For a (hyper)graph G, a list assignment L is a function that assigns to each vertex x of G a set $L(x)$ of colors (usually each color is a positive integer). An L-coloring of G is a function c that assigns a color to each vertex of G such that
$c(x) \in L(x)$ for all $x \in V(G)$ and $|\{c(x): x \in e\}| \geq 2$ for each $e \in E(G)$. If G admits an L-coloring, then G is L-colorable. When $L(x) = \{k\}$ for all $x \in V(G)$ (where $[k]$ denotes the set $\{1, \ldots, k\}$), the corresponding terms become k-coloring and k-colorable, respectively. G is k-list-colorable if G is L-colorable for every list assignment L satisfying $|L(x)| = k$ for all $x \in V(G)$.

The chromatic number of G, denoted by $\chi(G)$, is the least k such that G is k-colorable. The list-chromatic number of G, denoted by $\chi_l(G)$, is the least k such that G is k-list-colorable.

The Szekeres-Wilf number $\sigma(G)$ of a graph G, introduced by Szekeres and Wilf [21] in 1968, is equal to the coloring number introduced and studied by Erdős and Hajnal [7] in 1966. It is the smallest integer d such that in some linear ordering of $V(G)$ every vertex of G has at most $d - 1$ neighbors following it. It has been observed repeatedly that $\sigma(G)$ can be easily computed by iteratively letting x_i be a vertex of minimum degree in the subgraph G_i obtained by deleting $\{x_j: j < i\}$. It follows that $\sigma(G) = 1 + \max_i \{\delta(G_i)\}$.

Let p be a (hyper)graph parameter. A graph G is p-critical if $p(H) < p(G)$ for every proper subgraph H of G. For $p \in \{\omega, \chi, \chi_l, \sigma\}$, every graph G contains a p-critical subgraph H satisfying $p(H) = p(G)$.

4 Clique number and chromatic number

In discussing $\omega(k; K_n)$, we noted that a lower bound of $n + \binom{k}{2}$ is proved in [17] for the case $n \geq \binom{k}{2}$. We include a simple construction for this before proving our upper bound.

Construction: If $n \geq \binom{k}{2}$, then $\omega(k; K_n) \geq n + \binom{k}{2}$. The construction for $n = \binom{k}{2}$ can be extended for each additional vertex by adding all the edges incident to the new vertex to one graph in the decomposition.

For $n = \binom{k}{2}$, we provide k cliques of order $k - 1$ that are pairwise edge-disjoint and together use each vertex twice. The edges not covered can be added to one of these subgraphs to complete the decomposition of K_n. The sum of the orders of the cliques is $k(k - 1)$, which equals $n + \binom{k}{2}$.

Let $V(K_n) = \{(i, j): 1 \leq i < j \leq k\}$. For $1 \leq r \leq k$, let Q_r be the set of vertices whose names have r in one coordinate; note that $|Q_r| = k - 1$. The only vertex shared by Q_i and Q_j with $i < j$ is (i, j), so the cliques are edge-disjoint.

The following short proof of optimality of this construction is based on a comment by D. Fon-Der-Flaass.

Theorem 2 If k and n are positive integers, then $\omega(k; K_n) \leq n + \binom{k}{2}$. If $n \geq \binom{k}{2}$, then $\omega(k; K_n) = n + \binom{k}{2}$.

Proof: By the construction above, it suffices to show that $\omega(k; K_n) \leq n + \binom{k}{2}$.

Given a decomposition \((G_1, \ldots, G_k)\), let \(S_i\) be a maximum clique in \(G_i\). Each time \(v_j \in S_i\) and \(i\) is not the least index of such a clique, there is a pair \((i', i)\) with \(i' < i\) and \(v_j \in S_{i'} \cap S_i\). Each pair \((i', i)\) is generated at most once in this way, since two cliques cannot share two vertices.

Hence there are at most \(\binom{k}{2}\) incidences of the form \(v_j \in S_i\) such that \(i\) is NOT the least-indexed clique containing \(v_j\). Also there are at most \(n\) incidences of the form \(v_j \in S_i\) where \(i\) IS the least-indexed clique containing \(v_j\). Hence the sum of the sizes satisfies the claimed bound.

To obtain our upper bound on \(\chi(k; K_n)\), we need an upper bound on chromatic number in terms of Ramsey numbers. In our language, Ramsey’s Theorem states that every \(k\)-decomposition of a sufficiently large \(r\)-uniform complete hypergraph has an \(r\)-uniform complete hypergraph of specified size in some factor.

Theorem 7 (Ramsey [20]) For positive integers \(k, r, \) and \(n_1, \ldots, n_k\) satisfying \(k, r \geq 2\), there is a smallest integer \(R\) (written as \(R_k^r(n_1, \ldots, n_k)\)) such that if \((G_1, \ldots, G_k)\) is a \(k\)-decomposition of \(K^r_n\) with \(n \geq R\), then for some \(i \in [k]\) the subhypergraph \(G_i\) contains an \(r\)-uniform complete hypergraph with \(n_i\) vertices.

Our bound uses the observation that proper colorings of the subgraphs induced by a partition of the vertices, with different colors, combine to form a proper coloring of the full graph. We call this subadditivity of \(\chi\).

Proposition 8 For positive integers \(k, \ell, \) and \(r \geq 2\), let \(R\) be the Ramsey number \(R_k^r(\ell, k)\). If \(G\) is an \(r\)-uniform \(n\)-vertex hypergraph containing no \(r\)-uniform complete hypergraph on \(\ell\) vertices, then

\[
\chi(G) \leq \frac{n - R}{k} + R.
\]

Proof: We use induction on \(n\). If \(n \leq R\), then

\[
\chi(G) \leq n = \frac{n}{k} + n \frac{k - 1}{k} \leq \frac{n}{k} + \frac{R}{k} \frac{k - 1}{k} \leq \frac{n - R}{k} + R.
\]

Now consider \(n > R\). By the definition of the Ramsey number, \(G\) has an independent set \(X\) with \(|X| \geq k\). By the induction hypothesis and subadditivity of \(\chi\),

\[
\chi(G) \leq \chi(G - X) + 1 \leq \frac{n - |X| - R}{k} + R + 1 \leq \frac{n - R}{k} + R.
\]

In Theorem 3, our attention is on ordinary graphs, and we use only the case \(r = 2\) of Proposition 8.

7
Theorem 3 If k and n are positive integers, then $\chi(k; K_n) \leq n + 7^k$.

Proof: The claim is trivial for $n = 1$ or $k = 1$. For $k > 1$, we use induction on n. For the induction step, consider $n \geq 2$. Let (G_1, \ldots, G_k) be a k-decomposition of K_n. To show that $\sum_{i=1}^{k} \chi(G_i) \leq n + 7^k$, we distinguish two cases.

Case 1: In some subgraph of the decomposition, there is a maximum clique whose deletion leaves a clique of size at least $2k - 2$. We may assume that this occurs in G_1. Thus G_1 has a maximum clique X such that $\omega(G_1 - X) \geq 2k - 2$. Let Y be a maximum clique of $G_1 - X$, and let $Z = X \cup Y$. The subgraph $G_1[Z]$ is the complement of a bipartite graph, and each $G_i[Z]$ for $i \geq 2$ is bipartite. Hence all these subgraphs are perfect. Moreover, $\chi(G_1[Z]) = \omega(G_1[Z]) = |X|$, and $\chi(G_i[Z]) \leq 2$ for $2 \leq i \leq k$. Thus

$$\sum_{i=1}^{k} \chi(G_i[Z]) \leq |X| + 2(k - 1) \leq |X| + |Y| = |Z|.$$

Furthermore, $(G_1 - Z, \ldots, G_k - Z)$ is a k-decomposition of $K_{n-|Z|}$. By the induction hypothesis, $\sum_{i=1}^{k} \chi(G_i - Z) \leq n - |Z| + 7^k$. Using subadditivity,

$$\sum_{i=1}^{k} \chi(G_i) \leq \sum_{i=1}^{k} \chi(G_i[Z]) + \sum_{i=1}^{k} \chi(G_i - Z) \leq |Z| + n - |Z| + 7^k = n + 7^k.$$

Case 2: For each i, if X is a maximum clique of G_i, then $\omega(G_i - X) \leq 2k - 3$. Define a sequence of subsets of $V(K_n)$ as follows. Let $X_0 = \emptyset$. For $j \geq 1$, let X_j be a maximum clique among the graphs $G_i - \bigcup_{i=0}^{j-1} X_i, \ldots, G_k - \bigcup_{i=0}^{j-1} X_i$.

Let ℓ_j be the index i such that X_j is a clique in G_i. For $i \neq \ell_j$, X_j is an independent set in G_i. For $j \geq 1$, this yields $\sum_{i=1}^{k} \chi(G_i[X_j]) \leq |X_j| + k - 1$. Let p be the least index such that $\ell_p \in \{\ell_1, \ldots, \ell_{p-1}\}$. Let $X = X_1 \cup \cdots \cup X_{p-1}$, and let $m = |X|$. By subadditivity,

$$\sum_{i=1}^{k} \chi(G_i[X]) \leq |X| + (p - 1)(k - 1) \leq m + k(k - 1).$$

Let $G'_i = G_i - X$ for each i. Since the second clique taken from G_p has size at most $2k - 3$ and is a largest clique remaining in any subgraph when it is chosen, $\omega(G'_p) \leq 2k - 3$ for all i. Let $R = R^2(k, 2k - 2)$. By Proposition 8, $\chi(G'_i) \leq \frac{n - m - R}{k} + R$ for each i. Therefore,

$$\sum_{i=1}^{k} \chi(G'_i) \leq n - m - R + kR = n - m + (k - 1)R.$$
By subadditivity,
\[
\sum_{i=1}^{k} \chi(G_i) \leq m + k(k - 1) + n - m + (k - 1)R = n + (k - 1)(k + R).
\]

It remains only to supply an upper bound on \(R\). From the well-known bound
\[
R^2_2(p, q) \leq \binom{p+q-2}{p-1},
\]
we have \(R = R^2_2(k, 2k - 2) \leq \binom{3k-4}{k-1}\). Let \(t = k - 1\). From
Stirling’s Formula for factorials, \(\binom{3k-4}{k-1}\) is approximately \((3\pi t)^{-1/2}(\frac{27}{4})^t\). For all \(k\),
we have \((k - 1)(k + R) < 7^k\), and the desired bound follows.

The proof of Theorem 3 shows that in fact \(n + O(\sqrt{\frac{27}{4}}^k)\) is an upper bound.
As was mentioned in the introduction, \(\omega(k; K_n) = \chi(k; K_n)\) for \(k \leq 3\). We do
not know whether \(\omega(k; K_n) = \chi(k; K_n)\) for any larger \(k\).

5 The list-chromatic number

The list-chromatic number is not subadditive, but a weaker statement holds.

Lemma 9 If \(H\) is a graph with at most \(n\) vertices, and \(X_1, \ldots, X_k\) are disjoint
sets with union \(V(H)\), then
\[
\chi_l(H) \leq \sum_{i=1}^{k} \chi_l(H[X_i]) + k\sqrt{8n \ln n}.
\]

Proof: If any \(X_i\) is empty, then we can delete it, reduce \(k\), and obtain a
better upper bound. Hence we may assume that \(X_1, \ldots, X_k\) are nonempty, which
requires \(k \leq n\). Since \(\chi_l(H) \leq n\), the statement is trivial if \(n \leq \sqrt{8n \ln n}\), so we
may also assume that \(n > \sqrt{8n \ln n}\). Let \(q = k\sqrt{8n \ln n}, \) so \(n > q/k\).

Let \(L\) be a list assignment for \(H\) such that \(|L(x)| = m\) for all \(x \in V(H)\),
where \(m\) is the ceiling of the claimed upper bound. We show that \(H\) is \(L\-
colorable. To prove this, we use a probabilistic argument due to Alon [2]. Let
\(S = \bigcup_{x \in V(H)} L(x)\). The idea is to restrict each color in \(S\) to be used on only one
\(H[X_i]\) and show that some such restriction yields an \(L\)-coloring.

For \(1 \leq i \leq k\), let \(m_i = \chi_l(H[X_i])\), and let \(p_i = \frac{m_i + q/k}{m}\). Thus \(0 \leq p_i \leq 1\) and
\(p_1 + \ldots + p_k = 1\). For each \(s \in S\), independently, place \(s\) into one of \(S_1, \ldots, S_k\),
letting the choice be \(S_i\) with probability \(p_i\).

For each graph \(H[X_i]\), define a list assignment \(L_i\) by letting \(L_i(x) = L(x) \cap S_i\)
for each \(x \in X_i\). The list assignment \(L_i\) is **good** if \(|L_i(x)| \geq m_i\) for all \(x \in X_i\). If
\(L_i\) is good, then \(H[X_i]\) is \(L_i\)-colorable. If each \(H[X_i]\) is \(L_i\)-colorable, then \(H\) is \(L\-
colorable. Therefore, it suffices to show that for some outcome of the experiment
each \(L_i\) is good.

9
Fix i and $x \in X_i$, and let $\lambda = \mathbb{E}(|L_i(x)|)$. Note that $\lambda = mp_i = m_i + q/k$. By Chernoff’s inequality (see Theorem 2.1 in [13]), we obtain

$$
\Pr(|L_i(x)| < m_i) = \Pr(|L_i(x)| < \lambda - q/k) \leq e^{-(q/k)^2/2\lambda}.
$$

Since $n > q/k$, we have $\lambda = m_i + q/k \leq n + q/k < 2n$. Therefore,

$$
e^{-(q/k)^2/2\lambda} < e^{-8n \ln n / n^2} \leq \frac{1}{kn}.
$$

Since $\Pr(|L_i(x)| < m_i) < 1/(kn)$, and we want to avoid kn such events, there is an outcome of the experiment such that each L_i is good. \hfill

Now we are ready to prove Theorem 4.

Theorem 4 There exists a positive constant c such that, if $k = \binom{\ell+1}2$ and $n = \ell m$ with ℓ and m being integers greater than 1, then

$$
\chi_\ell(k; K_n) \geq n + ck \ln(n/\sqrt{k}).
$$

On the other hand, for all positive integers k and n,

$$
\chi_\ell(k; K_n) \leq n + 3k! \sqrt{1 + 8n \ln n}.
$$

Proof: We provide a construction for the lower bound. For k and n of the given form, K_n has a k-decomposition using ℓ graphs isomorphic to K_m and $\binom{\ell}2$ graphs isomorphic to the complete bipartite graph $K_{m,m}$. Alon [2] proved that $\chi_\ell(K_{m,m}) \geq c_1 \ln m$ for some positive constant c_1. Also $\chi_\ell(K_m) = m$, so

$$
\chi_\ell(k; K_n) \geq \ell m + c_1 \left(\frac{\ell}2\right) \ln m \geq n + c_1(k - l) \ln \left(\frac{n}{k}\right) \geq n + 0.5c_1k \ln\left(\frac{n}{\sqrt{k}}\right).
$$

For the upper bound, we first define a_k for $k \geq 1$ by

$$
a_k = \begin{cases} 3 - e & \text{if } k = 1, \\ k!(a_1 + \sum_{j=0}^{k-2} \frac{1}{j!}) & \text{if } k \geq 2. \end{cases}
$$

For $k \geq 2$, we have $a_k = k(k - 1) + ka_{k-1}$ and $k! \leq a_k \leq 3k!$. Therefore, it suffices to show that $\chi_\ell(k; K_n) \leq n + a_k \sqrt{1 + 8n \ln n}$, which we prove by induction on k. The inequality is trivial for $k = 1$.

Suppose that $k \geq 2$. Let (G_1, \ldots, G_k) be a χ-optimal k-decomposition of K_n. For each i, let H_i be a χ_ℓ-critical subgraph of G_i with $\chi_\ell(H_i) = \chi_\ell(G_i)$; note that $\delta(H_i) \geq \chi_\ell(H_i) - 1$. If some vertex x belongs to every H_i, then

$$
\chi_\ell(k; K_n) = \sum_{i=1}^k \chi_\ell(H_i) \leq \sum_{i=1}^k (d_{H_i}(x) + 1) \leq n - 1 + k \leq n + a_k \sqrt{1 + 8n \ln n}.
$$
Otherwise, each vertex avoids some \(H_j \), so we can choose disjoint \(X^1, \ldots, X^k \) with union \(V(K_n) \) such that \(X^j \cap V(H_j) = \emptyset \) for all \(j \). Now let \(K_j = K_n[X^j] \) and \(H'_i = H_i[X^j] \). Since \(X^j \) avoids \(H_j \) and \(H_1, \ldots, H_k \) are pairwise edge-disjoint, \((H'_1, \ldots, H'_j, H'_{j+1}, \ldots, H'_k)\) is a \((k - 1)\)-decomposition of \(K_j \). With \(n_j = |X^j| \), the induction hypothesis yields

\[
\sum_i \chi_t(H'_i) \leq \chi_t(k - 1; K_{n_j}) \leq n_j + a_{k-1} \sqrt{1 + 8n_j \ln n_j} \leq n_j + a_{k-1} \sqrt{1 + 8n \ln n}.
\]

For fixed \(i \), on the other hand, Lemma 9 implies that

\[
\chi_t(H_i) \leq \sum_j \chi_t(H'_j) + (k - 1) \sqrt{1 + 8n \ln n}.
\]

Consequently,

\[
\chi_t(k; K_n) = \sum_{i=1}^{k} \chi_t(H_i) \leq \sum_{j=1}^{k} n_j + k(a_{k-1} + (k - 1)) \sqrt{1 + 8n \ln n} \leq n + a_k \sqrt{1 + 8n \ln n}.
\]

\[
\boxed{6} \quad \text{The Szekeres-Wilf number}
\]

Recall that \(\sigma(G) = 1 + \max_{H \subseteq G} \delta(H) \).

Theorem 5 If \(k = p^2 + p + 1 \) for some prime power \(p \), and \(n \equiv 0 \mod k \), then

\[
\sigma(k; K_n) \geq (\sqrt{k} - 1)n + k,
\]

On the other hand, for all positive integers \(k \) and \(n \),

\[
\sigma(k; K_n) \leq \sqrt{kn} + k.
\]

Proof: For the upper bound, let \((G_1, \ldots, G_k)\) be a \(k \)-decomposition of \(K_n \). Let \(d_i = \sigma(G_i) \) and \(D = \sum_{i=1}^{k} d_i \). We show that \(D \leq \sqrt{kn} + k \). Each \(G_i \) has a subgraph \(H_i \) such that \(d_i = \delta(H_i) - 1 \). Thus \(|E(G_i)| \geq |E(H_i)| \geq \left(\frac{d_i}{2} \right) \). Since \(G_1, \ldots, G_k \) are edge-disjoint subgraphs of \(K_n \), we obtain

\[
\frac{n^2}{2} \geq \left(\frac{n}{2} \right) \geq \sum_{i=1}^{k} \left(\frac{d_i}{2} \right) = \frac{1}{2} \sum_{i=1}^{k} (d_i^2 - d_i) \geq \frac{1}{2} (\frac{D^2}{k} - D).
\]

Consequently, \(D^2 - kD - kn^2 \leq 0 \), and thus \(D \leq \frac{k}{2} + \sqrt{\frac{k^2}{4} + kn^2} \leq k + \sqrt{kn} \).
We provide a construction for the lower bound. Let \(p \) be a prime power, and let \(k = p^2 + p + 1 \) and \(n = mk \) for some integer \(m \geq 1 \). There is a projective plane with points \([k]\) and lines \([g_1, \ldots, g_k]\). Partition \(V(K_n) \) into sets \(X_1, \ldots, X_k \) of size \(m \). Each line \(g_i \) is a subset of \([k]\); let \(H_i \) be the complete \((p+1)\)-partite graph whose color classes are the elements of \([X_1, \ldots, X_k]\) indexed by \(g_i \). The graphs \(H_1, \ldots, H_k \) are edge-disjoint subgraphs of \(K_n \). Thus there is a \(k \)-decomposition \((G_1, \ldots, G_k)\) of \(K_n \) such that \(H_i \subseteq G_i \) for each \(i \). We have \(\sigma(G_i) \geq \delta(H_i) + 1 \geq pm + 1 \). Hence,
\[
\sigma(k; K_n) \geq k(pm + 1) = pn + k \geq (\sqrt{k} - 1)n + k.
\]

The construction in the proof of Theorem 5 works only for special values of \(k \). For small \(k \), there are other natural candidates for \(\sigma \)-optimal \(k \)-decompositions of \(K_n \).

Construction: Given \(n = m(k-1) + 1 \), with \(k \geq 2 \) and \(m \geq 1 \), let \(V_1, \ldots, V_{k-1}, \{v\} \) be a partition of \([n]\) into \(m \)-sets plus one singleton. For \(1 \leq i \leq k-1 \), let \(G_i \) be the complete graph with vertex set \(V_i \cup \{v\} \). Let \(G_k \) be the complete \((k-1)\)-partite graph with color classes \(V_1, \ldots, V_{k-1} \). The \(k \)-decomposition \((G_1, \ldots, G_k)\) of \(K_n \) yields \(\sigma(k; K_n) \geq (k-1)m + (k-2)m + k \).

For general \(n \), let \(m = \lfloor \frac{n-1}{k-1} \rfloor \) and \(r = n - 1 - m(k-1) \). Form \(G_1, \ldots, G_k \) as above, except enlarge each of \(V_1, \ldots, V_r \) by one vertex. Since \(m = \frac{n-1-r}{k-1} \), this yields \(\sigma(k; K_n) \geq (2k-3)\frac{n-1-r}{k-1} + 2r - 2 + k = (2k-3)\frac{n-1}{k-1} - \frac{k-2}{k-1} + k \). Since \(\sigma(k; K_n) \) is an integer, we obtain
\[
\sigma(k; K_n) \geq \left\lfloor \frac{2k-3}{k-1}(n-1) \right\rfloor + k.
\]

In particular, for \(n \geq 1 \) we have \(\sigma(2; K_n) \geq n + 1 \), \(\sigma(3; K_n) \geq \lfloor (3n+3)/2 \rfloor \), and \(\sigma(4; K_n) \geq \lfloor (5n + 7)/3 \rfloor \).

By the next theorem, this construction is optimal for \(k \leq 4 \). The bounds for \(k \leq 3 \) are easy. The non-optimal bound stated for \(k \geq 5 \) is what follows when the argument that proves optimality for \(k = 4 \) is applied for larger \(k \).

Theorem 10 If \(k \geq 2 \) and \(n \geq 2 \), then \(\sigma(k; K_n) \leq f(k, n) \), where
\[
f(k, n) = \begin{cases}
 n + 1, & \text{if } k = 2, \\
 (3n + 3)/2, & \text{if } k = 3, \\
 (5n + 7)/3, & \text{if } k = 4, \\
 (k-1)(n+1)/2, & \text{if } k \geq 5.
\end{cases}
\]
Proof: Use induction on n. If $n = 2$ and $k \geq 2$, then $\sigma(k; K_2) = k + 1 \leq f(k, 2)$. For $n \geq 3$, let (G_1, \ldots, G_k) be a σ-optimal k-decomposition. Let H_i be a smallest subgraph of G_i with $\sigma(G_i) = \delta(H_i) + 1$. Let $n_i = |V(H_i)|$ and $\delta_i = \delta(H_i)$.

If H_i and H_j are disjoint, then $\delta_i + \delta_j \leq (n_i - 1) + (n_j - 1) \leq n - 2$. If they share x, then $\delta_i + \delta_j \leq d_H(x) + d_{H_j}(x) \leq n - 1$. Thus $\delta_i + \delta_j \leq n - 1$ when $i \neq j$. Summing yields the claim for $k \leq 3$. Now consider $k \geq 4$ (and $n \geq 3$).

Case 1: Some vertex x is in at most one of H_1, \ldots, H_k. Criticality of H_i and the induction hypothesis yield

\[
\sigma(k; K_n) = \sum_{i=1}^{k} (\delta(H_i) + 1) \leq 1 + \sum_{i=1}^{k} (\delta(H_i - x) + 1) \\
\leq 1 + \sigma(k; K_{n-1}) \leq 1 + f(k, n-1) < f(k, n).
\]

Case 2: Every vertex is in exactly two of H_1, \ldots, H_k. Let $X_{i,j} = V(H_i) \cap V(H_j)$ and $n_{i,j} = |X_{i,j}|$; the sets $X_{i,j}$ for $i < j$ partition $V(K_n)$. Let $\delta_{i,j} = \delta(H_i|X_{i,j})$ if $n_{i,j} \neq 0$ and $\delta_{i,j} = -1$ otherwise. Since $H_i|X_{i,j}$ and $H_j|X_{i,j}$ decompose $K_{n_{i,j}}$, we have $\delta_{i,j} + \delta_{j,i} \leq n_{i,j} - 1$. For $i \neq j$, a vertex of minimum degree in $H_i|X_{i,j}$ yields $\delta_i \leq \delta_{i,j} + \sum_{\ell \notin \{i,j\}} n_{\ell}$. Summing over all ordered pairs (i, j) yields

\[
(k - 1) \sum_{i=1}^{k} \delta_i \leq \sum_{1 \leq i < j \leq k} (n_{i,j} - 1) + 2(k - 2) \sum_{1 \leq i < j \leq k} n_{i,j} = (2k - 3)n - \binom{k}{2},
\]

and hence

\[
\sigma(k; K_n) = k + \sum_{i=1}^{k} \delta_i \leq k + \frac{2k - 3}{k - 1} n - \frac{k}{2} \leq \frac{2k - 3}{k - 1} n + \frac{k}{2} \leq f(k, n).
\]

Case 3: Some vertex x of K_n is in at least three of H_1, \ldots, H_k. Indexing the decomposition so that $\{i: x \in V(H_i)\} = [m]$, we have $\delta_1 + \delta_2 + \ldots + \delta_m \leq n - 1$. If $m = k$, we are done. If $m = k - 1$ and $\delta_1 \leq \ldots \leq \delta_m$, then $\delta_1 + \ldots + \delta_{m-1} \leq \frac{m-1}{m} (n - 1)$. Using also $\delta_m + \delta_k \leq n - 1$ yields

\[
\sigma(k; K_n) \leq k + \frac{m - 1}{m} (n - 1) + n - 1 = k + \frac{2k - 3}{k - 1} (n - 1) \leq f(k, n).
\]

For $m \leq k - 2$, considering $G - x$ yields $\delta_i + \delta_j \leq n - 2$ for $i, j \in [k] - [m]$. Summing over all such pairs yields $\sum_{i=m+1}^{k} \delta_i \leq (k - m)(n - 2)/2$. Since $m \geq 3$ and $k \geq 4$, we obtain

\[
\sigma(k; K_n) \leq k + (n - 1) + \frac{(k - m)(n - 2)}{2} \\
\leq k + n - 1 + \frac{(k - 3)(n - 2)}{2} = \frac{1}{2} (k - 1)n + 2 \leq f(k, n).
\]

Corollary 11 If n is a positive integer, then $\sigma(2; K_n) = n + 1$, $\sigma(3; K_n) = \lceil \frac{3}{2}n + 3 \rceil$ and $\sigma(4; K_n) = \lceil \frac{3}{2}n + \frac{3}{2} \rceil$. ■
7 Chromatic number of r-uniform hypergraphs

We next obtain an upper bound for $\chi(k; K^r_n)$. Again we need an auxiliary result.

Proposition 12 If G is an r-uniform hypergraph with n vertices, then

$$\chi(G) \leq 1 + \frac{\omega(G)}{r - 1} + \frac{n - \omega(G)}{r}.$$

Proof: We produce a proper coloring. If $V(G)$ is not a clique, then it has an independent set of size r; choose color classes of size r until the vertex set X that remains is a clique. Let $s = (n - |X|)/r$.

Since X is a clique, we have $|X| \leq \omega(G)$. Since sets of size $r - 1$ contain no edge, $G[X]$ is $q + 1$-colorable, where $q = \lfloor \frac{|X|}{r - 1} \rfloor$. Thus $\chi(G) \leq s + q + 1$.

Since $\frac{n}{r} \leq \frac{\omega(G)}{r - 1} = \omega(G)(\frac{1}{r - 1} - \frac{1}{r})$ and $rs + (r - 1)q \leq n$, we have

$$s + q \leq \frac{n}{r} - \frac{r - 1}{r}q + q \leq \frac{n + q}{r} \leq \frac{n - \omega(G)}{r} + \frac{\omega(G)}{r - 1}. \quad \blacksquare$$

Now we are ready to prove Theorem 6.

Theorem 6 If k and r are positive integers with $r \geq 2$, then there exists an integer $c_{k,r}$ such that, for every positive integer n,

$$\chi(k; K^r_n) \leq \frac{n}{r - 1} + c_{k,r}.$$

Proof: Let (G_1, \ldots, G_k) be an arbitrary k-decomposition of the r-uniform complete hypergraph K^r_n. As in Theorem 3, we define a sequence of vertex subsets. Let $X_0 = \emptyset$. For $j \geq 1$, let X_j be a maximum clique among the induced subhypergraphs $G_1 \cup \bigcup_{i=0}^{j-1} X_i, \ldots, G_k \cup \bigcup_{i=0}^{j-1} X_i$.

If $|X_i| < kr(r - 1)$, then $n < R$, where R is the Ramsey number $R^r_{k}(kr(r - 1), \ldots, kr(r - 1))$. Since $\sum_{i=1}^{k} \chi(G_i) \leq kn$, we have $\sum_{i=1}^{k} \chi(G_i) < kn$, and it suffices to have $c_{k,r} \geq kR$ in this case.

Otherwise, there is a largest positive integer s such that $|X_j| \geq kr(r - 1)$ for $1 \leq j \leq s$. Let $X = \bigcup_{j=1}^{s} X_j$. For $1 \leq i \leq k$, let $Y_i = \bigcup \{X_j : X_j$ is a clique in G_i and $j \leq s\}$. Let $n_i = |Y_i|$, $G'_i = G_i[Y_i]$, $\omega_i = \omega(G'_i)$, and $\omega^* = \sum_{i=1}^{k} \omega_i$. The sets Y_1, \ldots, Y_k are pairwise disjoint and have union X. Furthermore, $\omega_i = |X_j|$ for some $X_j \subseteq Y_i$. Since $|X_j| \geq kr(r - 1)$ for $j \leq s$, we conclude that $|X| - \omega^* \geq (s - k)kr(r - 1)$.

By Proposition 12, $\chi(G'_i) \leq \frac{\omega_i}{r - 1} + \frac{n - \omega_i}{r} + 1$. We rewrite the upper bound as $\frac{n_i}{r - 1} - \frac{n - \omega_i}{r} + 1$. Summing the upper bounds yields

$$\sum_{i=1}^{k} \chi(G'_i) \leq \frac{|X|}{r - 1} - \frac{|X| - \omega^*}{r(r - 1)} + k \leq \frac{n}{r - 1} - k(s - k) + k.$$
A clique in G_i is an independent set in G_j for $j \neq i$. Therefore, the inequality above implies

$$\sum_{i=1}^{k} \chi(G_i[X]) \leq \sum_{i=1}^{k} \chi(G'_i) + (k-1)s \leq \frac{n}{r-1} + k^2 + k.$$

By construction, $\omega(G_i - X) < kr(r-1)$. Therefore, $\chi(G_i - X) \leq n - |X| < R$. By the subadditivity of χ, this yields

$$\sum_{i=1}^{k} \chi(G_i) \leq \frac{n}{r-1} + k^2 + k + kR,$$

which proves the claim with $c_{k,r} = k^2 + k + kR$.

\section{Graphs on surfaces}

This section considers graphs embedded on a surface Σ. For a graph parameter p and a positive integer k, let $p(k; \Sigma) = \max\{p(k; G) : G \text{ embeds on } \Sigma\}$.

Surfaces can be classified by their genus and orientability. For $h \geq 0$, the orientable surface Σ_h is obtained by adding h handles to a sphere. For $h \geq 1$, the non-orientable surface Π_h is obtained from a sphere with h holes by attaching h Möbius bands along their boundaries to the boundaries of the holes. For example, Π_1 is the projective plane, Π_2 is the Klein bottle, etc. The Euler genus $g(\Sigma)$ of the surface Σ is $2h$ if $\Sigma = \Sigma_h$ and is h if $\Sigma = \Pi_h$. The Euler characteristic of Σ is $2 - g(\Sigma)$.

For a simple graph G with vertex set V and edge set E embedded on a surface Σ of Euler genus g, Euler’s Formula states that $|V| - |E| + |F| \geq 2 - g$, where F is the set of faces, with equality holding if and only if every face is a 2-cell. When $|V| \geq 3$, this yields $|E| \leq 3|V| - 6 + 3g$. For $g \geq 1$, this implies that every subgraph of G has a vertex of degree at most $H(g) - 1$, where

$$H(g) = \left\lceil \frac{7 + \sqrt{24g + 1}}{2} \right\rceil.$$

In particular, $\sigma(G) \leq H(g)$. Consequently, if $g \geq 1$, then

$$\omega(G) \leq \chi(G) \leq \chi_i(G) \leq \sigma(G) \leq H(g).$$

For every surface Σ other than the Klein bottle, the Heawood number $H(g)$ is, in fact, the maximum chromatic number of graphs embeddable on Σ, attained by $K_{H(g)}$. This landmark result conjectured by Heawood [12] was proved by Ringel [19] and Ringel–Youngs [18]. Furthermore, every graph with chromatic number
$H(g)$ embedded on Σ contains a complete graph on $H(g)$ vertices as a subgraph. This was proved by Dirac [4, 5] for the torus and for $g \geq 4$ and was proved by Alberston and Hutchinson [1] for $g \in \{1, 3\}$.

Although $H(2) = 7$, Franklin [10] proved that the maximum chromatic number for the Klein bottle is 6. Furthermore, there are 6-chromatic graphs on the Klein bottle not containing K_6. Such a graph appears in [1].

The version of Brooks’ Theorem for list-chromatic number implies that if G is a graph on the Klein bottle, then also $\chi_l(G) \leq 6$. For graphs on the sphere, the maximum chromatic number is 4, but the maximum list-chromatic number is 5 (upper bound by Thomassen [22], lower bound by Voigt [23]).

Further results about the chromatic number of graphs embedded on given surfaces appear in the book of Jensen and Toft [14].

For a surface Σ and a positive integer k, we have the familiar inequalities

$$\omega(k; \Sigma) \leq \chi(k; \Sigma) \leq \chi_l(k; \Sigma) \leq \sigma(k; \Sigma).$$

When a graph embeds on the sphere Σ_0, the disjoint union of k copies of G also embeds on Σ_0. Hence $\sigma(k; \Sigma_0) = 6k$ and $\omega(k; \Sigma_0) = \chi(k; \Sigma_0) = 4k$. For all other surfaces, this is not true. We begin by establishing a lower bound for $\omega(k; \Sigma)$.

Theorem 13 Let Σ be a surface with positive Euler genus g.

(a) If Σ is orientable, then $\omega(k; \Sigma) \geq k H(2\lfloor g/2k \rfloor)$.

(b) If Σ is non-orientable and $\lfloor g/k \rfloor \geq 3$, then $\omega(k; \Sigma) \geq k H(\lfloor g/k \rfloor)$.

Proof: If Σ is orientable, then let $g' = 2\lfloor g/2k \rfloor$ and $m = H(g')$; since g' is even, K_m embeds on an orientable surface with Euler genus g'. If Σ is non-orientable, then let $g' = \lfloor g/k \rfloor$ and $m = H(g')$; since $g' \geq 3$, K_m embeds on a non-orientable surface with Euler genus g'.

In either case, let G be the disjoint union of k copies of K_m. Since $kg' \leq g$, it then follows (see [15]) that G embeds on Σ. Thus $\omega(k; G) \geq km$.

For a surface Σ of Euler genus g, this lower bound on $\omega(k; \Sigma)$ is approximately $(7k + \sqrt{24gk + k^2})/2$. We next establish an upper bound on $\sigma(k; \Sigma)$ that is asymptotic to this for fixed k and large g.

Theorem 14 If Σ is a surface with positive Euler genus g, then

$$\sigma(k; \Sigma) \leq \left[\frac{7k + \sqrt{24kg + 49k^2 - 48k}}{2}\right].$$
Proof: Given a graph G embedded on Σ, let (G_1, \ldots, G_k) be a k-decomposition of G. For each i, let H_i be a σ-critical subgraph of G_i with $\sigma(H_i) = \sigma(G_i)$, and let $d_i = \delta(H_i)$, so $\sigma(G_i) = d_i + 1$.

We may assume that $d_1 \geq \ldots \geq d_k$. Let s be the unique nonnegative integer such that $d_i > 5$ if and only if $i \leq s$. If $s = 0$, then

$$\sum_{i=1}^{k} \sigma(G_i) \leq 5k \leq \left[\frac{7k + \sqrt{24kg + 49k^2 - 48k}}{2} \right].$$

If $s \geq 1$, then let $H = \bigcup_{j \in [s]} H_j$. Let $n = |V(H)|$ and $e = |E(H)|$. For $I \subseteq [s]$, denote by V_I the set of all vertices of H that belong to each graph H_i with $i \in I$ and to no graph H_i with $i \in [s] - I$. Let $n_I = |V_I|$ and $n_i = n_i[I]$. Thus,

$$|V(H_i)| = \sum_{i \in I \subseteq [s]} n_I \quad \text{and} \quad n = \sum_{I \subseteq [s]} n_I.$$

Since $s \geq 1$, we have $n \geq 7$. Since $H \subseteq G$, also H embeds on Σ. By Euler’s Formula, $6n + 6g - 12 \geq 2e$. Every vertex of V_I has degree at least $\sum_{i \in I} d_i$. Thus,

$$6 \sum_{I \subseteq [s]} n_I + 6g - 12 \geq 2e \geq \sum_{I \subseteq [s]} n_I \sum_{i \in I} d_i.$$

By rearranging the inequality and interchanging the order of summation (subtracting more copies of 6 when $|I| > 1$), we obtain

$$6g - 12 \geq \sum_{I \subseteq [s]} n_I (-6 + \sum_{i \in I} d_i) \geq \sum_{i=1}^{s} \left((d_i - 6) \sum_{i \in I \subseteq [s]} n_I \right) = \sum_{i=1}^{s} (d_i - 6)|V(H_i)|.$$

Since $|V(H_i)| \geq d_i + 1$ and $d_i \geq 6$ for $i \in [s]$, we have

$$6g - 12 \geq \sum_{i=1}^{s} (d_i - 6)(d_i + 1) = \sum_{i=1}^{s} ((d_i - \frac{5}{2})^2 - \frac{49}{4}).$$

Consequently,

$$6g - 12 + \frac{49}{4}s \geq \sum_{i=1}^{s} (d_i - \frac{5}{2})^2 \geq \frac{1}{s} \left(\sum_{i=1}^{s} (d_i - \frac{5}{2}) \right)^2 = \frac{1}{s} \left(\sum_{i=1}^{s} d_i - s \frac{5}{2} \right)^2,$$

and therefore

$$\sum_{i=1}^{s} d_i \leq \frac{1}{2}(5s + \sqrt{24sg + 49s^2 - 48s}).$$

For $i > s$, we have $d_i \leq 5$. Thus we conclude that

$$\sum_{i=1}^{k} \sigma(G_i) = k + \sum_{i=1}^{k} d_i \leq 6k - 5s + \sum_{i=1}^{s} d_i \leq \frac{1}{2}(12k - 5s + \sqrt{24sg + 49s^2 - 48s}).$$
This upper bound increases with s in the domain $s \geq 0$. Since $s \leq k$, we thus set $s = k$ to obtain
\[
\sum_{i=1}^{k} \sigma(G_i) \leq \left[\frac{7k + \sqrt{24k^2 + 49k^2 - 48k}}{2} \right].
\]
This completes the proof.

References

