The 9-point circle touches the incircle and the escribed circles

Zoltán Füredi
Department of Mathematics, University of Illinois at Urbana-Champaign and
Rényi Institute of Mathematics, Hungarian Academy of Sciences

z-furedi@math.uiuc.edu and furedi@renyi.hu

Using inversion we give a short proof for the above theorem of Feuerbach.

Standard notations. Let Δ be a triangle with vertices A, B, C. The side lengths are $a = |BC|, b = |AC|, c = |AB|$; the lines determined by the sides are ℓ_a, ℓ_b, ℓ_c; the midpoints of the sides $AB, BC,$ and CA are $H_C, H_A,$ and H_B; the semiperimeter is s. Let C_0 be the incircle (the inscribed circle) of Δ, it touches a at A_0. Let C_a be the escribed circle touching the side a at A_1, by definition it also touches ℓ_b and ℓ_c. In this note we define the **9-point circle** C_F as the circle thru H_a, H_b, H_c.

The **fourth tangent line.** The disjoint disks C_0 and C_a have four common tangents, namely ℓ_a, ℓ_b, ℓ_c and a line ℓ_a' which is the mirror image of the line ℓ_a to the angle bisector f going thru A and the centers of the circles. Let B' and C' on ℓ_a' be the images of B and C mirrored to f.

The **inversion.** Knowing that two tangents from any point to any circle have equal lengths it is easy to calculate that $|CA_0| = s - c$ and that $|BA_1| = s - c$. Thus the length of the segment A_0A_1 is $|a - 2(s - c)| = |c - b|$, and its midpoint is H_a. Let K be the circle with center H_a and diameter A_0A_1. To avoid vacuous statements we suppose that $b \neq c$. Consider the inversion i to the circle K. We have $i(A_0) = A_0$, $i(A_1) = A_1$, $i(\ell_a) = \ell_a$.

Claim. $i(C_0) = C_0$, $i(C_a) = C_a$ and $i(\ell_a') = C_F$.

Proof. The inversion keeps tangency so $i(C_0)$ is a circle touching $i(\ell_a)$ at $i(A_0) = A_0$. We obtain that the image of C_0 is itself. Similarly, $i(C_a) = C_a$, too.

To prove that $i(\ell_a')$ is the 9-point circle it is enough to show that $i(C_F) = \ell_a'$. Since C_F goes thru the center of the inversion its image is a line. We only need that the images of H_b and H_c lie on ℓ_a'. Consider H_b, the case of H_c is similar. Let X be the intersection point of the lines H_aH_b and ℓ_a'. Considering the similar triangles $B'AC'$ and $B'H_bX$ we obtain

$$|H_bX| = |AC'| \frac{|H_bB'|}{|AB'|} = |AC'| \frac{|AB'| - |AH_b|}{|AB'|} = b \frac{c - b/2}{c}.$$

If $c - b/2$ is negative, then X is outside the segment $[H_bH_a]$. We obtain $|H_bX| < c/2$ so X

Research supported in part by the Hungarian National Science Foundation under grants OTKA T 032452, T 037846 and by the National Science Foundation under grant DMS 0140692.

Version as of May 2, 2003. 2000 Mathematics Subject Classification: ???
lies on the ray $[H_aH_b]$. Moreover

$$|H_bH_a||XH_a| = |H_bH_a|(|H_bH_a| - |H_bX|) = \frac{c}{2} \left(\frac{c}{2} - \frac{b(c - b/2)}{c} \right) = \frac{1}{4}(c - b)^2.$$

Thus $i(H_b) = X$ and $i(H_b) \in \ell_a$. □

Finally, as ℓ_a is a common tangent to C_0 and C_a its inversion image C_F is touching the images of these circles. Since C_a was chosen arbitrarily we get that the 9-point circle touches the incircle and all the three escribed circles.

Appendix, the properties of inversions

The inversion i to a circle $C(O, r)$ (center O, radius r) is a bijection of $\mathbb{R}^2 \setminus \{O\}$ to itself, such that $i(P)$ lies on the open half ray emanating from O thru P and $|OP| \times |Oi(P)| = r^2$. It is an involution, $i(i(P)) = P$.

- The image of a straight line ℓ thru O is itself.
- The image of ℓ with $O \notin \ell$ is a circle thru O. (More precisely, for $O \in \ell$ we have $i(\ell \setminus \{O\}) = \ell \setminus \{O\}$, and for $O \notin \ell$ the image of the line is a circle minus the point O).
- The image of a circle \mathcal{C} with $O \in \mathcal{C}$ is a line avoiding the center.
- The image of a circle avoiding O is another circle with homothety center O.
- The inversion keeps tangency, touching lines and circles become touching lines and circles (actually it keeps all angles).