1. Let \(f \) be a differentiable function on \([a, b]\).

(a) Suppose that for every \(n \), the Left Hand Approximation \(L_n f \) is exactly equal to \(\int_a^b f(x) \, dx \). What would you conjecture about \(f \) and why?

(b) Suppose that for every \(n \), the Midpoint Approximation \(M_n f \) is exactly equal to \(\int_a^b f(x) \, dx \). What would you conjecture about \(f \) and why?

2. Right Hand Approximation

Let \(R_n f \) be the Right Hand Approximation to \(\int_a^b f(x) \, dx \) over \(n \) equal partitions.

(a) Give a formula for \(R_2 f \), \(R_3 f \), and \(R_n f \).

(b) Explain why it is that if \(|f'(x)| \leq K_1 \) for all \(x \) in \([a, b]\), then for all \(c \) and \(d \) in \([a, b]\) with \(c < d \)

\[
|f(c) - f(d)| \leq K_1 (d - c)
\]

(c) Use your result from (b) to show that if \(|f'(x)| \leq K_1 \) for all \(x \) in \([a, b]\) then \(R_1 f \) differs from \(\int_a^b f(x) \, dx \) by at most \(\frac{K_1(b-a)^2}{2} \).

(d) Use your result from part (c) and your formula in part (a) to show that for if \(|f'(x)| \leq K_1 \) for all \(x \) in \([a, b]\) then \(R_n f \) approximates \(\int_a^b f(x) \, dx \) to an error no more than \(\frac{K_1(b-a)^2}{2n} \).

3. Mary has a “fast process” to approximate \(\int_a^b f(x) \, dx \) which she calls \(P(f) \). She know that if \(|f^{(6)}(x)| \leq K_6 \) for all \(x \) in \([a, b]\) then \(P(f) \) approximates \(\int_a^b f(x) \, dx \) to an error no more than \(\frac{K_6(b-a)^7}{48} \). Mary wants to use her process to numerically approximate an integral by subdividing an interval into \(n \) equal pieces and applying \(P(f) \) to each of the smaller intervals and then adding up the result (much like the Left/Right/Midpoint rules do). If Mary calls her approximation \(P_n f \), what is an upper bound for the error of \(P_n f \) to approximate \(\int_a^b f(x) \, dx \)? Why?