Name ______________________________________

• Do not open this test until I say start.
• Turn off all electronic devices and put away all items except a pen/pencil and an eraser.
• No calculators allowed.
• You must show sufficient work to justify each answer.
• Quit working and close this test booklet when I say stop.
1. (14 points) Let \(f(x) = \frac{x}{x + 3} \) and \(g(x) = \sqrt{2x - 1} \)

 (a) Find \(f^{-1}(x) \).

 (b) Find \((f \circ f)(-2) \) \((f \circ g)(25) \).

2. (6 points) Find the equation of the line perpendicular to \(3x + 2y = 1 \) passing through the point \((3, -1)\)
3. (8 points) The graph of a function, \(g \), is shown here.

 (a) What is the domain of \(g \)?

 (b) What is the range of \(g \)?

 (c) What is \(g(3) \)?

 (d) Find all numbers \(x \) such that \(g(x) = 0 \).

4. (18 points) Determine the limit of the sequence

 (a) \[p_n = \frac{3 - 2n^2}{3n^3 - n + 2} \]

 (b) \[b_n = \left(\frac{-6}{7} \right)^{n+2} \]

 (c) \[h(n) = \frac{\sqrt[3]{3n + 9n^6}}{n^2 + 71} \]
5. (12 points) Find a formula for the general term a_n of each sequence, assuming that the pattern of the first few terms continues.

(a) $\{12, 9, 6, 3, \ldots\}$

(b) $\left\{ \frac{2}{15}, \frac{1}{5}, \frac{3}{10}, \frac{9}{20}, \ldots \right\}$

6. (6 points) True or False. Provide justification if true, and a counterexample if false: If $\{a_n\}$ and $\{b_n\}$ are divergent and $\left\{ \frac{a_n}{b_n} \right\}$ is defined, then $\left\{ \frac{a_n}{b_n} \right\}$ is divergent.
7. (8 points) A piece of string is cut into six segments whose lengths form a geometric sequence. If the shortest length is 3 cm and the longest is 96 cm, find the length of the string before cutting.

8. (8 points) Let \(p(x) = 2x^2 + 4x + 5 \). Sketch a graph of \(p \), clearly labelling all intercepts and the vertex. Graph paper is provided on the last page, but you are not required to use it.
9. (20 points) Let $f(x) = x^4 + 4x^3 - 10x^2 - 28x - 15$.

(a) Determine the long run behavior of f.

(b) List all the possible rational zeros of $f(x)$.

(c) Show that $x = 3$ and $x = -1$ are zeros of f, and use this information to completely factor f.

(d) Use your work above to sketch a graph of f, clearly labelling all intercepts. Graph paper is provided on the last page, but you are not required to use it.

Bonus: (5 points) Find a formula for the general term $f(n)$ of the sequence and determine the limit:

$$\left\{ \frac{25}{3}, \frac{16}{5}, \frac{9}{7}, \frac{4}{9}, \ldots \right\}$$