DUE Friday, October 3 at the beginning of class

1. Let \(a_n = \frac{1}{2n} \)

 (a) Find the first 10 terms of the sequence and graph the points \((n, a_n)\) on a Cartesian plane.

 (b) Find the limit of the sequence, if it exists. Justify your answer, referencing the graph you made in part 1a.

 (c) For which values of \(n \) will \(a_n \) be within \(\frac{1}{25} \) of the limit?

2. List all of the following words that correctly describe the sequence: alternating, bounded above, bounded below, strictly increasing, strictly decreasing, convergent, divergent. If the sequence converges, find the limit.

 (a) \(g(n) = (-1)^{2n}7 \)

 (b) \(b_n = (3n - 1)^{-1} \)

 (c) \(c_n = \frac{n^3}{n + 1} \)

 (d) \(f(n) = \frac{2n - 1}{5 - 3n} \)

3. Use the limit laws and the fact that \(\lim_{n \to \infty} \frac{1}{n} = 0 \) to determine the limit of the sequence generated by each function.

 (a) \(e_n = \frac{2n}{n + 1} \)

 (b) \(a_n = \frac{n^3}{n^3 + 1} \)

 (c) \(b_n = \frac{13n + 5n^2 + 1}{6 - 2n^2} \)

 (d) \(f(n) = \frac{n^2 + 9}{3n^3 - n^2 + 7n + 1} \)

 (e) \(g(n) = \sqrt{\frac{n + 1}{9n + 1}} \)

 (f) \(p(n) = \frac{3 + 5n^2}{n + n^2} \)

 (g) \(d_n = \frac{\sqrt{2n^2 + 1}}{3n - 5} \)

 (h) \(h(n) = \frac{n^2 + n}{3 - n} \)
4. Determine whether the sequence defined as follows is convergent or divergent:

\[a_1 = 1 \quad a_{n+1} = 4 - a_n \quad \text{for} \quad n \geq 1 \]

5. Find a formula for the general term \(a_n \) of the sequence, assuming that the pattern of the first few terms continues. Determine whether the sequence converges or diverges.

(a) \(\{1, -\frac{1}{3}, \frac{1}{9}, -\frac{1}{27}, \frac{1}{81}, \ldots \} \)

(b) \(\{5, 8, 11, 14, 17, \ldots \} \)

(c) \(\left\{ \frac{1}{2}, -\frac{4}{3}, \frac{9}{4}, -\frac{16}{5}, \frac{25}{6}, \ldots \right\} \)

(d) \(\left\{ \frac{5}{4}, -\frac{5}{2}, 5, -10, \ldots \right\} \)