Saturation Number of Ramsey-Minimal Families

Mike Ferrara ¹ Jaehoon Kim ² Elyse Yeager ²

¹University of Colorado-Denver
²University of Illinois at Urbana-Champaign

yeager2@illinois.edu

MIGHTY
University of Detroit Mercy

29 March 2014
Graph Saturation

Definitions

Given a forbidden graph H, a graph G is H-saturated if H is not a subgraph of G, but for every $e \in G$, H is a subgraph of $G + e$.

Definitions

Given a forbidden family of graphs F, a graph G is F-saturated if no member of F is a subgraph of G, but for every $e \in G$, some member of F is a subgraph of $G + e$.

The saturation number $\text{sat}(n; F)$ is the smallest number of edges over all n-vertex graphs that are F-saturated.
Definitions

Given a forbidden graph H, a graph G is H-saturated if H is not a subgraph of G, but for every $e \in G$, H is a subgraph of $G + e$.

The saturation number $s\text{at}(n; H)$ of a forbidden graph H is the smallest number of edges over all n-vertex graphs that are H-saturated.

Definitions

Given a forbidden family of graphs F, a graph G is F-saturated if no member of F is a subgraph of G, but for every $e \in G$, some member of F is a subgraph of $G + e$.

The saturation number $s\text{at}(n; F)$ is the smallest number of edges over all n-vertex graphs that are F-saturated.
Graph Saturation

Definitions

Given a forbidden graph H, a graph G is H-saturated if H is not a subgraph of G, but for every $e \in G$, H is a subgraph of $G + e$.

Definitions

Given a forbidden family of graphs F, a graph G is F-saturated if no member of F is a subgraph of G, but for every $e \in G$, some member of F is a subgraph of $G + e$.

The saturation number $\text{sat}(n; H)$ is the smallest number of edges over all n-vertex graphs that are H-saturated.

The saturation number $\text{sat}(n; F)$ is the smallest number of edges over all n-vertex graphs that are F-saturated.
Definitions

Given a forbidden graph H, a graph G is H-saturated if H is not a subgraph of G, but for every $e \in G$, H is a subgraph of $G + e$.

The saturation number sat($n; H$) of a forbidden graph H is the smallest number of edges over all n-vertex graphs that are H-saturated.

Definitions

Given a forbidden family of graphs F, a graph G is F-saturated if no member of F is a subgraph of G, but for every $e \in G$, some member of F is a subgraph of $G + e$.

The saturation number sat($n; F$) is the smallest number of edges over all n-vertex graphs that are F-saturated.
Graph Saturation

Definitions

Given a forbidden graph H, a graph G is H-saturated if H is not a subgraph of G, but for every $e \in G$, H is a subgraph of $G + e$.

Definitions

The saturation number $\text{sat}(n;H)$ of a forbidden graph H is the smallest number of edges over all n-vertex graphs that are H-saturated.
Graph Saturation

Definitions
Given a forbidden graph H, a graph G is H-saturated if H is not a subgraph of G, but for every $e \in G$, H is a subgraph of $G + e$.

Definitions
The saturation number $\text{sat}(n; H)$ of a forbidden graph H is the smallest number of edges over all n-vertex graphs that are H-saturated.
Graph Saturation

Definitions
Given a forbidden graph H, a graph G is \textit{H-saturated} if H is not a subgraph of G, but for every $e \in G$, H is a subgraph of $G + e$.

Definitions
The \textbf{saturation number} $\text{sat}(n;H)$ of a forbidden graph H is the smallest number of edges over all n-vertex graphs that are H-saturated.
Definitions

Given a forbidden graph H, a graph G is H-saturated if H is not a subgraph of G, but for every $e \in G$, H is a subgraph of $G + e$.

Definitions

The saturation number $\text{sat}(n; H)$ of a forbidden graph H is the smallest number of edges over all n-vertex graphs that are H-saturated.
Graph Saturation

Definitions

Given a forbidden graph H, a graph G is H-saturated if H is not a subgraph of G, but for every $e \in G$, H is a subgraph of $G + e$.

Definitions

The **saturation number** $\text{sat}(n;H)$ of a forbidden graph H is the smallest number of edges over all n-vertex graphs that are H-saturated.

Definitions

Given a forbidden family of graphs \mathcal{F}, a graph G is \mathcal{F}-saturated if no member of \mathcal{F} is a subgraph of G, but for every $e \in G$, some member of \mathcal{F} is a subgraph of $G + e$.

The **saturation number** $\text{sat}(n;\mathcal{F})$ is the smallest number of edges over all n-vertex graphs that are \mathcal{F}-saturated.
Definitions

Given “forbidden” graphs H_1, \ldots, H_k, and any graph G, we write $G \rightarrow (H_1, \ldots, H_k)$ if any k coloring of $E(G)$ contains a monochromatic copy of H_i in color i, for some i.

Famous Example: $K_6 \rightarrow (K_3, K_3)$, but $K_5 \not\rightarrow (K_3, K_3)$.

Definitions

A graph G is (H_1, \ldots, H_k)-Ramsey minimal if $G \rightarrow (H_1, \ldots, H_k)$ but for any $e \in E(G)$, $G - e \not\rightarrow (H_1, \ldots, H_k)$.

Less Famous Example: K_6 is (K_3, K_3)-Ramsey Minimal.

Ferrara-Kim-Yeager (UCD, UIUC)

Saturation of Ramsey-Minimal Families

29 March 2014
Definitions

Given "forbidden" graphs H_1, \ldots, H_k, and any graph G, we write $G \rightarrow (H_1, \ldots, H_k)$ if any k coloring of $E(G)$ contains a monochromatic copy of H_i in color i, for some i.

Famous Example: $K_6 \rightarrow (K_3, K_3)$, but $K_5 \not\rightarrow (K_3, K_3)$
Ramsey-Minimal Families

Definitions

Given "forbidden" graphs H_1, \ldots, H_k, and any graph G, we write $G \to (H_1, \ldots, H_k)$ if any k coloring of $E(G)$ contains a monochromatic copy of H_i in color i, for some i.

Famous Example: $K_6 \to (K_3, K_3)$, but $K_5 \not\to (K_3, K_3)$

Definitions

A graph G is (H_1, \ldots, H_k)-Ramsey minimal if $G \to (H_1, \ldots, H_k)$ but for any $e \in E(G)$, $G - e \not\to (H_1, \ldots, H_k)$.

Ramsey-Minimal Families

Definitions

Given "forbidden" graphs H_1, \ldots, H_k, and any graph G, we write $G \rightarrow (H_1, \ldots, H_k)$ if any k coloring of $E(G)$ contains a monochromatic copy of H_i in color i, for some i.

Famous Example: $K_6 \rightarrow (K_3, K_3)$, but $K_5 \not\rightarrow (K_3, K_3)$

Definitions

A graph G is (H_1, \ldots, H_k)-Ramsey minimal if $G \rightarrow (H_1, \ldots, H_k)$ but for any $e \in E(G)$, $G - e \not\rightarrow (H_1, \ldots, H_k)$.

Less Famous Example: K_6 is (K_3, K_3)-Ramsey Minimal.
Definitions

A graph G is (H_1, \ldots, H_k)-Ramsey minimal if $G \to (H_1, \ldots, H_k)$ but for any $e \in E(G)$, $G - e \not\to (H_1, \ldots, H_k)$.

Less Famous Example: K_6 is (K_3, K_3)-Ramsey Minimal.

\[
\begin{array}{c}
\text{\includegraphics[width=0.5\textwidth]{graph.png}}
\end{array}
\]
Definitions

A graph G is **(H₁, ..., Hₖ)-Ramsey minimal** if $G \to (H₁, ..., Hₖ)$ but for any $e \in E(G)$, $G - e \not\to (H₁, ..., Hₖ)$.

Less Famous Example: $K₆$ is $(K₃, K₃)$-Ramsey Minimal.
A graph G is \textbf{(H_1, \ldots, H_k)-Ramsey minimal} if $G \to (H_1, \ldots, H_k)$ but for any $e \in E(G)$, $G - e \not\to (H_1, \ldots, H_k)$.

Less Famous Example: K_6 is (K_3, K_3)-Ramsey Minimal.
A graph G is \textbf{(H\(_1\), \ldots, H\(_k\))-Ramsey minimal} if $G \rightarrow (H\(_1\), \ldots, H\(_k\))$ but for any $e \in E(G)$, $G - e \not\rightarrow (H\(_1\), \ldots, H\(_k\))$.

Less Famous Example: K_6 is (K_3, K_3)-Ramsey Minimal.

\[
\mathcal{R}_{\text{min}}(H\(_1\), \ldots, H\(_k\)) = \mathcal{R}_{\text{min}} = \{ G : G \text{ is } (H\(_1\), \ldots, H\(_k\))-\text{Ramsey minimal} \} \]
A graph G is (H_1, \ldots, H_k)-Ramsey minimal if $G \rightarrow (H_1, \ldots, H_k)$ but for any $e \in E(G)$, $G - e \not\rightarrow (H_1, \ldots, H_k)$.

Less Famous Example: K_6 is (K_3, K_3)-Ramsey Minimal.

$K_6 \in \mathcal{R}_{\text{min}}(K_3, K_3)$

Definitions

$\mathcal{R}_{\text{min}}(H_1, \ldots, H_k) = \mathcal{R}_{\text{min}} = \{ G : G \text{ is } (H_1, \ldots, H_k)\text{-Ramsey minimal} \}$
Suppose G is $R_{\min}(H_1, \ldots, H_k)$ saturated. G has no subgraph that is (H_1, \ldots, H_k)-Ramsey minimal.

Pf: If $G \rightarrow (H_1, \ldots, H_k)$, we delete edges as long as the deletion does not cause an admissible coloring to exist. Adding any edge to G creates a subgraph that is (H_1, \ldots, H_k)-Ramsey minimal. For any $e \in E(G)$, $G + e \rightarrow (H_1, \ldots, H_k)$. G is $R_{\min}(H_1, \ldots, H_k)$ saturated iff $G \not\rightarrow (H_1, \ldots, H_k)$ for any $e \in E(G)$. $G + e \rightarrow (H_1, \ldots, H_k)$.

Ferrara-Kim-Yeager (UCD, UIUC)
\[\mathcal{R}_{min}(H_1, \ldots, H_k) \text{ Saturation} \]

Suppose \(G \) is \(\mathcal{R}_{min}(H_1, \ldots, H_k) \) saturated.
Saturation of Ramsey-Minimal Families

$R_{min}(H_1, \ldots, H_k)$ Saturation

Suppose G is $R_{min}(H_1, \ldots, H_k)$ saturated.

- G has no subgraph that is (H_1, \ldots, H_k)-Ramsey minimal.
$R_{\text{min}}(H_1, \ldots, H_k)$ Saturation

Suppose G is $R_{\text{min}}(H_1, \ldots, H_k)$ saturated.
- G has no subgraph that is (H_1, \ldots, H_k)-Ramsey minimal.
- Adding any edge to G creates a subgraph that is (H_1, \ldots, H_k)-Ramsey minimal.
\(\mathcal{R}_{\text{min}}(H_1, \ldots, H_k) \) Saturation

Suppose \(G \) is \(\mathcal{R}_{\text{min}}(H_1, \ldots, H_k) \) saturated.

- \(G \) has no subgraph that is \((H_1, \ldots, H_k)\)-Ramsey minimal

- Adding any edge to \(G \) creates a subgraph that is \((H_1, \ldots, H_k)\)-Ramsey minimal
 - For any \(e \in E(G) \), \(G + e \rightarrow (H_1, \ldots, H_k) \)
Suppose G is $\mathcal{R}_{\text{min}}(H_1, \ldots, H_k)$ saturated.

- G has no subgraph that is (H_1, \ldots, H_k)-Ramsey minimal
 - $G \not\rightarrow (H_1, \ldots, H_k)$

- Adding any edge to G creates a subgraph that is (H_1, \ldots, H_k)-Ramsey minimal
 - For any $e \in E(G)$, $G + e \rightarrow (H_1, \ldots, H_k)$
Suppose G is $\mathcal{R}_{\text{min}}(H_1, \ldots, H_k)$ saturated.

- G has no subgraph that is (H_1, \ldots, H_k)-Ramsey minimal

 Pf: If $G \rightarrow (H_1, \ldots, H_k)$, we delete edges as long as the deletion does not cause an admissible coloring to exist

- Adding any edge to G creates a subgraph that is (H_1, \ldots, H_k)-Ramsey minimal

 For any $e \in E(G)$, $G + e \rightarrow (H_1, \ldots, H_k)$
Saturation of Ramsey-Minimal Families

\(R_{\min}(H_1, \ldots, H_k) \) Saturation

Suppose \(G \) is \(R_{\min}(H_1, \ldots, H_k) \) saturated.

- \(G \) has no subgraph that is \((H_1, \ldots, H_k)\)-Ramsey minimal
 - \(G \not\rightarrow (H_1, \ldots, H_k) \)
 - Pf: If \(G \rightarrow (H_1, \ldots, H_k) \), we delete edges as long as the deletion does not cause an admissible coloring to exist
- Adding any edge to \(G \) creates a subgraph that is \((H_1, \ldots, H_k)\)-Ramsey minimal
 - For any \(e \in E(G) \), \(G + e \rightarrow (H_1, \ldots, H_k) \)

\(R_{\min}(H_1, \ldots, H_k) \) Saturation

\(G \) is \(R_{\min}(H_1, \ldots, H_k) \) saturated iff

- \(G \not\rightarrow (H_1, \ldots, H_k) \)
- For any \(e \in E(G) \), \(G + e \rightarrow (H_1, \ldots, H_k) \)
Saturation of $\mathcal{R}_{\text{min}}(K_{k_1}, \ldots, K_{k_t})$

Example

Let $r := r(k_1, \ldots, k_t)$ be the Ramsey number of $(K_{k_1}, \ldots, K_{k_t})$. Then

$$K_{r-2} \lor \overline{K_s}$$

is $\mathcal{R}_{\text{min}}(K_{k_1} \ldots, K_{k_t})$ saturated.
Saturation of $\mathcal{R}_{\text{min}}(K_{k_1}, \ldots, K_{k_t})$

Example

Let $r := r(k_1, \ldots, k_t)$ be the Ramsey number of $(K_{k_1}, \ldots, K_{k_t})$. Then

$$K_{r-2} \lor \overline{K_s}$$

is $\mathcal{R}_{\text{min}}(K_{k_1} \ldots, K_{k_t})$ saturated.
Saturation of $\mathcal{R}_{\text{min}}(K_{k_1}, \ldots, K_{k_t})$

Example

Let $r := r(k_1, \ldots, k_t)$ be the Ramsey number of $(K_{k_1}, \ldots, K_{k_t})$. Then

$$K_{r-2} \lor \overline{K_s}$$

is $\mathcal{R}_{\text{min}}(K_{k_1}, \ldots, K_{k_t})$ saturated.
Example

Let \(r := r(k_1, \ldots, k_t) \) be the Ramsey number of \((K_{k_1}, \ldots, K_{k_t})\). Then

\[K_{r-2} \lor \overline{K_s} \]

is \(R_{\min}(K_{k_1}, \ldots, K_{k_t}) \) saturated.
Saturation of $\mathcal{R}_{min}(K_{k_1}, \ldots, K_{k_t})$

Example

Let $r := r(k_1, \ldots, k_t)$ be the Ramsey number of $(K_{k_1}, \ldots, K_{k_t})$. Then

$$K_{r-2} \lor K_s$$

is $\mathcal{R}_{min}(K_{k_1} \ldots, K_{k_t})$ saturated.

Corollary

$$\text{sat}(n; \mathcal{R}_{min}(K_{k_1}, \ldots, K_{k_t})) \leq \binom{r-2}{2} + (r - 2)(n - r + 2) \text{ when } n \geq r$$
Saturation of $\mathcal{R}_{\min}(K_{k_1}, \ldots, K_{k_t})$

Example

Let $r := r(k_1, \ldots, k_t)$ be the Ramsey number of $(K_{k_1}, \ldots, K_{k_t})$. Then

$$K_{r-2} \lor \overline{K_s}$$

is $\mathcal{R}_{\min}(K_{k_1}, \ldots, K_{k_t})$ saturated.

Corollary

$$\text{sat}(n; \mathcal{R}_{\min}(K_{k_1}, \ldots, K_{k_t})) \leq \left(\frac{r-2}{2}\right) + (r - 2)(n - r + 2) \text{ when } n \geq r$$

Hanson-Toft Conjecture, 1987

$$\text{sat}(n; \mathcal{R}_{\min}(K_{k_1}, \ldots, K_{k_t})) = \begin{cases} \binom{n}{2} & n < r \\ \left(\frac{r-2}{2}\right) + (r - 2)(n - r + 2) & n \geq r \end{cases}$$
Hanson-Toft Conjecture

\[sat(n; R_{min}(K_{k_1}, \ldots, K_{k_t})) = \begin{cases} \binom{n}{2} & n < r \\ \binom{r-2}{2} + (r-2)(n-r+2) & n \geq r \end{cases} \]
Hanson-Toft Conjecture

\[
sat(n; R_{\min}(K_{k_1}, \ldots, K_{k_t})) = \begin{cases}
\binom{n}{2} & n < r \\
\binom{n}{2} + (r - 2)(n - r + 2) & n \geq r
\end{cases}
\]

Chen, Ferrara, Gould, Magnant, Schmitt; 2011

\[
sat(n; R_{\min}(K_3, K_3)) = \begin{cases}
\binom{n}{2} & n < 6 = r \\
4n - 10 & n \geq 56
\end{cases}
\]
Hanson-Toft

Hanson-Toft Conjecture

\[
sat(n; R_{\text{min}}(K_{k_1}, \ldots, K_{k_t})) = \begin{cases}
\binom{n}{2} & n < r \\
\binom{r-2}{2} + (r-2)(n-r+2) & n \geq r
\end{cases}
\]

Chen, Ferrara, Gould, Magnant, Schmitt; 2011

\[
sat(n; R_{\text{min}}(K_3, K_3)) = \begin{cases}
\binom{n}{2} & n < 6 = r \\
4n - 10 & n \geq 56
\end{cases}
\]
Example

\[(k_1 + \cdots + k_t - t)K_3 + \overline{K_s} \text{ is } \mathcal{R}_{min}(k_1K_2, \ldots, k_tK_2) \text{ saturated.}\]
Matchings

Example

\[(k_1 + \cdots + k_t - t)K_3 + \overline{K_s} \text{ is } R_{\min}(k_1K_2, \ldots, k_tK_2) \text{ saturated.}\]

(5K_2, 5K_2, 5K_2, 5K_2)
Example

$$(k_1 + \cdots + k_t - t)K_3 + \overline{K_s}$$ is $R_{\text{min}}(k_1K_2, \ldots, k_tK_2)$ saturated.

$$(5K_2, 5K_2, 5K_2, 5K_2)$$
Matchings

Example

$(k_1 + \cdots + k_t - t)K_3 + \overline{K_s}$ is $R_{\text{min}}(k_1K_2, \ldots, k_tK_2)$ saturated.

$(5K_2, 5K_2, 5K_2, 5K_2)$
Matchings

Example

\((k_1 + \cdots + k_t - t)K_3 + \overline{K_s}\) is \(\mathcal{R}_{\text{min}}(k_1K_2, \ldots, k_tK_2)\) saturated.

\[(5K_2, 5K_2, 5K_2, 5K_2)\]
Example

\[(k_1 + \cdots + k_t - t)K_3 + \overline{K_s} \text{ is } R_{\min}(k_1 K_2, \ldots, k_t K_2) \text{ saturated.}\]

\[(5K_2, 5K_2, 5K_2, 5K_2)\]
(k_1 + \cdots + k_t - t)K_3 + \overline{K}_s \text{ is } R_{min}(k_1K_2, \ldots, k_tK_2) \text{ saturated.}
(k_1 + \cdots + k_t - t)K_3 + \overline{K_s} is R_{\text{min}}(k_1K_2, \ldots, k_tK_2) saturated.

(5K_2, 5K_2, 5K_2, 5K_2)
Example

\((k_1 + \cdots + k_t - t)K_3 + \overline{K}_s\) is \(R_{\text{min}}(k_1 K_2, \ldots, k_t K_2)\) saturated.

\((5K_2, 5K_2, 5K_2, 5K_2)\)
(k_1 + \cdots + k_t - t)K_3 + \overline{K_s} \text{ is } R_{\text{min}}(k_1K_2, \ldots, k_tK_2) \text{ saturated.}

(5K_2, 5K_2, 5K_2, 5K_2)
Example

$$(k_1 + \cdots + k_t - t)K_3 + \overline{K_s}$$ is $\mathcal{R}_{min}(k_1K_2, \ldots, k_tK_2)$ saturated.

$$(5K_2, 5K_2, 5K_2, 5K_2)$$
Example
\[(k_1 + \cdots + k_t - t)K_3 + \overline{K_s} \text{ is } R_{\text{min}}(k_1K_2, \ldots, k_tK_2) \text{ saturated.}\]
Example

\((k_1 + \cdots + k_t - t)K_3 + \overline{K_s}\) is \(R_{min}(k_1 K_2, \ldots, k_t K_2)\) saturated.
Example

\[(k_1 + \cdots + k_t - t)K_3 + \overline{K_s} \text{ is } R_{\text{min}}(k_1K_2, \ldots, k_tK_2) \text{ saturated.}\]

Corollary

\[\text{sat}(n; R_{\text{min}}(k_1K_2 + \cdots + k_tK_2)) \leq 3(k_1 + \cdots + k_t - t)\]
when \(n \geq 3(k_1 + \cdots + k_t - t)\)
Example

\((k_1 + \cdots + k_t - t)K_3 + \overline{K_s} \) is \(R_{\text{min}}(k_1K_2, \ldots, k_tK_2)\) saturated.

Corollary

\[\text{sat}(n; R_{\text{min}}(k_1K_2 + \cdots + k_tK_2)) \leq 3(k_1 + \cdots + k_t - t) \]
when \(n \geq 3(k_1 + \cdots + k_t - t) \)

Ferrara, Kim, Y.; 2014

\[\text{sat}(n; R_{\text{min}}(k_1K_2 + \cdots + k_tK_2)) = 3(k_1 + \cdots + k_t - t) \]
when \(n > 3(k_1 + \cdots + k_t - t) \)
Example

\((k_1 + \cdots + k_t - t)K_3 + \overline{K_s}\) is \(R_{\text{min}}(k_1K_2, \ldots, k_tK_2)\) saturated.

Corollary

\[\text{sat}\left(n; R_{\text{min}}(k_1K_2 + \cdots + k_tK_2)\right) \leq 3(k_1 + \cdots + k_t - t)\]

when \(n \geq 3(k_1 + \cdots + k_t - t)\)

Ferrara, Kim, Y.; 2014

\[\text{sat}\left(n; R_{\text{min}}(k_1K_2 + \cdots + k_tK_2)\right) = 3(k_1 + \cdots + k_t - t)\]

when \(n > 3(k_1 + \cdots + k_t - t)\)

Construction is generally unique: vertex-disjoint triangles with isolates.
Useful Observation

Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i.
Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i.
Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i.
Useful Observation

Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i.

![Graph Diagram]
Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i.
Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i.
Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i.
Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i.
Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i.
Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i.
Useful Observation

Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i.

Corollary

If G is $R_{\text{min}}(H_1, \ldots, H_k)$ saturated, then $G = G_1 \cup \cdots \cup G_k$, where G_i is H_i saturated and all G_i share the same vertex set.
Thanks for Listening!

