A Ramsey Version of Graph Saturation

Mike Ferrara Jaehoon Kim Elyse Yeager

yeager2@illinois.edu

Midwest Conference on Combinatorics and Combinatorial Computing,
University of Nevada, Las Vegas

24 October 2014
Graph Saturation

Definitions

Given a forbidden graph H, a graph G is H-saturated if H is not a subgraph of G, but for every $e \in G$, H is a subgraph of $G + e$.

Definitions

The saturation number sat(n; H) of a forbidden graph H is the smallest number of edges over all n-vertex graphs that are H-saturated.

Definitions

Given a forbidden family of graphs F, a graph G is F-saturated if no member of F is a subgraph of G, but for every $e \in G$, some member of F is a subgraph of $G + e$.

The saturation number sat(n; F) is the smallest number of edges over all n-vertex graphs that are F-saturated.
Graph Saturation

Definitions

Given a forbidden graph H, a graph G is H-saturated if H is not a subgraph of G, but for every $e \in G$, H is a subgraph of $G + e$.

Definitions

The saturation number $\text{sat}(n; H)$ of a forbidden graph H is the smallest number of edges over all n-vertex graphs that are H-saturated.

Definitions

Given a forbidden family of graphs F, a graph G is F-saturated if no member of F is a subgraph of G, but for every $e \in G$, some member of F is a subgraph of $G + e$.

The saturation number $\text{sat}(n; F)$ is the smallest number of edges over all n-vertex graphs that are F-saturated.
Definitions

Given a forbidden graph H, a graph G is H-saturated if H is not a subgraph of G, but for every $e \in \overline{G}$, H is a subgraph of $G + e$.

The saturation number $\text{sat}(n; H)$ of a forbidden graph H is the smallest number of edges over all n-vertex graphs that are H-saturated.

Given a forbidden family of graphs F, a graph G is F-saturated if no member of F is a subgraph of G, but for every $e \in G$, some member of F is a subgraph of $G + e$.

The saturation number $\text{sat}(n; F)$ is the smallest number of edges over all n-vertex graphs that are F-saturated.
Graph Saturation

Definitions

Given a forbidden graph H, a graph G is **H-saturated** if H is not a subgraph of G, but for every $e \in \overline{G}$, H is a subgraph of $G + e$.

The **saturation number** sat$(n; H)$ of a forbidden graph H is the smallest number of edges over all n-vertex graphs that are H-saturated.

Given a forbidden family of graphs F, a graph G is **F-saturated** if no member of F is a subgraph of G, but for every $e \in G$, some member of F is a subgraph of $G + e$.

The **saturation number** sat$(n; F)$ is the smallest number of edges over all n-vertex graphs that are F-saturated.
Definitions

Given a forbidden graph H, a graph G is **H-saturated** if H is not a subgraph of G, but for every $e \in G$, H is a subgraph of $G + e$.

Definitions

The **saturation number** $\text{sat}(n;H)$ of a forbidden graph H is the smallest number of edges over all n-vertex graphs that are H-saturated.
Graph Saturation

Definitions
Given a forbidden graph \(H \), a graph \(G \) is \(H \)-saturated if \(H \) is not a subgraph of \(G \), but for every \(e \in G \), \(H \) is a subgraph of \(G + e \).

Definitions
The **saturation number** \(\text{sat}(n;H) \) of a forbidden graph \(H \) is the smallest number of edges over all \(n \)-vertex graphs that are \(H \)-saturated.
Graph Saturation

Definitions

Given a forbidden graph H, a graph G is H-saturated if H is not a subgraph of G, but for every $e \in \overline{G}$, H is a subgraph of $G + e$.

Definitions

The saturation number $\text{sat}(n; H)$ of a forbidden graph H is the smallest number of edges over all n-vertex graphs that are H-saturated.
Graph Saturation

Definitions
Given a forbidden graph H, a graph G is H-saturated if H is not a subgraph of G, but for every $e \in G$, H is a subgraph of $G + e$.

Definitions
The saturation number $\text{sat}(n; H)$ of a forbidden graph H is the smallest number of edges over all n-vertex graphs that are H-saturated.
Graph Saturation

Definitions
Given a forbidden graph H, a graph G is H-saturated if H is not a subgraph of G, but for every $e \in G$, H is a subgraph of $G + e$.

Definitions
The saturation number $\text{sat}(n;H)$ of a forbidden graph H is the smallest number of edges over all n-vertex graphs that are H-saturated.

Definitions
Given a forbidden family of graphs \mathcal{F}, a graph G is \mathcal{F}-saturated if no member of \mathcal{F} is a subgraph of G, but for every $e \in G$, some member of \mathcal{F} is a subgraph of $G + e$.
The saturation number $\text{sat}(n;\mathcal{F})$ is the smallest number of edges over all n-vertex graphs that are \mathcal{F}-saturated.
Definitions

A graph G is (H_1, \ldots, H_k)-Ramsey minimal if $G \rightarrow (H_1, \ldots, H_k)$ but for any $e \in E(G)$, $G - e \not\rightarrow (H_1, \ldots, H_k)$.

Example: $K_6 \rightarrow (K_3, K_3)$, but $K_6 - e \not\rightarrow (K_3, K_3)$.

$R_{\text{min}}(H_1, \ldots, H_k) = R_{\text{min}} = \{G: G$ is (H_1, \ldots, H_k)-Ramsey minimal $\}$
Ramsey-Minimal Families

Definitions

A graph G is (H_1, \ldots, H_k)-Ramsey minimal if $G \to (H_1, \ldots, H_k)$ but for any $e \in E(G)$, $G - e \not\to (H_1, \ldots, H_k)$.

Example: $K_6 \to (K_3, K_3)$, but $K_6 - e \not\to (K_3, K_3)$.

\[\text{Definitions} \]

\[\text{Ramsey minimal} \]

\[\text{Example:} \]

\[K_6 \to (K_3, K_3), \text{ but } K_6 - e \not\to (K_3, K_3). \]
A graph G is (H_1, \ldots, H_k)-Ramsey minimal if $G \rightarrow (H_1, \ldots, H_k)$ but for any $e \in E(G)$, $G - e \not\rightarrow (H_1, \ldots, H_k)$.

Example: $K_6 \rightarrow (K_3, K_3)$, but $K_6 - e \not\rightarrow (K_3, K_3)$.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{graph.png}
\caption{Example graph for Ramsey minimal families.}
\end{figure}
A graph G is (H_1, \ldots, H_k)-Ramsey minimal if $G \to (H_1, \ldots, H_k)$ but for any $e \in E(G)$, $G - e \not\to (H_1, \ldots, H_k)$.

Example: $K_6 \to (K_3, K_3)$, but $K_6 - e \not\to (K_3, K_3)$.
Ramsey-Minimal Families

Definitions

A graph G is (H_1, \ldots, H_k)-Ramsey minimal if $G \rightarrow (H_1, \ldots, H_k)$ but for any $e \in E(G)$, $G - e \not\rightarrow (H_1, \ldots, H_k)$.

Example: $K_6 \rightarrow (K_3, K_3)$, but $K_6 - e \not\rightarrow (K_3, K_3)$.

Ferrara-Kim-Yeager (UCD, UIUC) Ramsey Version of Saturation 24 October 2014
A graph G is (H_1, \ldots, H_k)-Ramsey minimal if $G \rightarrow (H_1, \ldots, H_k)$ but for any $e \in E(G)$, $G - e \not
ightarrow (H_1, \ldots, H_k)$.

Example: $K_6 \rightarrow (K_3, K_3)$, but $K_6 - e \not
ightarrow (K_3, K_3)$.

$$\mathcal{R}_{\text{min}}(H_1, \ldots, H_k) = \mathcal{R}_{\text{min}} = \{ G : G \text{ is } (H_1, \ldots, H_k)\text{-Ramsey minimal} \}$$
Saturation of Ramsey-Minimal Families

A graph G is $R_{min}(H_1, \ldots, H_k)$ saturated if and only if:

Example: the graph below is $R_{min}(K_3, K_3)$-saturated.
$\mathcal{R}_{\text{min}}(H_1, \ldots, H_k)$ Saturation

A graph G is $\mathcal{R}_{\text{min}}(H_1, \ldots, H_k)$ saturated if and only if:
A graph G is $\mathcal{R}_{\text{min}}(H_1, \ldots, H_k)$ saturated if and only if:

- $G \not\rightarrow (H_1, \ldots, H_k)$
\[R_{\text{min}}(H_1, \ldots, H_k) \] Saturation

A graph \(G \) is \(R_{\text{min}}(H_1, \ldots, H_k) \) saturated if and only if:

- \(G \not\rightarrow (H_1, \ldots, H_k) \)
- For any \(e \in \overline{G} \), \(G + e \rightarrow (H_1, \ldots, H_k) \).
A graph G is $\mathcal{R}_{\text{min}}(H_1, \ldots, H_k)$ saturated if and only if:

- $G \not\rightarrow (H_1, \ldots, H_k)$
- For any $e \in \overline{G}$, $G + e \rightarrow (H_1, \ldots, H_k)$.

Example: the graph below is $\mathcal{R}_{\text{min}}(K_3, K_3)$-saturated.
Saturation of Ramsey-Minimal Families

\(\mathcal{R}_{\text{min}}(H_1, \ldots, H_k) \) Saturation

A graph \(G \) is \(\mathcal{R}_{\text{min}}(H_1, \ldots, H_k) \) saturated if and only if:

- \(G \not\rightarrow (H_1, \ldots, H_k) \)
- For any \(e \in \overline{G} \), \(G + e \rightarrow (H_1, \ldots, H_k) \).

Example: the graph below is \(\mathcal{R}_{\text{min}}(K_3, K_3) \)-saturated.
A graph G is $\mathcal{R}_{min}(H_1, \ldots, H_k)$ saturated if and only if:

- $G \not\rightarrow (H_1, \ldots, H_k)$
- For any $e \in \overline{G}$, $G + e \rightarrow (H_1, \ldots, H_k)$.

Example: the graph below is $\mathcal{R}_{min}(K_3, K_3)$-saturated.
Saturation of Ramsey-Minimal Families

\(R_{\text{min}}(H_1, \ldots, H_k) \) Saturation

A graph \(G \) is \(R_{\text{min}}(H_1, \ldots, H_k) \) saturated if and only if:

- \(G \not\rightarrow (H_1, \ldots, H_k) \)
- For any \(e \in \bar{G} \), \(G + e \rightarrow (H_1, \ldots, H_k) \).

Example: the graph below is \(R_{\text{min}}(K_3, K_3) \)-saturated.
\[\mathcal{R}_{\text{min}}(H_1, \ldots, H_k) \text{ Saturation} \]

A graph \(G \) is \(\mathcal{R}_{\text{min}}(H_1, \ldots, H_k) \) saturated if and only if:

- \(G \not\rightarrow (H_1, \ldots, H_k) \)
- For any \(e \in \overline{G} \), \(G + e \rightarrow (H_1, \ldots, H_k) \).

Example: the graph below is \(\mathcal{R}_{\text{min}}(K_3, K_3) \)-saturated.
Saturation of Ramsey-Minimal Families

\(R_{\text{min}}(H_1, \ldots, H_k) \) Saturation

A graph \(G \) is \(R_{\text{min}}(H_1, \ldots, H_k) \) saturated if and only if:

1. \(G \not
ightarrow (H_1, \ldots, H_k) \)
2. For any \(e \in \overline{G} \), \(G + e \rightarrow (H_1, \ldots, H_k) \).

Example: the graph below is \(R_{\text{min}}(K_3, K_3) \)-saturated.
Saturation of $\mathcal{R}_{\text{min}}(K_{k_1}, \ldots, K_{k_t})$

Example

Let $r := r(k_1, \ldots, k_t)$ be the Ramsey number of $(K_{k_1}, \ldots, K_{k_t})$. Then

$$K_{r-2} \lor \overline{K_s}$$

is $\mathcal{R}_{\text{min}}(K_{k_1}, \ldots, K_{k_t})$ saturated.
Saturation of $\mathcal{R}_{\text{min}}(K_{k_1}, \ldots, K_{k_t})$

Example

Let $r := r(k_1, \ldots, k_t)$ be the Ramsey number of $(K_{k_1}, \ldots, K_{k_t})$. Then $K_{r-2} \lor \overline{K}_s$ is $\mathcal{R}_{\text{min}}(K_{k_1}, \ldots, K_{k_t})$ saturated.
Saturation of $R_{\min}(K_{k_1}, \ldots, K_{k_t})$

Example

Let $r := r(k_1, \ldots, k_t)$ be the Ramsey number of $(K_{k_1}, \ldots, K_{k_t})$. Then

$$K_{r-2} \lor \overline{K_s}$$

is $R_{\min}(K_{k_1}, \ldots, K_{k_t})$ saturated.
Saturation of $R_{min}(K_{k_1}, \ldots, K_{k_t})$

Example

Let $r := r(k_1, \ldots, k_t)$ be the Ramsey number of $(K_{k_1}, \ldots, K_{k_t})$. Then

$$K_{r-2} \lor \overline{K_s}$$

is $R_{min}(K_{k_1}, \ldots, K_{k_t})$ saturated.
Saturation of $\mathcal{R}_{\min}(K_{k_1}, \ldots, K_{k_t})$

Example

Let $r := r(k_1, \ldots, k_t)$ be the Ramsey number of $(K_{k_1}, \ldots, K_{k_t})$. Then

$$K_{r-2} \lor \overline{K_s}$$

is $\mathcal{R}_{\min}(K_{k_1}, \ldots, K_{k_t})$ saturated.
Saturation of $\mathcal{R}_{min}(K_{k_1}, \ldots, K_{k_t})$

Example

Let $r := r(k_1, \ldots, k_t)$ be the Ramsey number of $(K_{k_1}, \ldots, K_{k_t})$. Then

$$K_{r-2} \lor \overline{K_s}$$

is $\mathcal{R}_{min}(K_{k_1}, \ldots, K_{k_t})$ saturated.
Saturation of $\mathcal{R}_{\text{min}}(K_{k_1}, \ldots, K_{k_t})$

Example

Let $r := r(k_1, \ldots, k_t)$ be the Ramsey number of $(K_{k_1}, \ldots, K_{k_t})$. Then

$$K_{r-2} \lor \overline{K_s}$$

is $\mathcal{R}_{\text{min}}(K_{k_1}, \ldots, K_{k_t})$ saturated.

$K_{r-2} \lor \overline{K_s} \not\rightarrow (K_{k_1}, \ldots, K_{k_t})$
Saturation of $\mathcal{R}_{min}(K_{k_1}, \ldots, K_{k_t})$

Example

Let $r := r(k_1, \ldots, k_t)$ be the Ramsey number of $(K_{k_1}, \ldots, K_{k_t})$. Then

$$K_{r-2} \lor \overline{K_s}$$

is $\mathcal{R}_{min}(K_{k_1}, \ldots, K_{k_t})$ saturated.
Saturation of $\mathcal{R}_{\text{min}}(K_{k_1}, \ldots, K_{k_t})$

Example

Let $r := r(k_1, \ldots, k_t)$ be the Ramsey number of $(K_{k_1}, \ldots, K_{k_t})$. Then

$$K_{r-2} \lor K_s$$

is $\mathcal{R}_{\text{min}}(K_{k_1}, \ldots, K_{k_t})$ saturated.
Example

Let \(r := r(k_1, \ldots, k_t) \) be the Ramsey number of \((K_{k_1}, \ldots, K_{k_t})\). Then

\[
K_{r-2} \lor \overline{K_s}
\]

is \(R_{min}(K_{k_1}, \ldots, K_{k_t}) \) saturated.
Saturation of $\mathcal{R}_{min}(K_{k_1}, \ldots, K_{k_t})$

Example

Let $r := r(k_1, \ldots, k_t)$ be the Ramsey number of $(K_{k_1}, \ldots, K_{k_t})$. Then $K_{r-2} \lor \overline{K_s}$ is $\mathcal{R}_{min}(K_{k_1}, \ldots, K_{k_t})$ saturated.

Corollary

\[
sat(n; \mathcal{R}_{min}(K_{k_1}, \ldots, K_{k_t})) \leq \binom{r-2}{2} + (r-2)(n-r+2) \text{ when } n \geq r
\]
Saturation of $\mathcal{R}_{\text{min}}(K_{k_1}, \ldots, K_{k_t})$

Example

Let $r := r(k_1, \ldots, k_t)$ be the Ramsey number of $(K_{k_1}, \ldots, K_{k_t})$. Then

$$K_{r-2} \lor \overline{K_s}$$

is $\mathcal{R}_{\text{min}}(K_{k_1}, \ldots, K_{k_t})$ saturated.

Corollary

\[
sat(n; \mathcal{R}_{\text{min}}(K_{k_1}, \ldots, K_{k_t})) \leq \binom{r-2}{2} + (r - 2)(n - r + 2) \text{ when } n \geq r
\]

Hanson-Toft Conjecture, 1987

\[
sat(n; \mathcal{R}_{\text{min}}(K_{k_1}, \ldots, K_{k_t})) = \begin{cases}
\binom{n}{2} & n < r \\
\binom{r-2}{2} + (r - 2)(n - r + 2) & n \geq r
\end{cases}
\]
Hanson-Toft Conjecture

\[
sat(n; R_{\min}(K_{k_1}, \ldots, K_{k_t})) = \begin{cases}
\frac{n^2}{2} & n < r \\
\frac{n}{2} + (r - 2)(n - r + 2) & n \geq r
\end{cases}
\]
Hanson-Toft Conjecture

\[
sat(n; R_{\text{min}}(K_{k_1}, \ldots, K_{k_t})) = \begin{cases}
\binom{n}{2} & n < r \\
\binom{r-2}{2} + (r - 2)(n - r + 2) & n \geq r
\end{cases}
\]

Chen, Ferrara, Gould, Magnant, Schmitt; 2011

\[
sat(n; R_{\text{min}}(K_3, K_3)) = \begin{cases}
\binom{n}{2} & n < 6 = r \\
4n - 10 & n \geq 56
\end{cases}
\]
Hanson-Toft

Hanson-Toft Conjecture

\[sat(n; R_{\min}(K_{k_1}, \ldots, K_{k_t})) = \begin{cases} \left(\binom{n}{2} \right) & n < r \\ \left(\frac{r^2}{2} \right) + (r - 2)(n - r + 2) & n \geq r \end{cases} \]

Chen, Ferrara, Gould, Magnant, Schmitt; 2011

\[sat(n; R_{\min}(K_3, K_3)) = \begin{cases} \left(\frac{n}{2} \right) & n < 6 = r \\ 4n - 10 & n \geq 56 \end{cases} \]
Matchings

Example

\[(k_1 + \cdots + k_t - t)K_3 + \overline{K_s} \text{ is } R_{\min}(k_1K_2, \ldots, k_tK_2) \text{ saturated.}\]
Matchings

Example

\((k_1 + \cdots + k_t - t)K_3 + \overline{K_s}\) is \(R_{\min}(k_1K_2, \ldots, k_tK_2)\) saturated.

\[
(5K_2, 5K_2, 5K_2, 5K_2)
\]
Matchings

Example

\[(k_1 + \cdots + k_t - t)K_3 + \overline{K}_s \text{ is } R_{\min}(k_1K_2, \ldots, k_tK_2) \text{ saturated.}\]

\[
\begin{align*}
\begin{array}{cccc}
\text{Red} & \text{Red} & \text{Red} & \text{Red} \\
\text{Green} & \text{Green} & \text{Green} & \text{Green} \\
\text{Blue} & \text{Blue} & \text{Blue} & \text{Blue} \\
\text{Red} & \text{Red} & \text{Red} & \text{Red} \\
\end{array}
\end{align*}
\]

\[(5K_2, 5K_2, 5K_2, 5K_2)\]
Matchings

Example

$$(k_1 + \cdots + k_t - t)K_3 + \overline{K_s} \text{ is } R_{\min}(k_1K_2, \ldots, k_tK_2) \text{ saturated.}$$

$$(5K_2, 5K_2, 5K_2, 5K_2)$$
Matchings

Example

\[(k_1 + \cdots + k_t - t)K_3 + \bar{K}_s \text{ is } R_{min}(k_1K_2, \ldots, k_tK_2) \text{ saturated.}\]

\[(5K_2, 5K_2, 5K_2, 5K_2)\]
Useful Observation: “Iterated Recoloring”

Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i.

Example: Forbidden graphs ($3K_2$, $3K_2$).

- Good coloring makes red-heavy
- Take red subgraph

This (uncolored) subgraph is $3K_2$-saturated.
Useful Observation: “Iterated Recoloring”

Ferrara, Kim, Y.; 2014
Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i.

Example: Forbidden graphs ($3K_2$, $3K_2$).
Useful Observation: “Iterated Recoloring”

Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i.

Example: Forbidden graphs ($3K_2, 3K_2$).
Useful Observation: “Iterated Recoloring”

Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i.

Example: Forbidden graphs ($3K_2$, $3K_2$).

![Graph Diagram](image-url)
Useful Observation: “Iterated Recoloring”

Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i.

Example: Forbidden graphs ($3K_2$, $3K_2$).

![Graph Diagram]

good coloring
Useful Observation: “Iterated Recoloring”

Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i.

Example: Forbidden graphs ($3K_2$, $3K_2$).
Ferrara, Kim, Y.; 2014

Looking (cleverly) at color \(i \) allows us to use results from graph saturation of the forbidden subgraph \(H_i \).

Example: Forbidden graphs \((3K_2, 3K_2)\).

Good coloring

Make red-heavy
Useful Observation: “Iterated Recoloring”

Ferrara, Kim, Y.; 2014

Looking (cleverly) at color \(i \) allows us to use results from graph saturation of the forbidden subgraph \(H_i \).

Example: Forbidden graphs \((3K_2, 3K_2) \).

good coloring

make red-heavy
Useful Observation: "Iterated Recoloring"

Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i.

Example: Forbidden graphs ($3K_2$, $3K_2$).

![Graph Diagram]

- good coloring
- make red-heavy
Useful Observation: “Iterated Recoloring”

Ferrara, Kim, Y.; 2014

Looking (cleverly) at color \(i \) allows us to use results from graph saturation of the forbidden subgraph \(H_i \).

Example: Forbidden graphs \((3K_2, 3K_2)\).

![Graph diagram]

- good coloring
- make red-heavy
Useful Observation: “Iterated Recoloring”

Ferrara, Kim, Y.; 2014
Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i.

Example: Forbidden graphs ($3K_2$, $3K_2$).

![Graph Diagram]

- good coloring
- make red-heavy
Useful Observation: “Iterated Recoloring”

Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i.

Example: Forbidden graphs ($3K_2$, $3K_2$).

![Diagram of a graph with red and blue edges, indicating a good coloring and making red-heavy.]
Useful Observation: “Iterated Recoloring”

Ferrara, Kim, Y.; 2014
Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i.

Example: Forbidden graphs ($3K_2$, $3K_2$).

![Graph Diagram]

- Good coloring
- Make red-heavy

Ferrara–Kim–Yeager (UCD, UIUC)
Useful Observation: “Iterated Recoloring”

Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i.

Example: Forbidden graphs ($3K_2, 3K_2$).

good coloring
make red-heavy
Useful Observation: “Iterated Recoloring”

Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i.

Example: Forbidden graphs ($3K_2$, $3K_2$).

A diagram showing a graph with nodes colored in red and blue, with a note indicating a good coloring and making it red-heavy.
Useful Observation: “Iterated Recoloring”

Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i.

Example: Forbidden graphs ($3K_2, 3K_2$).

![Diagram of a graph with red and blue coloring]

- good coloring
- make red-heavy
Useful Observation: “Iterated Recoloring”

Ferrara, Kim, Y.; 2014
Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i.

Example: Forbidden graphs ($3K_2$, $3K_2$).

![Graph diagram]
Useful Observation: “Iterated Recoloring”

Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i.

Example: Forbidden graphs ($3K_2$, $3K_2$).

![Diagram](image)

- Good coloring
- Make red-heavy
Useful Observation: “Iterated Recoloring”

Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i.

Example: Forbidden graphs ($3K_2$, $3K_2$).

![Diagram showing a good coloring and making the red-heavy subgraph $3K_2$-saturated.]

- good coloring
- make red-heavy
- $3K_2$-saturated
Useful Observation: “Iterated Recoloring”

Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i.

Example: Forbidden graphs ($3K_2$, $3K_2$).

![Diagram](image_url)

- good coloring
- make red-heavy
- take red subgraph
Useful Observation: “Iterated Recoloring”

Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i.

Example: Forbidden graphs ($3K_2$, $3K_2$).

good coloring
↓
make red-heavy
↓
take red subgraph
Useful Observation: “Iterated Recoloring”

Example: Forbidden graphs (3K₂, 3K₂).

This (uncolored) subgraph is 3K₂-saturated.
Useful Observation: “Iterated Recoloring”

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i.

Example: Forbidden graphs ($3K_2$, $3K_2$).

This (uncolored) subgraph is $3K_2$-saturated.
Useful Observation: “Iterated Recoloring”

Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i.

Example: Forbidden graphs ($3K_2$, $3K_2$).

![Diagram showing a graph with red and blue edges, and a node marked as uncolored.](image)

This (uncolored) subgraph is $3K_2$-saturated.
Useful Observation: “Iterated Recoloring”

Ferrara, Kim, Y.; 2014
Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i.

Example: Forbidden graphs ($3K_2$, $3K_2$).

This (uncolored) subgraph is $3K_2$-saturated.
Useful Observation: “Iterated Recoloring”

Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i.

Example: Forbidden graphs ($3K_2$, $3K_2$).

![Graph diagram]

This (uncolored) subgraph is $3K_2$-saturated.
Useful Observation: “Iterated Recoloring”

Ferrara, Kim, Y.; 2014

Looking (cleverly) at color i allows us to use results from graph saturation of the forbidden subgraph H_i.

Example: Forbidden graphs ($3K_2, 3K_2$).

This (uncolored) subgraph is $3K_2$-saturated.
Thanks for Listening!

