Disjoint Cycles and Equitable Colorings in Graphs

H. Kierstead A. Kostochka T. Molla E. Yeager

yeager2@illinois.edu

Cumberland Conference
17 May 2014
Disjoint Cycles
If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.
Corrádi-Hajnal Theorem

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

Examples:

- $k = 1$
Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

Examples:

- $k = 1$: easy
Corrádi-Hajnal Theorem

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

Examples:

- $k = 1$: easy
- Sharpness:
Corrádi-Hajnal Theorem

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

Examples:
- $k = 1$: easy
- Sharpness:

![Diagram of a graph with k disjoint cycles](image1)

![Diagram of a graph with $2k-1$ vertices](image2)
If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

Enomoto, Wang

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

$$\sigma_2(G) := \min \{d(x) + d(y) : xy \notin E(G)\}$$
Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

$$\sigma_2(G) := \min \{ d(x) + d(y) : xy \notin E(G) \}$$

If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.
If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

$$\sigma_2(G) := \min\{d(x) + d(y) : xy \not\in E(G)\}$$

If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

Implies Corrádi-Hajnal
If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.
Enomoto, Wang

If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

Sharpness:

\begin{align*}
&k \\
&k \\
&k
\end{align*}

\begin{align*}
&2k - 1 \\
&\vdots
\end{align*}
If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

Proof (Enomoto)

If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

Proof (Enomoto)

- Edge-maximal counterexample
Enomoto, Wang

If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

Proof (Enomoto)

- Edge-maximal counterexample
 - $(k - 1)$ disjoint cycles
If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

Proof (Enomoto)

- Edge-maximal counterexample
 - $(k - 1)$ disjoint cycles
 - Remaining graph at least 3 vertices
If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

Proof (Enomoto)

- Edge-maximal counterexample
 - $(k - 1)$ disjoint cycles
 - Remaining graph at least 3 vertices
- Minimize number of vertices in cycles
If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

Proof (Enomoto)

- Edge-maximal counterexample
 - $(k - 1)$ disjoint cycles
 - Remaining graph at least 3 vertices
- Minimize number of vertices in cycles
- Maximize longest path in remainder
Independence Number:

\[\alpha(G) \geq n - 2k + 1 \Rightarrow G \text{ has no } k \text{ cycles} \]

If \(G \) is a graph on \(n \) vertices with \(n \geq 3k \) and \(\sigma^2(G) \geq 4k - 1 \), then \(G \) contains \(k \) disjoint cycles.

Kerstead-Kostochka-Y, 2014+

For \(k \geq 4 \), if \(G \) is a graph on \(n \) vertices with \(n \geq 3k + 1 \) and \(\sigma^2(G) \geq 4k - 3 \), then \(G \) contains \(k \) disjoint cycles if and only if \(\alpha(G) \leq n - 2k \).
Independence Number:

Observation:

$$\alpha(G) \geq n - 2k + 1 \implies G \text{ has no } k \text{ cycles}$$
Independence Number:

Observation:

\[\alpha(G) \geq n - 2k + 1 \Rightarrow G \text{ has no } k \text{ cycles} \]
Independence Number:

Observation:
\[\alpha(G) \geq n - 2k + 1 \Rightarrow G \text{ has no } k \text{ cycles} \]
Independence Number:

Observation:

\[\alpha(G) \geq n - 2k + 1 \Rightarrow G \text{ has no } k \text{ cycles} \]

Enomoto 1998, Wang 1999

If \(G \) is a graph on \(n \) vertices with \(n \geq 3k \) and \(\sigma_2(G) \geq 4k - 1 \), then \(G \) contains \(k \) disjoint cycles.
Independence Number:

Observation:
\[\alpha(G) \geq n - 2k + 1 \Rightarrow G \text{ has no } k \text{ cycles} \]

Enomoto 1998, Wang 1999
If \(G \) is a graph on \(n \) vertices with \(n \geq 3k \) and \(\sigma_2(G) \geq 4k - 1 \), then \(G \) contains \(k \) disjoint cycles.

KKY, 2014
For \(k \geq 4 \), if \(G \) is a graph on \(n \) vertices with \(n \geq 3k + 1 \) and \(\sigma_2(G) \geq 4k - 3 \), then \(G \) contains \(k \) disjoint cycles if and only if \(\alpha(G) \leq n - 2k \).
For $k \geq 4$, if G is a graph on n vertices with $n \geq 3k + 1$ and $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n - 2k$.

KKMY (ASU, UIUC)
For $k \geq 4$, if G is a graph on n vertices with $n \geq 3k + 1$ and $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n - 2k$.

$n \geq 3k + 1$
For $k \geq 4$, if G is a graph on n vertices with $n \geq 3k + 1$ and $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n - 2k$.

$k = 1$:

\begin{center}
\begin{tikzpicture}
 \node (a) at (0,0) [shape=circle,fill] {};
 \node (b) at (1,0) [shape=circle,fill] {};
 \node (c) at (0,-1) [shape=circle,fill] {};
 \node (d) at (1,-1) [shape=circle,fill] {};
 \draw (a) -- (b);
 \draw (c) -- (d);
\end{tikzpicture}
\end{center}
For $k \geq 4$, if G is a graph on n vertices with $n \geq 3k + 1$ and $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n - 2k$.

$k = 2$:
For $k \geq 4$, if G is a graph on n vertices with $n \geq 3k + 1$ and $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n - 2k$.

$k = 3$:

![Graph 1](image1.png)

![Graph 2](image2.png)
For $k \geq 4$, if G is a graph on n vertices with $n \geq 3k + 1$ and $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n - 2k$.

$\sigma_2 = 4k - 4$:
For $k \geq 4$, if G is a graph on n vertices with $n \geq 3k + 1$ and $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n - 2k$.

Proof
(Like Enomoto)

- Let G be an edge-maximal counterexample.
- There exists a set of $(k - 1)$ disjoint cycles.
- Choose the set of cycles with the least number of vertices, etc.
Dirac: $(2k - 1)$-connected without k disjoint cycles

Dirac, 1963

What $(2k - 1)$-connected graphs do not have k disjoint cycles?

For $k \geq 4$, if G is a graph on n vertices with $n \geq 3k + 1$ and $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n - 2k$.

Answer to Dirac’s Question

Let $k \geq 2$. Every graph G with (i) $|G| \geq 3k$ and (ii) $\delta(G) \geq 2k - 1$ contains k disjoint cycles if and only if $\alpha(G) \leq |G| - 2k$, and if k is odd and $|G| = 3k$, then $G \neq 2K_k \lor K_k$, and if $k = 2$ then G is not a wheel.

Further: characterization for multigraphs

KKMY (ASU, UIUC)

Disjoint Cycles

17 May 2014
Dirac: $(2k - 1)$-connected without k disjoint cycles

Dirac, 1963

What $(2k - 1)$-connected graphs do not have k disjoint cycles?

Observation:

G is $(2k - 1)$ connected $\implies \delta(G) \geq 2k - 1 \implies \sigma_2(G) \geq 4k - 2$
Dirac: \((2k - 1)\)-connected without \(k\) disjoint cycles

Dirac, 1963

What \((2k - 1)\)-connected graphs do not have \(k\) disjoint cycles?

Observation:

\(G\) is \((2k - 1)\) connected \(\Rightarrow \delta(G) \geq 2k - 1\)
Dirac: (2k − 1)-connected without k disjoint cycles

Dirac, 1963

What (2k − 1)-connected graphs do not have k disjoint cycles?

Observation:

G is (2k − 1) connected ⇒ \(\delta(G) \geq 2k - 1 \) ⇒ \(\sigma_2(G) \geq 4k - 2 \)
Dirac: $(2k - 1)$-connected without k disjoint cycles

Dirac, 1963
What $(2k - 1)$-connected graphs do not have k disjoint cycles?

Observation:
G is $(2k - 1)$ connected $\Rightarrow \delta(G) \geq 2k - 1 \Rightarrow \sigma_2(G) \geq 4k - 2$

KKY, 2014+
For $k \geq 4$, if G is a graph on n vertices with $n \geq 3k + 1$ and $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n - 2k$.
Dirac: $(2k - 1)$-connected without k disjoint cycles

KKY, 2014+

For $k \geq 4$, if G is a graph on n vertices with $n \geq 3k + 1$ and $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n - 2k$.

Answer to Dirac’s Question

Let $k \geq 2$. Every graph G with (i) $|G| \geq 3k$ and (ii) $\delta(G) \geq 2k - 1$ contains k disjoint cycles if and only if

- $\alpha(G) \leq |G| - 2k$, and
- if k is odd and $|G| = 3k$, then $G \neq 2K_k \lor \overline{K}_k$, and
- if $k = 2$ then G is not a wheel.
Dirac: $(2k - 1)$-connected without k disjoint cycles

KKY, 2014+

For $k \geq 4$, if G is a graph on n vertices with $n \geq 3k + 1$ and $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n - 2k$.

Answer to Dirac’s Question

Let $k \geq 2$. Every graph G with (i) $|G| \geq 3k$ and (ii) $\delta(G) \geq 2k - 1$ contains k disjoint cycles if and only if

- $\alpha(G) \leq |G| - 2k$, and
- if k is odd and $|G| = 3k$, then $G \neq 2K_k \lor \overline{K_k}$, and
- if $k = 2$ then G is not a wheel.

Further:
Dirac: \((2k - 1) \)-connected without \(k \) disjoint cycles

KKY, 2014+

For \(k \geq 4 \), if \(G \) is a graph on \(n \) vertices with \(n \geq 3k + 1 \) and \(\sigma_2(G) \geq 4k - 3 \), then \(G \) contains \(k \) disjoint cycles if and only if \(\alpha(G) \leq n - 2k \).

Answer to Dirac’s Question

Let \(k \geq 2 \). Every graph \(G \) with (i) \(|G| \geq 3k \) and (ii) \(\delta(G) \geq 2k - 1 \) contains \(k \) disjoint cycles if and only if

- \(\alpha(G) \leq |G| - 2k \), and
- if \(k \) is odd and \(|G| = 3k \), then \(G \neq 2K_k \vee \overline{K_k} \), and
- if \(k = 2 \) then \(G \) is not a wheel.

Further:

characterization for multigraphs
Equitable Coloring
Definition

An *equitable k-coloring* of a graph G is a proper coloring of $V(G)$ such that any two color classes differ in size by at most one.
Definition

An equitable k-coloring of a graph G is a proper coloring of $V(G)$ such that any two color classes differ in size by at most one.
An equitable k-coloring of a graph G is a proper coloring of $V(G)$ such that any two color classes differ in size by at most one.
Equitable Coloring

Definition

An *equitable k-coloring* of a graph G is a proper coloring of $V(G)$ such that any two color classes differ in size by at most one.
An equitable k-coloring of a graph G is a proper coloring of $V(G)$ such that any two color classes differ in size by at most one.
$n = 3k$

If G has $n = 3k$ vertices, then G has an equitable k-coloring if and only if \overline{G} has k disjoint cycles (all triangles).
Equitable Coloring and Cycles

\[n = 3k \]

If \(G \) has \(n = 3k \) vertices, then \(G \) has an equitable \(k \)-coloring if and only if \(G \) has \(k \) disjoint cycles (all triangles).
If G has $n = 3k$ vertices, then G has an equitable k-coloring if and only if \overline{G} has k disjoint cycles (all triangles).
If G has $n = 3k$ vertices, then G has an equitable k-coloring if and only if \bar{G} has k disjoint cycles (all triangles).

What’s Really Going On

independent sets \leftrightarrow cliques
Hajnal-Szemerédi, 1970

If $k \geq \Delta(G) + 1$, then G is equitably k-colorable.
Hajnal-Szemerédi, 1970

If \(k \geq \Delta(G) + 1 \), then \(G \) is equitably \(k \)-colorable.

Chen-Lih-Wu Conjecture

If \(\chi(G), \Delta(G) \leq k \), and if \(K_{k,k} \not\subseteq G \) when \(k \) is odd, then \(G \) is equitably \(k \)-colorable.
Chen-Lih-Wu

Hajnal-Szemerédi, 1970
If $k \geq \Delta(G) + 1$, then G is equitably k-colorable.

Chen-Lih-Wu Conjecture
If $\chi(G), \Delta(G) \leq k$, and if $K_{k,k} \not\subseteq G$ when k is odd, then G is equitably k-colorable.

CLW true if:
$\delta(G) \geq |G|/2$; $\Delta(G) \leq 4$; G planar with $\Delta(G) \geq 13$; G outerplanar, etc.
Chen-Lih-Wu Conjecture

If $\chi(G), \Delta(G) \leq k$ and $K_{k,k} \not\subseteq G$, then G is equitably k-colorable.
Chen-Lih-Wu Conjecture

If $\chi(G), \Delta(G) \leq k$ and $K_{k,k} \not\subseteq G$, then G is equitably k-colorable.

Kierstead-Kostochka-Molla-Y, 2014+

If G is a k-colorable $3k$-vertex graph such that for each edge xy, $d(x) + d(y) \leq 2k + 1$, then G is equitably k-colorable, or is one of several exceptions.
Ore Conditions

Chen-Lih-Wu Conjecture

If $\chi(G), \Delta(G) \leq k$ and $K_{k,k} \not\subseteq G$, then G is equitably k-colorable.

Kierstead-Kostochka-Molla-Y, 2014+

If G is a k-colorable $3k$-vertex graph such that for each edge xy, $d(x) + d(y) \leq 2k + 1$, then G is equitably k-colorable, or is one of several exceptions.

Equivalent

If G is a graph on $3k$ vertices with $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles, or is one of several exceptions, or \overline{G} is not k-colorable.
Ore Conditions

Kierstead-Kostochka-Molla-Y, 2014+

If G is a k-colorable $3k$-vertex graph such that for each edge xy, $d(x) + d(y) \leq 2k + 1$, then G is equitably k-colorable, or is one of several exceptions.

Equivalent

If G is a graph on $3k$ vertices with $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles, or is one of several exceptions, or \overline{G} is not k-colorable.

KKY, 2014+

For $k \geq 4$, if G is a graph on n vertices with $n \geq 3k + 1$ and $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n - 2k$.
Exceptions

- $k = 3$

Equitable coloring:

Cycles:
Exceptions

- **Equitable coloring:**

\[
\begin{align*}
&c \\
&2k - c \\
&K_k
\end{align*}
\]

Cycles:

\[
\begin{align*}
k \\
k \\
k
\end{align*}
\]
Exceptions

- **Equitable coloring:**

 \[K_{2k} \]

- **Cycles:**

 \[K_{k-1} \]

\[K_{2k} \]

\[k - 1 \]
Thanks for Listening!