Refinements of the Corrádi-Hajnal Theorem

Elyse Yeager
University of Illinois at Urbana-Champaign
Joint work with H. Kierstead and A. Kostochka

MIGHTY, September 2012
Theorem 1
[Corradi, Hajnal 1963] Let $k \geq 1$, $n \geq 3k$, and let H be an n-vertex graph with $\delta(H) \geq 2k$. Then H contains k vertex-disjoint cycles.
Corrádi-Hajnal Theorem

Theorem 1
[Corradi, Hajnal 1963] Let $k \geq 1$, $n \geq 3k$, and let H be an n-vertex graph with $\delta(H) \geq 2k$. Then H contains k vertex-disjoint cycles.

Corollary 2
Let $n = 3k$, and let H be an n-vertex graph with $\delta(H) \geq 2k$. Then H contains k vertex-disjoint triangles.
Theorem 3

[Aigner, Brandt 1993]: Let H be an n-vertex graph with $\delta(H) \geq \frac{2n-1}{3}$. Then H contains each 2-factor.
Theorem 3
[Aigner, Brandt 1993]: Let H be an n-vertex graph with $\delta(H) \geq \frac{2n-1}{3}$. Then H contains each 2-factor.

Definition

$$\sigma_2(G) = \min_{xy \notin E(G)} \{d(x) + d(y)\}$$
Refinements

Theorem 3

[Aigner, Brandt 1993]: Let H be an n-vertex graph with
\[\delta(H) \geq \frac{2n-1}{3} . \] Then H contains each 2-factor.

Definition

$\sigma_2(G) = \min_{xy \notin E(G)} \{d(x) + d(y)\}$

Theorem 4

[Kostochka, Yu 2011]: Let $n \geq 3$ and H be an n-vertex graph with
$\sigma_2(H) \geq \frac{4n}{3} - 1$. Then H contains each 2-factor.
Refinements

Theorem 5
[Fan, Kierstead 1996]: Let \(n \geq 3 \) and \(H \) be an \(n \)-vertex graph with \(\delta(H) \geq \frac{2n-1}{3} \). Then \(H \) contains the square of the \(n \)-vertex path.
Refinements

Theorem 5
[Fan, Kierstead 1996]: Let \(n \geq 3 \) and \(H \) be an \(n \)-vertex graph with \(\delta(H) \geq \frac{2n-1}{3} \). Then \(H \) contains the square of the \(n \)-vertex path.

Theorem 6
[Enomoto 1998; Wang 1999]: Let \(k \geq 1 \), \(n \geq 3k \), and let \(H \) be an \(n \)-vertex graph with \(\sigma_2(H) \geq 4k - 1 \). Then \(H \) contains \(k \) vertex-disjoint cycles.
Refinements

Theorem 5
[Fan, Kierstead 1996]: Let $n \geq 3$ and H be an n-vertex graph with $\delta(H) \geq \frac{2n-1}{3}$. Then H contains the square of the n-vertex path.

Theorem 6
[Enomoto 1998; Wang 1999]: Let $k \geq 1$, $n \geq 3k$, and let H be an n-vertex graph with $\sigma_2(H) \geq 4k - 1$. Then H contains k vertex-disjoint cycles.

Theorem 7
[Kierstead, Kostochka, Y.]: Let $k \geq 3$, $n \geq 3k + 1$, and let H be an n-vertex graph with $\delta(H) \geq 2k - 1$ and $\alpha(H) \leq n - 2k$. Then H contains k vertex-disjoint cycles.
Proof Sketch: Theorem 7

Theorem (7)

[Kierstead, Kostochka, Y.]: Let $k \geq 3$, $n \geq 3k + 1$, and let H be an n-vertex graph with $\delta(H) \geq 2k - 1$ and $\alpha(H) \leq n - 2k$. Then H contains k vertex-disjoint cycles.

Idea of Proof: Suppose G is an edge-maximal counterexample. Let \mathcal{C} be a set of disjoint cycles in G such that:

- $|\mathcal{C}|$ is maximized,
- subject to the above, $\sum_{C \in \mathcal{C}} |C|$ is minimized, and
- subject to both other conditions, the length of a longest path in $G - \bigcup \mathcal{C}$ is maximized.
Proof of Theorem 7

Goal (1)
\[R := G - C \text{ is a path} \]
Proof of Therem 7

Goal (1)

\[R := G - C \text{ is a path} \]

Goal (2)

\[|R| \geq 4 \]
Proof of Theorem 7

Goal (1)
\[R := G - \mathcal{C} \text{ is a path} \]

Goal (2)
\[|R| \geq 4 \]

Goal (3)
\[|R| = 3 \]
Notice R is a forest. If R is not a path, it has at least three buds. Let a be an endpoint of a longest path P, and let c be a bud not on P.
Goal 1: R is a Path

Claim 1
Suppose R is not a path. \[\|\{a, c\}, C\| = 4\] for every \(C \in \mathcal{C}\).

Claim 2
Suppose R is not a path. Then for all cycles \(C \in \mathcal{C}\) and for all leaves \(c\) in \(R\), \(a\) and \(c\) share exactly the same two neighbors in \(C\). If \(|C| = 4\), then those neighbors are nonadjacent.

Claim 3
\(R\) is a subdivided star.

Claim 4
\(R\) is a path or a star.

Claim 5
\(R\) is a path.
Claim 1
Claim 1

Diagram:
- A triangle labeled 'a'
- A line segment labeled 'c'
- A point labeled 'R'
- A blue circle
Claim 1
Claim 1
Claim 1

Rca

Diagram with nodes labeled 'a', 'c', and 'R'.
Claim 1
Claim 1

So, $||\{a, c\}, C|| \leq 4$ for every $C \in C$.
Claim 1

So, \(\|\{a, c\}, C\| \leq 4 \) for every \(C \in \mathcal{C} \).

We can now show \(\|\{a, c\}, C\| = 4 \) by a counting argument, using the minimum degree of \(G \). This proves Claim (1).

The same counting argument shows that \(a \) and \(c \) must have one neighbor in \(R \), so \(R \) has no isolated vertices.
Goal 1: R is a Path

Claim 1

Suppose R is not a path. $\|\{a, c\}, C\| = 4$ for every $C \in \mathcal{C}$.

Claim 2

Suppose R is not a path. Then for all cycles $C \in \mathcal{C}$ and for all leaves c in R, a and c share exactly the same two neighbors in C. If $|C| = 4$, then those neighbors are nonadjacent.

Claim 3

R is a subdivided star.

Claim 4

R is a path or a star.

Claim 5

R is a path.
Claim 2
Claim 2
Claim 2
Claim 2
So we see that c can have at most 2 neighbors in any cycle $C \in \mathcal{C}$. By degree considerations, c must have precisely two neighbors in each cycle $C \in \mathcal{C}$. This tells us that a, as well, has precisely 2 neighbors to every cycle $C \in \mathcal{C}$.

It remains only to show that no two leaves in R have different sets of neighbors, and if $|C| = 4$, the neighbors of our leaves are nonadjacent.
So if $|C| = 3$, then $N(a) \cap C = N(c) \cap C$, as desired.
Claim 2
Claim 2
Claim 2
Claim 2

This proves Claim 2.
Goal 1: \(R \) is a Path

Claim 1
Suppose \(R \) is not a path. \(\|\{a, c\}, C\| = 4 \) for every \(C \in \mathcal{C} \).

Claim 2
Suppose \(R \) is not a path. Then for all cycles \(C \in \mathcal{C} \) and for all leaves \(c \) in \(R \), \(a \) and \(c \) share exactly the same two neighbors in \(C \). If \(|C| = 4 \), then those neighbors are nonadjacent.

Claim 3
\(R \) is a subdivided star.

Claim 4
\(R \) is a path or a star.

Claim 5
\(R \) is a path.
Claim 3

Suppose R is not a subdivided star. Then it has four leaves a, b, c, d such that the paths aRb and cRd exist and are disjoint.
Claim 3
Claim 3
Goal 1: R is a Path

Claim 1

Suppose R is not a path. $||\{a, c\}, C|| = 4$ for every $C \in \mathcal{C}$.

Claim 2

Suppose R is not a path. Then for all cycles $C \in \mathcal{C}$ and for all leaves c in R, a and c share exactly the same two neighbors in C. If $|C| = 4$, then those neighbors are nonadjacent.

Claim 3

R is a subdivided star.

Claim 4

R is a path or a star.

Claim 5

R is a path.
Claim 4

Suppose R is not a path or a star. We know it is a subdivided star, so there must be some unique vertex w with degree at least three. Since we assume it is not a star, there is also a vertex v of degree 2. Further, there exist leaves a, b, c so that vRb does not contain w and is disjoint from aRc.
Claim 4
Claim 4
Claim 4
Goal 1: R is a Path

Claim 1
Suppose R is not a path. $\|\{a, c\}, C\| = 4$ for every $C \in \mathcal{C}$.

Claim 2
Suppose R is not a path. Then for all cycles $C \in \mathcal{C}$ and for all leaves c in R, a and c share exactly the same two neighbors in C. If $|C| = 4$, then those neighbors are nonadjacent.

Claim 3
R is a subdivided star.

Claim 4
R is a path or a star.

Claim 5
R is a path.
Claim 5

Suppose R is not a path. R has precisely one vertex w of degree at least 3.
Let z be an arbitrary vertex in $C - N(a)$.
Claim 5
Claim 5
Claim 5

\[wz\]
Claim 5
Claim 5
Claim 5
The independent set has size:

\[|V(G)| - 2(k - 1) - 1 = n - 2k + 1 \]

but we assumed \(\alpha(G) \leq n - 2k \), a contradiction. This proves Claim 5, also Goal 1, that \(R \) is a path.
Goal 1: R is a Path

Claim 1

*Suppose R is not a path. $||\{a, c\}, C|| = 4$ for every $C \in \mathcal{C}$.***

Claim 2

Suppose R is not a path. Then for all cycles $C \in \mathcal{C}$ and for all leaves c in R, a and c share exactly the same two neighbors in C. If $|C| = 4$, then those neighbors are nonadjacent.

Claim 3

R is a subdivided star.

Claim 4

R is a path or a star.

Claim 5

R is a path.
Proof of Theorem 7

Goal (1)

\[R := G - \mathcal{C} \text{ is a path} \]
Proof of Theorem 7

Goal (1)

\(R := G - C \) is a path

Goal (2)

\(|R| \geq 4\)
Proof of Theorem 7

Goal (1)
\[R := G - C \text{ is a path} \]

Goal (2)
\[|R| \geq 4 \]

Goal (3)
\[|R| = 3 \]
Thank you for listening!