Extremal Problems in Disjoint Cycles and Graph Saturation

Elyse Yeager

yeager2@illinois.edu

University of Alaska, Fairbanks

09 February 2015
Introduction to Graph Theory

trade agreement

E. Yeager (yeager2@illinois.edu)
Introduction to Graph Theory

E. Yeager (yeager2@illinois.edu) Extremal Problems 09 February 2015 2 / 32
null
Introduction to Graph Theory

no direct contact

direct contact

E. Yeager (yeager2@illinois.edu) Extremal Problems 09 February 2015 2 / 32
Extremal Graph Theory

Find maximum and minimum values of a graph parameter, given criteria.
Extremal Graph Theory

Find maximum and minimum values of a graph parameter, given criteria.

Turán Problem
Extremal Graph Theory

Find maximum and minimum values of a graph parameter, given criteria.

Turán Problem
Extremal Graph Theory

Find maximum and minimum values of a graph parameter, given criteria.

Turán Problem

Forbiden:
Extremal Graph Theory

Find maximum and minimum values of a graph parameter, given criteria.

Turán Problem

Forbidden:
Extremal Graph Theory

Find maximum and minimum values of a graph parameter, given criteria.

Turán Problem

Forbidden:
Extremal Graph Theory

Find maximum and minimum values of a graph parameter, given criteria.

Turán Problem

Forbidden:
Extremal Graph Theory

Find maximum and minimum values of a graph parameter, given criteria.

Turán Problem

Forbidden:
Graph Saturation
Introduction to Graph Saturation

Turán: Maximum number of edges in a graph with no forbidden subgraph.
Turán: Maximum number of edges in a graph with no forbidden subgraph.
Turán: Maximum number of edges in a graph with no forbidden subgraph.
Extra property:
Turán: Maximum number of edges in a graph with no forbidden subgraph. Extra property:
Turán: Maximum number of edges in a graph with no forbidden subgraph. Extra property:
Turán: Maximum number of edges in a graph with no forbidden subgraph. Extra property: adding any edge results in a forbidden subgraph.
Turán: Maximum number of edges in a graph with no forbidden subgraph. Extra property: adding any edge results in a forbidden subgraph

Graph Saturation

A graph G is H-saturated if G contains no forbidden H subgraph, but adding any edge to G gives rise to an H subgraph.
Easy Question

What is the \textit{minimum} number of edges in a graph G with no forbidden subgraph H?
Easy Question

What is the *minimum* number of edges in a graph G with no forbidden subgraph H?

Interesting Question: Saturation Number (Erdős-Hajnal-Moon)

What is the minimum number of edges in a graph G that is H-saturated?
Easy Question

What is the *minimum* number of edges in a graph G with no forbidden subgraph H?

Interesting Question: Saturation Number (Erdős-Hajnal-Moon)

What is the minimum number of edges in a graph G that is H-saturated?
Easy Question
What is the *minimum* number of edges in a graph G with no forbidden subgraph H?

Interesting Question: Saturation Number (Erdős-Hajnal-Moon)
What is the minimum number of edges in a graph G that is H-saturated?
Easy Question

What is the minimum number of edges in a graph G with no forbidden subgraph H?

Interesting Question: Saturation Number (Erdős-Hajnal-Moon)

What is the minimum number of edges in a graph G that is H-saturated?

 Forbidden
Edge-Colored Graph Saturation
Edge-Colored Saturation

A graph G is saturated with respect to forbidden subgraphs H_1, \ldots, H_k if:

(i) there exists a k-coloring with no H_i in color i, and
(ii) G is edge-maximal with respect to this property.
A graph G is saturated with respect to forbidden subgraphs H_1, \ldots, H_k if:

(i) there exists a k-coloring with no H_i in color i, and

(ii) G is edge-maximal with respect to this property

Forbidden in Red

Forbidden in Blue
Edge-Colored Saturation

A graph G is saturated with respect to forbidden subgraphs H_1, \ldots, H_k if:

(i) there exists a k-coloring with no H_i in color i, and
(ii) G is edge-maximal with respect to this property.

Forbidden in Red

Forbidden in Blue
Edge-Colored Graph Saturation

A graph G is saturated with respect to forbidden subgraphs H_1, \ldots, H_k if:

(i) there exists a k-coloring with no H_i in color i, and

(ii) G is edge-maximal with respect to this property.

Forbidden in Red

Forbidden in Blue

(ii)
Edge-Colored Saturation

A graph G is saturated with respect to forbidden subgraphs H_1, \ldots, H_k if:

(i) there exists a k-coloring with no H_i in color i, and

(ii) G is edge-maximal with respect to this property.
Edge-Colored Graph Saturation

A graph G is saturated with respect to forbidden subgraphs H_1, \ldots, H_k if:

(i) there exists a k-coloring with no H_i in color i, and
(ii) G is edge-maximal with respect to this property.

Forbidden in Red

Forbidden in Blue
Edge-Colored Saturation

A graph G is saturated with respect to forbidden subgraphs H_1, \ldots, H_k if:

(i) there exists a k-coloring with no H_i in color i, and

(ii) G is edge-maximal with respect to this property

Forbidden in Red

Forbidden in Blue
Edge-Colored Saturation

A graph G is saturated with respect to forbidden subgraphs H_1, \ldots, H_k if:

(i) there exists a k-coloring with no H_i in color i, and

(ii) G is edge-maximal with respect to this property.

Forbidden in Red

Forbidden in Blue
A graph G is saturated with respect to forbidden subgraphs H_1, \ldots, H_k if:

(i) there exists a k-coloring with no H_i in color i, and

(ii) G is edge-maximal with respect to this property.

Ferrara-Kim-Y, 2014

Iterated Recoloring: method for using results about (uncolored) graph saturation to illuminate problems in edge-colored graph saturation.
Edge-Colored Saturation

A graph G is saturated with respect to forbidden subgraphs H_1, \ldots, H_k if:

(i) there exists a k-coloring with no H_i in color i, and

(ii) G is edge-maximal with respect to this property

Ferrara-Kim-Y, 2014

Iterated Recoloring: method for using results about (uncolored) graph saturation to illuminate problems in edge-colored graph saturation.

Future Research

- Hanson-Toft Conjecture: determine edge-colored saturation number for complete graphs
- Broader application of Iterated Recoloring
Induced Saturation
Induced Saturation

Induced Subgraph

A graph H is an *induced subgraph* of a graph G if H can be obtained from G by deleting vertices.
Induced Subgraph

A graph H is an *induced subgraph* of a graph G if H can be obtained from G by deleting vertices.
Induced Subgraph

A graph H is an *induced subgraph* of a graph G if H can be obtained from G by deleting vertices.
A graph H is an *induced subgraph* of a graph G if H can be obtained from G by deleting vertices.
A graph H is an *induced subgraph* of a graph G if H can be obtained from G by deleting vertices.
Induced Subgraph

A graph H is an *induced subgraph* of a graph G if H can be obtained from G by deleting vertices.
Induced Subgraph

A graph H is an *induced subgraph* of a graph G if H can be obtained from G by deleting vertices.
Induced Subgraph

A graph H is an *induced subgraph* of a graph G if H can be obtained from G by deleting vertices.
Induced Subgraph

A graph H is an *induced subgraph* of a graph G if H can be obtained from G by deleting vertices.
Induced Subgraph

A graph H is an \textit{induced subgraph} of a graph G if H can be obtained from G by deleting vertices.
Induced Subgraph

A graph H is an *induced subgraph* of a graph G if H can be obtained from G by deleting vertices.
Induced Subgraph

A graph H is an *induced subgraph* of a graph G if H can be obtained from G by deleting vertices.
Induced Saturation

Induced Subgraph

A graph H is an *induced subgraph* of a graph G if H can be obtained from G by deleting vertices.
Induced Subgraph

A graph H is an *induced subgraph* of a graph G if H can be obtained from G by deleting vertices.
Induced Subgraph

A graph \(H \) is an \textit{induced subgraph} of a graph \(G \) if \(H \) can be obtained from \(G \) by deleting vertices.
Induced Saturation

Idea for Induced Saturation:

Adding *or deleting* any edge produces a forbidden induced subgraph.
Idea for Induced Saturation:
Adding *or deleting* any edge produces a forbidden induced subgraph.

Forbidden
Induced Saturation

Idea for Induced Saturation:
Adding *or deleting* any edge produces a forbidden induced subgraph.

Forbidden
Idea for Induced Saturation:

Adding *or deleting* any edge produces a forbidden induced subgraph.
Idea for Induced Saturation:

Adding \textit{or deleting} any edge produces a forbidden induced subgraph.

Forbidden

E. Yeager (yeager2@illinois.edu)
Idea for Induced Saturation:

Adding *or deleting* any edge produces a forbidden induced subgraph.
Idea for Induced Saturation:
Adding *or deleting* any edge produces a forbidden induced subgraph.
Idea for Induced Saturation:

Adding *or deleting* any edge produces a forbidden induced subgraph.
Idea for Induced Saturation:

Adding *or deleting* any edge produces a forbidden induced subgraph.
Induced Saturation

Idea for Induced Saturation:
Adding *or deleting* any edge produces a forbidden induced subgraph.

Forbidden

Warning: not defined for all forbidden subgraphs!
Idea for Induced Saturation:
Adding *or deleting* any edge produces a forbidden induced subgraph.

Warning: not defined for all forbidden subgraphs!
Martin-Smith
Definition that works for all forbidden subgraphs. (technical)
Induced Saturation

Martin-Smith
Definition that works for all forbidden subgraphs. (technical)

- A large number of common families fit into the simpler definition

- paw
- stars
- odd cycles
- matchings
Induced Saturation

Martin-Smith
Definition that works for all forbidden subgraphs. (technical)

- A large number of common families fit into the simpler definition
- Using simpler definition, minimize number of edges
Induced Saturation

Martin-Smith

Definition that works for all forbidden subgraphs. (technical)

Behrens-Erbes-Santana-Yager-Y, 2015+

- A large number of common families fit into the simpler definition
- Using simpler definition, minimize number of edges

Future Research

- Characterize when simple definition suffices
Induced Saturation

Martin-Smith
Definition that works for all forbidden subgraphs. (technical)

- A large number of common families fit into the simpler definition
- Using simpler definition, minimize number of edges

Future Research
- Characterize when simple definition suffices
- Determine “minimum number of edges” for specific graphs, families

E. Yeager (yeager2@illinois.edu) Extremal Problems 09 February 2015 12/32
Induced Saturation

Martin-Smith
Definition that works for all forbidden subgraphs. (technical)

- A large number of common families fit into the simpler definition
- Using simpler definition, minimize number of edges

Future Research
- Characterize when simple definition suffices
- Determine “minimum number of edges” for specific graphs, families
- Martin-Smith Definition: find examples of non-monotonicity
Cycles
Cycles

Forest: acyclic graph
Tree: connected acyclic graph

Degree of a vertex, \(d(v) \): number of edges attached to \(v \).

Minimum degree of a graph \(G \): \(\delta(G) \).
Cycles

Cycle

Forest: acyclic graph
Tree: connected acyclic graph

Degree of a vertex, \(d(v) \): number of edges attached to \(v \).

Minimum degree of a graph \(G \): \(\delta(G) \).
Cycles

Cycle

Forest: acyclic graph

Tree: connected acyclic graph
Cycles

Cycle

Forest: acyclic graph
Tree: connected acyclic graph
Cycles

- Cycle
- Forest: acyclic graph
- Tree: connected acyclic graph

Degree of a vertex, \(d(v)\): number of edges attached to \(v\).

Minimum degree of a graph \(G\): \(\delta(G)\)
Cycles

Cycle
Forest: acyclic graph
Tree: connected acyclic graph

Degree of a vertex, $d(v)$: number of edges attached to v.

Minimum degree of a graph G, $\delta(G)$.
Cycles

Cycle

Forest: acyclic graph
Tree: connected acyclic graph

Degree of a vertex, \(d(v) \): number of edges attached to \(v \).
Cycles

Cycle

Forest: acyclic graph

Tree: connected acyclic graph

Degree of a vertex, $d(v)$: number of edges attached to v.

Minimum degree of a graph G: $\delta(G)$
Fact

Any graph with minimum degree at least 2 contains a cycle. That is, every forest has minimum degree 1 or 0.

Proof: Suppose a graph has minimum degree at least 2. A cycle exists.
Fact

Any graph with minimum degree at least 2 contains a cycle. That is, every forest has minimum degree 1 or 0.

Proof: Suppose a graph has minimum degree at least 2.
Fact
Any graph with minimum degree at least 2 contains a cycle. That is, every forest has minimum degree 1 or 0.

Proof: Suppose a graph has minimum degree at least 2.

\[\text{Example graph:} \quad \bullet \rightarrow \bullet \]
Fact

Any graph with minimum degree at least 2 contains a cycle. That is, every forest has minimum degree 1 or 0.

Proof : Suppose a graph has minimum degree at least 2.

\begin{center}
\begin{tikzpicture}
 \node (A) at (0,0) [shape=circle,fill] {};
 \node (B) at (1,0) [shape=circle,fill] {};
 \node (C) at (2,0) [shape=circle,fill] {};
 \draw (A) -- (B);
 \draw (B) -- (C);
\end{tikzpicture}
\end{center}
Fact

Any graph with minimum degree at least 2 contains a cycle. That is, every forest has minimum degree 1 or 0.

Proof : Suppose a graph has minimum degree at least 2.

\begin{center}
\begin{tikzpicture}
\node (a) at (0,0) [circle,fill,inner sep=2pt]{};
\node (b) at (1,0) [circle,fill,inner sep=2pt]{};
\node (c) at (2,0) [circle,fill,inner sep=2pt]{};
\node (d) at (3,0) [circle,fill,inner sep=2pt]{};
\draw (a) -- (b);
\draw (b) -- (c);
\draw (c) -- (d);
\end{tikzpicture}
\end{center}
Fact
Any graph with minimum degree at least 2 contains a cycle. That is, every forest has minimum degree 1 or 0.

Proof: Suppose a graph has minimum degree at least 2.

\[\text{Diagram of a cycle} \]
Fact

Any graph with minimum degree at least 2 contains a cycle. That is, every forest has minimum degree 1 or 0.

Proof: Suppose a graph has minimum degree at least 2.
Fact

Any graph with minimum degree at least 2 contains a cycle. That is, every forest has minimum degree 1 or 0.

Proof: Suppose a graph has minimum degree at least 2.
Fact

Any graph with minimum degree at least 2 contains a cycle. That is, every forest has minimum degree 1 or 0.

Proof: Suppose a graph has minimum degree at least 2.
Fact

Any graph with minimum degree at least 2 contains a cycle. That is, every forest has minimum degree 1 or 0.

Proof: Suppose a graph has minimum degree at least 2.

A cycle exists.
Disjoint Cycles and Corrádi-Hajnal

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.
Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

Sharpness:
Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

Sharpness:
Enomoto, Wang

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.
Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

$$
\sigma_2(G) := \min\{d(x) + d(y) : xy \not\in E(G)\}
$$

That is: low-degree vertices are all connected; other vertices have higher degree to compensate
Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

$\sigma_2(G) := \min\{d(x) + d(y) : xy \not\in E(G)\}$

That is: low-degree vertices are all connected; other vertices have higher degree to compensate.

If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.
Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

$\sigma_2(G) := \min \{ d(x) + d(y) : xy \not\in E(G) \}$
That is: low-degree vertices are all connected; other vertices have higher degree to compensate

If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

Implies Corrádi-Hajnal
If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.
If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

Sharpness:
Enomoto, Wang

If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

Sharpness:

$n = 3k$ \hspace{1cm} \alpha(G) > n - 2k$

If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

KKY, 2014+

For $k \geq 4$, if G is a graph on n vertices with $n \geq 3k + 1$ and $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n - 2k$.
For \(k \geq 4 \), if \(G \) is a graph on \(n \) vertices with \(n \geq 3k + 1 \) and \(\sigma_2(G) \geq 4k - 3 \), then \(G \) contains \(k \) disjoint cycles if and only if \(\alpha(G) \leq n - 2k \).
For $k \geq 4$, if G is a graph on n vertices with $n \geq 3k + 1$ and $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n - 2k$.

$$n \geq 3k + 1$$
KKY, 2014+

For $k \geq 4$, if G is a graph on n vertices with $n \geq 3k + 1$ and $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n - 2k$.

$k = 1$:

\[\begin{array}{cc}
\bullet & \bullet \\
\rotatebox{90}{\bullet} & \rotatebox{90}{\bullet} \\
\bullet & \bullet \\
\end{array} \]
For \(k \geq 4 \), if \(G \) is a graph on \(n \) vertices with \(n \geq 3k + 1 \) and \(\sigma_2(G) \geq 4k - 3 \), then \(G \) contains \(k \) disjoint cycles if and only if \(\alpha(G) \leq n - 2k \).
For $k \geq 4$, if G is a graph on n vertices with $n \geq 3k + 1$ and $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n - 2k$.
For $k \geq 4$, if G is a graph on n vertices with $n \geq 3k + 1$ and $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n - 2k$.

$\sigma_2 = 4k - 4$:

K_{2t}
Dirac’s Question
Dirac: $(2k - 1)$-connected without k disjoint cycles

Dirac, 1963

What $(2k - 1)$-connected graphs do not have k disjoint cycles?
Dirac: \((2k - 1)\)-connected without \(k\) disjoint cycles

Dirac, 1963

What \((2k - 1)\)-connected graphs do not have \(k\) disjoint cycles?

Observation:

\(G\) is \((2k - 1)\) connected
Dirac: \((2k - 1)\)-connected without \(k\) disjoint cycles

Dirac, 1963

What \((2k - 1)\)-connected graphs do not have \(k\) disjoint cycles?

\[
\text{Observation:} \quad G \text{ is } (2k - 1) \text{ connected } \Rightarrow \delta(G) \geq 2k - 1
\]
Dirac: \((2k - 1)\)-connected without \(k\) disjoint cycles

Dirac, 1963
What \((2k - 1)\)-connected graphs do not have \(k\) disjoint cycles?

Observation:
\(G\) is \((2k - 1)\) connected \(\Rightarrow \delta(G) \geq 2k - 1 \Rightarrow \sigma_2(G) \geq 4k - 2\)
Dirac: \((2k - 1)\)-connected without \(k\) disjoint cycles

Dirac, 1963

What \((2k - 1)\)-connected graphs do not have \(k\) disjoint cycles?

Observation:

\(G\) is \((2k - 1)\) connected \(\Rightarrow \delta(G) \geq 2k - 1 \Rightarrow \sigma_2(G) \geq 4k - 2\)

KKMY: Holds for \(\sigma_2(G) \geq 4k - 3\)
Dirac: $(2k - 1)$-connected without k disjoint cycles

Dirac, 1963
What $(2k - 1)$-connected graphs do not have k disjoint cycles?

Answer to Dirac’s Question for Simple Graphs
Let $k \geq 2$. Every graph G with (i) $|G| \geq 3k$ and (ii) $\delta(G) \geq 2k - 1$ contains k disjoint cycles if and only if
- if k is odd and $|G| = 3k$, then $G \neq 2K_k \lor \overline{K}_k$, and
- $\alpha(G) \leq |G| - 2k$, and
- if $k = 2$ then G is not a wheel.
Dirac: \((2k - 1)\)-connected without \(k\) disjoint cycles

Dirac, 1963

What \((2k - 1)\)-connected graphs do not have \(k\) disjoint cycles?

Answer to Dirac’s Question for Simple Graphs

Let \(k \geq 2\). Every graph \(G\) with (i) \(|G| \geq 3k\) and (ii) \(\delta(G) \geq 2k - 1\) contains \(k\) disjoint cycles if and only if

- if \(k\) is odd and \(|G| = 3k\), then \(G \neq 2K_k \lor K_k\), and
- \(\alpha(G) \leq |G| - 2k\), and
- if \(k = 2\) then \(G\) is not a wheel.

Further:

characterization for multigraphs
Multigraphs

Simple Graph
Smallest cycle: 3 vertices

Multigraph
Smallest cycle: 1 vertex
Answer to Dirac’s Question for multigraphs: Kierstead-Kostochka-Yeager

Combinatorica, to appear

Let \(k \geq 2 \) and \(n \geq k \). Let \(G \) be an \(n \)-vertex graph with simple degree at least \(2k - 1 \) and no loops. Let \(F \) be the simple graph induced by the strong edges of \(G \), \(\alpha' = \alpha'(F) \), and \(k' = k - \alpha' \). Then \(G \) does not contain \(k \) disjoint cycles if and only if one of the following holds:

- \(n + \alpha' < 3k \);
- \(|F| = 2\alpha' \) (i.e., \(F \) has a perfect matching) and either (i) \(k' \) is odd and \(G - F = Y_{k',k'} \), or (ii) \(k' = 2 < k \) and \(G - F \) is a wheel with 5 spokes;
- \(G \) is extremal and either (i) some big set is not incident to any strong edge, or (ii) for some two distinct big sets \(I_j \) and \(I_{j'} \), all strong edges intersecting \(I_j \cup I_{j'} \) have a common vertex outside of \(I_j \cup I_{j'} \);
- \(n = 2\alpha' + 3k' \), \(k' \) is odd, and \(F \) has a superstar \(S = \{v_0, \ldots, v_s\} \) with center \(v_0 \) such that either (i) \(G - (F - S + v_0) = Y_{k'+1,k'} \), or (ii) \(s = 2 \), \(v_1 v_2 \in E(G) \), \(G - F = Y_{k'-1,k'} \) and \(G \) has no edges between \(\{v_1, v_2\} \) and the set \(X_0 \) in \(G - F \);
- \(k = 2 \) and \(G \) is a wheel, where some spokes could be strong edges;
- \(k' = 2 \), \(|F| = 2\alpha' + 1 = n - 5 \), and \(G - F = C_5 \).
k' odd, F has a perfect matching

Example: $k = 8$, $\alpha' = 3$, $k' = 5$.
Big independent set, incident to no multiple edges

\[2k - 1 \]
Equitable Coloring
Definition

An equitable k-coloring of a graph G is a partition of its vertices into independent sets (called color classes) such that any two color classes differ in size by at most one.
Equitable Coloring

Definition

An equitable k-coloring of a graph G is a partition of its vertices into independent sets (called color classes) such that any two color classes differ in size by at most one.
Equitable Coloring

Definition

An *equitable k-coloring* of a graph G is a partition of its vertices into independent sets (called color classes) such that any two color classes differ in size by at most one.
If \(G \) has \(n = 3k \) vertices, then \(G \) has an equitable \(k \)-coloring if and only if \(\overline{G} \) has \(k \) disjoint cycles (all triangles).
If G has $n = 3k$ vertices, then G has an equitable k-coloring if and only if \overline{G} has k disjoint cycles (all triangles).
Chen-Lih-Wu Conjecture

If \(\chi(G), \Delta(G) \leq k \) and \(K_{k,k} \not\subseteq G \), then \(G \) is equitably \(k \)-colorable.
Ore Conditions

<table>
<thead>
<tr>
<th>Chen-Lih-Wu Conjecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>If $\chi(G), \Delta(G) \leq k$ and $K_{k,k} \not\subseteq G$, then G is equitably k-colorable.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kierstead-Kostochka-Molla-Y, 2014+</th>
</tr>
</thead>
<tbody>
<tr>
<td>If G is a k-colorable $3k$-vertex graph such that for each edge xy, $d(x) + d(y) \leq 2k + 1$, then G is equitably k-colorable, or is one of several exceptions.</td>
</tr>
</tbody>
</table>
Ore Conditions

Chen-Lih-Wu Conjecture

If $\chi(G), \Delta(G) \leq k$ and $K_{k,k} \not\subseteq G$, then G is equitably k-colorable.

Kierstead-Kostochka-Molla-Y, 2014+

If G is a k-colorable $3k$-vertex graph such that for each edge xy, $d(x) + d(y) \leq 2k + 1$, then G is equitably k-colorable, or is one of several exceptions.

Equivalent

If G is a graph on $3k$ vertices with $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles, or is one of several exceptions, or \overline{G} is not k-colorable.
Kierstead-Kostochka-Molla-Y, 2014+

If G is a k-colorable $3k$-vertex graph such that for each edge xy, $d(x) + d(y) \leq 2k + 1$, then G is equitably k-colorable, or is one of several exceptions.

Equivalent

If G is a graph on $3k$ vertices with $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles, or is one of several exceptions, or \overline{G} is not k-colorable.

KKY, 2014+

For $k \geq 4$, if G is a graph on n vertices with $n \geq 3k + 1$ and $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n - 2k$.
Exceptions

- $k = 3$

Equitable coloring:

Cycles:
Exceptions

- **Equitable coloring:**

 ![Equitable Coloring Diagram]

 - c
 - $2k - c$
 - K_k

- **Cycles:**

 ![Cycles Diagram]

 - k
 - k
 - k

E. Yeager (yeager2@illinois.edu)
Exceptions

- Equitable coloring:

- Cycles:
Future Directions

Chorded Cycles

\[\text{Dirac-Erdős} \]

\[
\text{(number of high-degree vertices)} - \text{(number of low-degree vertices)}
\]

Proven: quadratic

Perhaps linear?

\[2^k - 1 \]

E. Yeager (yeager2@illinois.edu)
Future Directions

Chorded Cycles

Dirac-Erdős

(number of high-degree vertices) − (number of low-degree vertices)
Future Directions

Chorded Cycles

Dirac-Erdős

(number of high-degree vertices) − (number of low-degree vertices)
Proven: quadratic
Future Directions

Chorded Cycles

Dirac-Erdős

(number of high-degree vertices) − (number of low-degree vertices)
Proven: quadratic
Perhaps linear?
Thanks for Listening!