Extremal Problems in Disjoint Cycles and Graph Saturation

Elyse Yeager

yeager2@illinois.edu

Final Examination
University of Illinois at Urbana-Champaign

07 April 2015
Section 1

1 Extremal Problems in Disjoint Cycles
 - Background: Corrádi-Hajnal
 - A Refinement of Corrádi-Hajnal
 - Dirac’s Question
 - Equitable Coloring

2 Variations on Graph Saturation
 - Background: Graph Saturation
 - Saturation of Ramsey-Minimal Families
 - Induced Saturation
If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

Conjecture of Erdős
If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

Conjecture of Erdős
Sharpness:
Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

\[\sigma_2(G) := \min \{ d(x) + d(y) : xy \not\in E(G) \} \]
That is: low-degree vertices are all connected; other vertices have higher degree to compensate

If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

Implies Corrádi-Hajnal
If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

Sharpness:

$n = 3k$

$\alpha(G) > n - 2k$
Section 1

1 Extremal Problems in Disjoint Cycles
 - Background: Corrádi-Hajnal
 - A Refinement of Corrádi-Hajnal
 - Dirac’s Question
 - Equitable Coloring

2 Variations on Graph Saturation
 - Background: Graph Saturation
 - Saturation of Ramsey-Minimal Families
 - Induced Saturation
H. A. Kierstead, A. V. Kostochka and Y.,

On the Corrádi-Hajnal Theorem
and a question of Dirac.

submitted
Observation

Any cycle has at least two vertices outside any independent set.

Corollary

Any graph G with k disjoint cycles has $\alpha(G) \leq |G| - 2k$.

If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

Kierstead-Kostochka-Y., 2015+

For $k \geq 4$, if G is a graph on n vertices with $n \geq 3k + 1$ and $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n - 2k$.
For $k \geq 4$, if G is a graph on n vertices with $n \geq 3k + 1$ and $
abla_2(G) \geq 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n - 2k$.
For $k \geq 4$, if G is a graph on n vertices with $n \geq 3k + 1$ and $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n - 2k$.

$n \geq 3k + 1$
For $k \geq 4$, if G is a graph on n vertices with $n \geq 3k + 1$ and $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n - 2k$.

$k = 1$:
For $k \geq 4$, if G is a graph on n vertices with $n \geq 3k + 1$ and $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n - 2k$.

$k = 2$:

\[\begin{align*}
&\quad
\end{align*} \]
For $k \geq 4$, if G is a graph on n vertices with $n \geq 3k + 1$ and $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n - 2k$.

$k = 3$:
For $k \geq 4$, if G is a graph on n vertices with $n \geq 3k + 1$ and $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n - 2k$.

$\sigma_2 = 4k - 4$:

$k + 1$

$k + 3$

$k - 3$

$2r$

$2r - 2$

K_{2t}
Section 1

1. Extremal Problems in Disjoint Cycles
 - Background: Corrádi-Hajnal
 - A Refinement of Corrádi-Hajnal
 - Dirac’s Question
 - Equitable Coloring

2. Variations on Graph Saturation
 - Background: Graph Saturation
 - Saturation of Ramsey-Minimal Families
 - Induced Saturation
H. A. Kierstead, A. V. Kostochka and Y.,

The \((2k - 1)\)-connected graphs with no \(k\) disjoint cycles.

Combinatorica, to appear.
Dirac: \((2k - 1)\)-connected without \(k\) disjoint cycles

Dirac, 1963

What \((2k - 1)\)-connected graphs do not have \(k\) disjoint cycles?

Observation:

\[G \text{ is } (2k - 1) \text{-connected} \Rightarrow \delta(G) \geq 2k - 1 \Rightarrow \sigma_2(G) \geq 4k - 2 \]
Dirac: \((2k - 1)\)-connected without \(k\) disjoint cycles

Dirac, 1963
What \((2k - 1)\)-connected graphs do not have \(k\) disjoint cycles?

\[
G \text{ is } (2k - 1) \text{ connected} \quad \Rightarrow \quad \delta(G) \geq 2k - 1 \quad \Rightarrow \quad \sigma_2(G) \geq 4k - 2
\]

KKMY: Holds for \(\sigma_2(G) \geq 4k - 3\)

\[G \text{ is } (2k - 1) \text{ connected} \quad \Rightarrow \quad \delta(G) \geq 2k - 1 \quad \Rightarrow \quad \sigma_2(G) \geq 4k - 2 \]

KKMY: Holds for \(\sigma_2(G) \geq 4k - 3\)
Dirac: \((2k - 1)\)-connected without \(k\) disjoint cycles

Dirac, 1963
What \((2k - 1)\)-connected graphs do not have \(k\) disjoint cycles?

Answer to Dirac’s Question for Simple Graphs
Let \(k \geq 2\). Every graph \(G\) with (i) \(|G| \geq 3k\) and (ii) \(\delta(G) \geq 2k - 1\) contains \(k\) disjoint cycles if and only if
- if \(k\) is odd and \(|G| = 3k\), then \(G \neq 2K_k \lor \overline{K_k}\), and
- \(\alpha(G) \leq |G| - 2k\), and
- if \(k = 2\) then \(G\) is not a wheel.
Dirac: $(2k - 1)$-connected without k disjoint cycles

Dirac, 1963

What $(2k - 1)$-connected graphs do not have k disjoint cycles?

Answer to Dirac’s Question for Simple Graphs

Let $k \geq 2$. Every graph G with (i) $|G| \geq 3k$ and (ii) $\delta(G) \geq 2k - 1$ contains k disjoint cycles if and only if

- if k is odd and $|G| = 3k$, then $G \neq 2K_k \vee \overline{K}_k$, and
- $\alpha(G) \leq |G| - 2k$, and
- if $k = 2$ then G is not a wheel.

Further:

coloration for multigraphs
Multigraph Corrádi-Hajnal

The **simple degree** of a vertex is the number of its (distinct) neighbors.

Theorem (Extension of Corrádi-Hajnal to Multigraphs)

For $k \in \mathbb{Z}^+$, let G be a multigraph with simple degree at least $2k$. Then G has k disjoint cycles if and only if

$$|V(G)| \geq 3k - 2\ell - \alpha'$$

where $3k - 2\ell - \alpha'$ is the trivially necessary number of vertices.

Corollary

Let G be a multigraph with simple degree at least $2k - 1$ for some integer $k \geq 2$. Suppose G contains at least one loop. Then G has k disjoint cycles if and only if

$$|V(G)| \geq 3k - 2\ell - \alpha'.$$
Multiple edges have a perfect matching

Example: $k = 8$
Big independent set, incident to no multiple edges

Example: $k = 4$

$$2k - 1$$
Wheel, with possibly some spokes multiple

Example: $k = 2$
Section 1

1 Extremal Problems in Disjoint Cycles
- Background: Corrádi-Hajnal
- A Refinement of Corrádi-Hajnal
- Dirac’s Question
- Equitable Coloring

2 Variations on Graph Saturation
- Background: Graph Saturation
- Saturation of Ramsey-Minimal Families
- Induced Saturation
H. A. Kierstead, A. V. Kostochka, T. N. Molla, and Y.,
Sharpening an Ore-type version of the Corrádi-Hajnal Theorem.

in preparation
Definition

An equitable k-coloring of a graph G is a partition of its vertices into independent sets (called color classes) such that any two color classes differ in size by at most one.
Equitable Coloring

Definition

An equitable k-coloring of a graph G is a partition of its vertices into independent sets (called color classes) such that any two color classes differ in size by at most one.
Definition

An equitable \(k \)-coloring of a graph \(G \) is a partition of its vertices into independent sets (called color classes) such that any two color classes differ in size by at most one.
If G has $n = 3k$ vertices, then G has an equitable k-coloring if and only if \bar{G} has k disjoint cycles (all triangles).
Equitable Coloring and Cycles

\[n = 3k \]

If \(G \) has \(n = 3k \) vertices, then \(G \) has an equitable \(k \)-coloring if and only if \(\overline{G} \) has \(k \) disjoint cycles (all triangles).
Ore Conditions

Chen-Lih-Wu Conjecture

If $\chi(G), \Delta(G) \leq k$ and $K_{k,k} \not\subseteq G$, then G is equitably k-colorable.
Ore Conditions

Chen-Lih-Wu Conjecture

If $\chi(G), \Delta(G) \leq k$ and $K_{k,k} \not\subseteq G$, then G is equitably k-colorable.

Kierstead-Kostochka-Molla-Y, 2015+

If G is a k-colorable $3k$-vertex graph such that for each edge xy, $d(x) + d(y) \leq 2k + 1$, then G is equitably k-colorable, or is one of several exceptions.
Chen-Lih-Wu Conjecture
If $\chi(G), \Delta(G) \leq k$ and $K_{k,k} \not\subseteq G$, then G is equitably k-colorable.

Kierstead-Kostochka-Molla-Y, 2015+
If G is a k-colorable $3k$-vertex graph such that for each edge xy, $d(x) + d(y) \leq 2k + 1$, then G is equitably k-colorable, or is one of several exceptions.

Equivalent
If G is a graph on $3k$ vertices with $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles, or is one of several exceptions, or \overline{G} is not k-colorable.
Kierstead-Kostochka-Molla-Y, 2015+

If G is a k-colorable $3k$-vertex graph such that for each edge xy, $d(x) + d(y) \leq 2k + 1$, then G is equitably k-colorable, or is one of several exceptions.

Equivalent

If G is a graph on $3k$ vertices with $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles, or is one of several exceptions, or \bar{G} is not k-colorable.

Kierstead-Kostochka-Y, 2015+

For $k \geq 4$, if G is a graph on n vertices with $n \geq 3k + 1$ and $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n - 2k$.
Exceptions

- $k = 3$

Equitable coloring:

Cycles:
Exceptions

- **Equitable coloring:**

 \[c \]

 \[2k - c \]

 \[K_k \]

- **Cycles:**

 \[k \]

 \[k \]
Exceptions

- **Equitable coloring:**

 ![Equitable coloring diagram]

 $2k$ K_{k-1}

- **Cycles:**

 ![Cycles diagram]

 K_{2k} $k-1$
Section 2

1 Extremal Problems in Disjoint Cycles
- Background: Corrádi-Hajnal
- A Refinement of Corrádi-Hajnal
- Dirac’s Question
- Equitable Coloring

2 Variations on Graph Saturation
- Background: Graph Saturation
- Saturation of Ramsey-Minimal Families
- Induced Saturation
Introduction to Graph Saturation

Turán: Maximum number of edges in a graph with no forbidden subgraph.

Forbidden:
Introduction to Graph Saturation

Turán: Maximum number of edges in a graph with no forbidden subgraph. Extra property:
Introduction to Graph Saturation

Turán: Maximum number of edges in a graph with no forbidden subgraph. Extra property:
Introduction to Graph Saturation

Turán: Maximum number of edges in a graph with no forbidden subgraph. Extra property:
Turán: Maximum number of edges in a graph with no forbidden subgraph. Extra property: adding any edge results in a forbidden subgraph.
Introduction to Graph Saturation

Turán: Maximum number of edges in a graph with no forbidden subgraph. Extra property: adding any edge results in a forbidden subgraph.

Graph Saturation

A graph G is H-saturated if G contains no forbidden H subgraph, but adding any edge to G gives rise to an H subgraph.
Easy Question

What is the *minimum* number of edges in a graph G with no forbidden subgraph H?
Saturation Number

Easy Question
What is the *minimum* number of edges in a graph \(G \) with no forbidden subgraph \(H \)?

Interesting Question: Saturation Number (Erdős-Hajnal-Moon)
What is the minimum number of edges in a graph \(G \) that is \(H \)-saturated?
Saturation Number

Easy Question
What is the *minimum* number of edges in a graph G with no forbidden subgraph H?

Interesting Question: Saturation Number (Erdős-Hajnal-Moon)
What is the minimum number of edges in a graph G that is H-saturated?
Easy Question

What is the \textit{minimum} number of edges in a graph G with no forbidden subgraph H?

Interesting Question: Saturation Number (Erdős-Hajnal-Moon)

What is the minimum number of edges in a graph G that is H-saturated?
Saturation Number

Easy Question
What is the \textit{minimum} number of edges in a graph G with no forbidden subgraph H?

Interesting Question: Saturation Number (Erdős-Hajnal-Moon)
What is the minimum number of edges in a graph G that is H-saturated?

Forbidden

E. Yeager (yeager2@illinois.edu)
Extremal Problems
07 April 2015
Section 2

1. Extremal Problems in Disjoint Cycles
 - Background: Corrádi-Hajnal
 - A Refinement of Corrádi-Hajnal
 - Dirac’s Question
 - Equitable Coloring

2. Variations on Graph Saturation
 - Background: Graph Saturation
 - Saturation of Ramsey-Minimal Families
 - Induced Saturation
M. Ferrara, J. Kim, and Y.,
Ramsey-minimal saturation numbers for matchings.
A graph G is saturated with respect to forbidden subgraphs H_1, \ldots, H_k if:

(i) there exists a k-coloring with no H_i in color i, and

(ii) G is edge-maximal with respect to this property.
Edge-Colored Graph Saturation

A graph G is saturated with respect to forbidden subgraphs H_1, \ldots, H_k if:

(i) there exists a k-coloring with no H_i in color i, and

(ii) G is edge-maximal with respect to this property.

Forbidden in Red

Forbidden in Blue

(i)
A graph G is saturated with respect to forbidden subgraphs H_1, \ldots, H_k if:

(i) there exists a k-coloring with no H_i in color i, and
(ii) G is edge-maximal with respect to this property.
A graph G is saturated with respect to forbidden subgraphs H_1, \ldots, H_k if:

(i) there exists a k-coloring with no H_i in color i, and

(ii) G is edge-maximal with respect to this property.

Forbidden in Red

Forbidden in Blue
A graph G is saturated with respect to forbidden subgraphs H_1, \ldots, H_k if:

(i) there exists a k-coloring with no H_i in color i, and
(ii) G is edge-maximal with respect to this property.
A graph G is saturated with respect to forbidden subgraphs H_1, \ldots, H_k if:

(i) there exists a k-coloring with no H_i in color i, and
(ii) G is edge-maximal with respect to this property.
A graph G is saturated with respect to forbidden subgraphs H_1, \ldots, H_k if:

(i) there exists a k-coloring with no H_i in color i, and

(ii) G is edge-maximal with respect to this property.
A graph G is saturated with respect to forbidden subgraphs H_1, \ldots, H_k if:

(i) there exists a k-coloring with no H_i in color i, and

(ii) G is edge-maximal with respect to this property.
Iterated Recoloring: method for using results about (uncolored) graph saturation to illuminate problems in edge-colored graph saturation.

Forbidden: H_1, H_2, H_3, H_4
Iterated Recoloring: method for using results about (uncolored) graph saturation to illuminate problems in edge-colored graph saturation.

Forbidden: H_1, H_2, H_3, H_4

G_1 is H_1-saturated
Iterated Recoloring: method for using results about (uncolored) graph saturation to illuminate problems in edge-colored graph saturation.

Forbidden: H_1, H_2, H_3, H_4

G_1 is H_1-saturated
G_2 is H_2-saturated
Iterated Recoloring: method for using results about (uncolored) graph saturation to illuminate problems in edge-colored graph saturation.

Forbidden: H_1, H_2, H_3, H_4

G_1 is H_1-saturated

G_2 is H_2-saturated

G_3 is H_3-saturated
Iterated Recoloring: method for using results about (uncolored) graph saturation to illuminate problems in edge-colored graph saturation.

Forbidden: \(H_1, H_2, H_3, H_4 \)

- \(G_1 \) is \(H_1 \)-saturated
- \(G_2 \) is \(H_2 \)-saturated
- \(G_3 \) is \(H_3 \)-saturated
- \(G_4 \) is \(H_4 \)-saturated
Iterated Recoloring: method for using results about (uncolored) graph saturation to illuminate problems in edge-colored graph saturation.

Forbidden: H_1, H_2, H_3, H_4

G_1 is H_1-saturated
G_2 is H_2-saturated
G_3 is H_3-saturated
G_4 is H_4-saturated
Iterated Recoloring: method for using results about (uncolored) graph saturation to illuminate problems in edge-colored graph saturation.

Matchings, Ferrara-Kim-Y

If $m_1, \ldots, m_k \geq 1$ and $n > 3(m_1 + \ldots + m_k - k)$, then

$$\text{sat}(n, \mathcal{R}_{\text{min}}(m_1K_2, \ldots, m_kK_2)) = 3(m_1 + \ldots + m_k - k).$$
1 Extremal Problems in Disjoint Cycles
- Background: Corrádi-Hajnal
- A Refinement of Corrádi-Hajnal
- Dirac’s Question
- Equitable Coloring

2 Variations on Graph Saturation
- Background: Graph Saturation
- Saturation of Ramsey-Minimal Families
- Induced Saturation
S. Behrens, C. Erbes, M. Santana, D. Yager, Y.

Graphs with induced-saturation number zero.

submitted
Induced Saturation

Idea for Induced Saturation:
Adding *or deleting* any edge produces a forbidden induced subgraph.
Idea for Induced Saturation:
Adding *or deleting* any edge produces a forbidden induced subgraph.
Idea for Induced Saturation:

Adding *or deleting* any edge produces a forbidden induced subgraph.
Idea for Induced Saturation:

Adding *or deleting* any edge produces a forbidden induced subgraph.

Forbidden

E. Yeager (yeager2@illinois.edu) Extremal Problems 07 April 2015 32 / 37
Idea for Induced Saturation:

Adding \textit{or deleting} any edge produces a forbidden induced subgraph.
Induced Saturation

Idea for Induced Saturation:

Adding or deleting any edge produces a forbidden induced subgraph.

Forbidden

E. Yeager (yeager2@illinois.edu) Extremal Problems 07 April 2015 32 / 37
Idea for Induced Saturation:

Adding *or deleting* any edge produces a forbidden induced subgraph.

Forbidden

E. Yeager (yeager2@illinois.edu) Extremal Problems 07 April 2015 32 / 37
Induced Saturation

Idea for Induced Saturation:
Adding *or deleting* any edge produces a forbidden induced subgraph.
Idea for Induced Saturation:

Adding *or deleting* any edge produces a forbidden induced subgraph.
Idea for Induced Saturation:

Adding \textit{or deleting} any edge produces a forbidden induced subgraph.

Forbidden
Induced Saturation

Idea for Induced Saturation:
Adding *or deleting* any edge produces a forbidden induced subgraph.

Warning: not defined for all forbidden subgraphs!

Forbidden
Martin-Smith

Definition that works for all forbidden subgraphs.
Induced Saturation

Martin-Smith
Definition that works for all forbidden subgraphs.

- A large number of common families fit into the simpler definition

- paw
- stars
- odd cycles
- matchings
Induced Saturation

Martin-Smith

Definition that works for all forbidden subgraphs.

Behrens-Erbes-Santana-Yager-Y, 2015+

- A large number of common families fit into the simpler definition
- Using simpler definition, minimize number of edges
Paw

Every component of a paw-induced-saturated graph is a complete multipartite graph.

Forbidden
The icosahedron is C_4-induced saturated.
For all $n \geq 12$, there exists a graph that is a generalized version of an icosahedron that is C_4-induced-saturated.
For $k \geq 3$, the product of (appropriate) cliques is C_{2k-1}-induced-saturated.
Thanks for Listening!