Large Rainbow Matchings in Edge-Colored Graphs

Alexandr Kostochka, Matthew Yancey

May 13, 2011

1Department of Mathematics, University of Illinois, Urbana, IL 61801.
E-mail: yancey1@illinois.edu.
Rainbow Matchings in Graphs

A *rainbow subgraph* of an edge-colored graph is a subgraph whose edges have distinct colors.

\[r = rm(G) = \text{number of edges in largest rainbow matching in } G \]
Rainbow Matchings in Graphs

A *rainbow subgraph* of an edge-colored graph is a subgraph whose edges have distinct colors.

\[r = rm(G) = \text{number of edges in largest rainbow matching in } G \]
A *rainbow subgraph* of an edge-colored graph is a subgraph whose edges have distinct colors.

\[r = rm(G) = \text{number of edges in largest rainbow matching in } G \]
Rainbow Matchings in Graphs

A *rainbow subgraph* of an edge-colored graph is a subgraph whose edges have distinct colors.

\[r = rm(G) = \text{number of edges in largest rainbow matching in } G \]

\[r = 3 \]
Color Degree

For \(v \in V(G) \), \(\hat{d}(v) \) is the number of distinct colors on the edges incident to \(v \).

\[
k = \delta(G) = \min \hat{d}(v)
\]
For $v \in V(G)$, $\hat{d}(v)$ is the number of distinct colors on the edges incident to v.

$k = \hat{\delta}(G) = \min \hat{d}(v)$
For $v \in V(G)$, $\hat{d}(v)$ is the number of distinct colors on the edges incident to v.

$k = \delta(G) = \min\hat{d}(v)$

d(A) = 3, \quad \hat{d}(A) = 2.
For $v \in V(G)$, $\hat{d}(v)$ is the number of distinct colors on the edges incident to v.

$k = \hat{\delta}(G) = \min \hat{d}(v)$

$d(A) = 3$, $\hat{d}(A) = 2$. $d(B) = 4$, $\hat{d}(B) = 3$.
For $v \in V(G)$, $\hat{d}(v)$ is the number of distinct colors on the edges incident to v.

$k = \hat{\delta}(G) = \min \hat{d}(v)$

- $d(A) = 3$, $\hat{d}(A) = 2$.
- $d(B) = 4$, $\hat{d}(B) = 3$.
- $d(C) = 4$, $\hat{d}(C) = 2$.
For $v \in V(G)$, $\hat{d}(v)$ is the number of distinct colors on the edges incident to v.

$k = \delta(G) = \min \hat{d}(v)$

d(A) = 3, \hat{d}(A) = 2. \ d(B) = 4, \hat{d}(B) = 3. \ d(C) = 4, \hat{d}(C) = 2

\[k = 2 \]
For \(v \in V(G) \), \(\hat{d}(v) \) is the number of distinct colors on the edges incident to \(v \).

\[k = \delta(G) = \min \hat{d}(v) \]

\[\begin{align*}
 d(A) &= 3, \quad \hat{d}(A) = 2. \\
 d(B) &= 4, \quad \hat{d}(B) = 3. \\
 d(C) &= 4, \quad \hat{d}(C) = 2
\end{align*} \]

\[k = 2 \]
Early Results

Theorem (Li and Wang, 2008)

\[r \geq \left\lceil \frac{5k-3}{12} \right\rceil. \]

Theorem (Li and Wang, 2008)

For \(k \geq 3 \) and \(G \) bipartite,
\[r \geq \left\lceil \frac{2k}{3} \right\rceil. \]

Conjecture (Li and Wang, 2008)

For \(k \geq 4 \),
\[r \geq \left\lceil \frac{k}{2} \right\rceil. \]
Tight Examples

1. \(k = 3 \), \(r = 1 \)
 - Bipartite

2. \(k = 2 \), \(r = 1 \)
 - \(K_n \)
 - \(k = n - 1 \)
 - \(r = n/2 \) or \((n-1)/2\)
Further Results

Theorem (Li and Xu, 2007)

If G is a properly colored complete graph other than K_4, then

$$r \geq \left\lceil \frac{k}{2} \right\rceil.$$

Theorem (LeSaulnier, Stocker, Wegner, and West, 2010)

$r \geq \left\lfloor \frac{k}{2} \right\rfloor$ and $r \geq \left\lceil \frac{k}{2} \right\rceil$ if any of the following are true

- G is triangle-free
- G is properly colored and $n \neq k + 2$
- $n \geq \frac{3(k-1)}{2}$
Our Results

Theorem (Kostochka and Y, 2011+)

If \(k \geq 4 \), then \(r \geq \left\lceil \frac{k}{2} \right\rceil \)

Theorem (Kostochka and Y, 2011+)

If \(G \) is triangle-free, then \(r \geq \left\lceil \frac{2k}{3} \right\rceil \).
Notation

\[r = \frac{k - 1}{2} \]

\[p = n - k + 1 \]

Edge \(e_i \) has color \(i \)
Let ϕ be an ordering on the vertices such that

$$
\phi(u_1) < \phi(v_1) < \phi(u_2) < \phi(v_2) < \cdots < \phi(u_r) < \phi(v_r)
$$

An important edge, $e = wz$, is an edge with color not in M and with $w \in H$ and $z \in V(M)$ such that $\phi(z)$ is the minimum of all edges incident to w with the same color as wz.
The Inequality

\[
\frac{\text{number of important edges out of } M}{\text{number of important edges out of } H} \geq p(k - r) = (k + 1) \frac{p}{2}
\]

On average the vertices in \(M \) are incident to more than \(\frac{p}{2} \) important edges.
The Inequality

\[\text{number of important edges out of } M = \text{number of important edges out of } H \geq p(k - r) = (k + 1)\frac{p}{2} \]

On average the vertices in \(M \) are incident to more than \(\frac{p}{2} \) important edges.

Lemma (LeSaulnier, Stocker, Wegner, and West, 2010)

Each \(e_i \) is incident to at most \(p + 1 \) important edges. Furthermore, if \(e_i \) is incident to \(p + 1 \) important edges, then \(E_i \) has Configuration A or Configuration B.
The Inequality

\[
\text{number of important edges out of } M \\
= \text{number of important edges out of } H \\
\geq p(k - r) \\
= (k + 1)\frac{p}{2}
\]

On average the vertices in \(M \) are incident to more than \(\frac{p}{2} \) important edges.

Lemma (LeSaulnier, Stocker, Wegner, and West, 2010)

Each \(e_i \) is incident to at most \(p + 1 \) important edges. Furthermore, if \(e_i \) is incident to \(p + 1 \) important edges, then \(E_i \) has Configuration A or Configuration B.
$p + 1$ Configurations

Configuration A

Configuration B

$p = 3$
A special vertex is a vertex v with $d(v) = n - 1$, $\hat{d}(v) = k$, and one color is incident to it $n - k$ times (all other colors are incident to it once).

If E_i has Configuration A then v_i is special.
Special Vertices

A *special vertex* is a vertex v with $d(v) = n - 1$, $\hat{d}(v) = k$, and one color is incident to it $n - k$ times (all other colors are incident to it once).

If E_i has Configuration A then v_i is special.

Let v be a special vertex. The *main color* of v is the color that is repeated on the edges incident to v. A *main edge* of v is an edge incident to v colored the main color of v.
A special vertex is a vertex v with $d(v) = n - 1$, $\hat{d}(v) = k$, and one color is incident to it $n - k$ times (all other colors are incident to it once).

If E_i has Configuration A then v_i is special.

Let v be a special vertex. The main color of v is the color that is repeated on the edges incident to v. A main edge of v is an edge incident to v colored the main color of v.
Main Edges

We will assume that G is a minimal counter-example to the theorem, and that M contains the most main edges out of all maximum rainbow matchings in G.

Lemma

If E_i has Configuration A, then u_i is special with main color i.
Main Edges

We will assume that G is a minimal counter-example to the theorem, and that M contains the most main edges out of all maximum rainbow matchings in G.

Lemma

*If E_i has Configuration A, then u_i is special with main color i.***

Proof.

Suppose not. v_i is special with a main color that is important, so it can not be i. Since u_i is not special with main color i, edge e_i is not a main edge.

Replace e_i with one of the main edges of v_i. This is still a rainbow matching of same size, and now has more main edges, which contradicts our choice of M.
Main Edges

We will assume that G is a minimal counter-example to the theorem, and that M contains the most main edges out of all maximum rainbow matchings in G.

Lemma

If E_i has Configuration A, then u_i is special with main color i.

Proof.

Suppose not. v_i is special with a main color that is important, so it can not be i. Since u_i is not special with main color i, edge e_i is not a main edge.

Replace e_i with one of the main edges of v_i. This is still a rainbow matching of same size, and now has more main edges, which contradicts our choice of M.
The Two Cases

Let a be the number of times Configuration A occurs and b be the number of times Configuration B occurs.

Case 1: $a > 0$ We will assume that E_1 has Configuration A. Consider edges u_1u_i for i such that E_i has Configuration A or B.

We will attempt to replace e_1 and e_i with u_1u_i and important edges of v_1 and v_i to prove that M was not a maximum rainbow matching.
The Two Cases

Let a be the number of times Configuration A occurs and b be the number of times Configuration B occurs.

Case 1: $a > 0$ We will assume that E_1 has Configuration A. Consider edges $u_1 u_i$ for i such that E_i has Configuration A or B.

We will attempt to replace e_1 and e_i with $u_1 u_i$ and important edges of v_1 and v_i to prove that M was not a maximum rainbow matching.
If edge $u_1 u_i$ has color 1, i, or a color not in M, then we generate a contradiction to either the maximality of M or minimality of G.
5-Alternating Path Plus a 2-Alternating Path

If the color of edge u_1u_i matches the color of edge e_h in M.

![Graph diagram]
5-Alternating Path Plus a 2-Alternating Path

If the color of edge u_1u_i matches the color of edge e_h in M.

Try to replace e_1, e_i, and e_h with u_1u_i and important edges adjacent to v_1, v_i, and v_h.
If the color of edge u_1u_i matches the color of edge e_h in M.

Try to replace e_1, e_i, and e_h with u_1u_i and important edges adjacent to v_1, v_i, and v_h.

Conclusion of Case 1

\[
\frac{p \cdot (k + 1)}{2} \leq \text{number of important edges out of } H
\]
\[
= \text{number of important edges out of } M
\]
\[
\leq (a + b)(p + 1) + (a + b - 1)2 + \left(\frac{k - 1}{2} - 2a - 2b + 1\right)p
\]

And Case 1 is done!
We no longer have special vertices to use.

However, we know that $p = 3$.

\[(k - 1) + p = n\]

\[n = k + 2\]
Case 2

We no longer have special vertices to use. However, we know that \(p = 3 \).

\[
(k - 1) + p = n
\]

\[
n = k + 2
\]

Every vertex is adjacent to \(n - 2 \) distinct colors. Every vertex is "like" a special vertex!
We no longer have special vertices to use. However, we know that $p = 3$.

\[(k - 1) + p = n\]
\[n = k + 2\]

Every vertex is adjacent to $n - 2$ distinct colors. Every vertex is "like" a special vertex!
Open Problem

Conjecture (Li and Wang, 2008)

For bipartite graphs, \(r \geq k - 1 \) if \(k \) is even and \(r \geq k \) if \(k \) is odd.

If true, this would be a generalization of H. J. Ryser’s conjecture (1967) for the maximum size of a transversal in a latin square.

