On Vertex-Disjoint Chorded Cycles

Derrek Yager

University of Illinois at Urbana-Champaign

yager2@illinois.edu

September 8, 2018

Slides available at
https://faculty.math.illinois.edu/~yager2/research.html
Alexandr Kostochka
University of Illinois

Gexin Yu
College of William and Mary
Overview

1 Background and Definitions
2 Main Theorem
3 Proof Outline
4 A Proof
5 Future Directions
Notation

- The number of edges from S to T regardless of whether they are vertex sets or subgraphs
 \[||S, T|| = \sum_{s \in V(S)} N_G(s) \cap V(T) \]

- The minimum degree
 \[\delta(G) = \min\{d_G(x) : x \in V(G)\} \]

- The minimum Ore-degree is
 \[\sigma_2(G) = \min\{d_G(x) + d_G(y) : xy \not\in E(G)\} \]
Theorem (Corrádi, Hajnal 1963)

Every simple graph G on $|G| \geq 3k$ vertices with $\delta(G) \geq 2k$ contains k vertex-disjoint cycles.

Every simple graph G on $|G| \geq 3k$ vertices with $\sigma_2(G) \geq 4k - 1$ contains k vertex-disjoint cycles.
Theorem (Corrádi, Hajnal 1963)

Every simple graph G on $|G| \geq 3k$ vertices with $\delta(G) \geq 2k$ contains k vertex-disjoint cycles.
Background

Theorem (Finkel 2008)

Every graph G on $n = |G| \geq 4k$ vertices with $\delta(G) \geq 3k$ contains k disjoint chorded cycles.

Theorem (Chiba, Fujita, Gao, Li 2010)

Every graph G on $n = |G| \geq 4k$ vertices with $\sigma_2(G) \geq 6k - 1$ contains a collection of k disjoint chorded cycles.
Background

Theorem (Molla, Santana, Yeager 2017)

For $k \geq 2$, let G be a graph with $n = |G| \geq 4k$ and $\sigma_2(G) \geq 6k - 2$. Then G does not contain k disjoint chorded cycles if and only if $G \in \{G_1(n, k), G_2(k)\}$, where $G_1(n, k) = K_{3k-1, n-3k+1}$ for $n \geq 6k - 2$ and $G_2(k) = K_{3k-2, 3k-2, 1}$ for $k \geq 2$. \\

$G_1(n, 2)$

$G_2(2)$
The Main Theorem

Theorem (Kostochka, Y, Yu 2018+++)

Let $k \geq 2$, G be an n-vertex graph with $n \geq 4k$ and $\sigma_2(G) \geq 6k - 3$. Then G does not contain k disjoint chorded cycles if and only if G is not an exceptional graph.
The (Simplified) Rules

Choose a collection \mathcal{C} of chorded cycles such that

1. the number of chorded 4-cycles is maximum,
2. subject to the preceding, the number of K_4 is maximum,
3. subject to the preceding, the cycles are small
4. subject to the preceding, the cycles have the maximum number of edges
5. subject to the preceding, the length of a longest path P in $R := V(G) - V(\mathcal{C})$ is maximum. If $|P| = |R|$, then the number of Hamiltonian cycles in $G[R]$ is maximum.
6. subject to the preceding, $|E(G[R])|$ is maximum, and
7. subject to the preceding, $\sum_{v \in R} d_G(v)$ is maximum.
The Rules

1. the number of chorded 4-cycles is maximum,

2. subject to the preceding, the number of K_4 is maximum,

3. subject to the preceding, the k-tuple (C_1, \ldots, C_k) has
 \((|V(C_1)|, \ldots, |V(C_k)|)\) least lexicographically,

4. subject to the preceding tuple,
 \((|E(C_1)|, \ldots, |E(C_k)|)\) is greatest lexicographically,

5. subject to the preceding, the length of a longest path P in
 $R := V(G) - V(C)$ is maximum. If $|P| = |R|$, then the number of
 Hamiltonian cycles in $G[R]$ is maximum, unless $|R| = 4$ in which case
 we prefer the paw $G[R] = K_{1,3}^+$ over $G[R] = C_4$.

6. subject to the preceding, $|E(G[R])|$ is maximum, and

7. subject to the preceding, $\sum_{v \in R} d_G(v)$ is maximum.
Proof Outline

1. \(G[R] \) does not have a Hamiltonian path
2. \(G[R] \) has a Hamiltonian path and \(k \geq 3 \)
3. \(G[R] \) has a Hamiltonian path and \(k = 2 \)
Given a collection of chorded cycles chosen by our rules, if $G[R]$ does not have a Hamiltonian path, then $G[V(P)]$ cannot be a cycle.

- First, we can utilize the fact that for all $z \in R$, $d_R(z) \geq 2$.
- Moreover, for a maximal path $P' \subseteq G[R - P]$, one of the endpoints must have degree 2 in $G[R]$.
A Proof

Claim

Given a collection of chorded cycles chosen by our rules, if $G[R]$ does not have a Hamiltonian path, then $G[V(P)]$ cannot be a cycle.
A Proof

Claim

Given a collection of chorded cycles chosen by our rules, if $G[R]$ does not have a Hamiltonian path, then $G[V(P)]$ cannot be a cycle.

Since $\|W, V(C)\| \geq 2(6k - 3) - 4(2) = 12(k - 1) - 2$, if $|C| < k - 1$, then there exists $C \in C$ such that $\|W, C\| \geq 13$.
A Proof

Claim

Given a collection of chorded cycles chosen by our rules, if $G[R]$ does not have a Hamiltonian path, then $G[V(P)]$ cannot be a cycle.

A contradiction! Therefore, $|C| = k - 1$ and we need only trade one cycle for two in order to reach a contradiction. Also, there exists $C \in C$ such that $\|W, C\| \geq 10$.
Given a collection of chorded cycles chosen by our rules, if $G[R]$ does not have a Hamiltonian path, then $G[V(P)]$ cannot be a cycle.

Since $\|\{w_1, w_q\}, C\| \geq 4$, they must have neighborhoods in different partite sets. In what remains, v_1 and v_2 still have neighbors which are also in different partite sets. Therefore, $C \neq K_{3,3}$.
Claim

Given a collection of chorded cycles chosen by our rules, if $G[R]$ does not have a Hamiltonian path, then $G[V(P)]$ cannot be a cycle.

There exists $x \in V(C)$ such that $N(x) \supseteq \{v_1, v_2\}$. Otherwise, ...
A Proof

Claim

Given a collection of chorded cycles chosen by our rules, if $G[R]$ does not have a Hamiltonian path, then $G[V(P)]$ cannot be a cycle.

Otherwise, there exists a $K_4^- \cong K_4 - e$ contradicting our rules.
A Proof

Claim

Given a collection of chorded cycles chosen by our rules, if $G[R]$ does not have a Hamiltonian path, then $G[V(P)]$ cannot be a cycle.

If w_1 and w_q each have a neighbor in $C - x$, we can construct 2 disjoint chorded cycles.
A Proof

Claim

Given a collection of chorded cycles chosen by our rules, if \(G[R] \) does not have a Hamiltonian path, then \(G[V(P)] \) cannot be a cycle.

\[
||\{v_1, v_2\}, C|| = 6 \\
||\{w_1, w_q\}, C|| = 4
\]

Now, there exists a vertex \(x' \in V(C) - x \) with \(x' \in N(v_1) \cap N(v_2) \) so we can again get 2 disjoint chorded cycles.
Claim

Given a collection of chorded cycles chosen by our rules, if $G[R]$ does not have a Hamiltonian path, then $G[V(P)]$ cannot be a cycle.

This proves the claim.
• Mixed Cycles, currently done for
 • $\delta(G) \geq 2k_{cycle} + 3k_{chorded} - 1$ and
 • $\sigma_2(G) \geq 4k_{cycle} + 6k_{chorded} - 1$
Thank You
Shuya Chiba, Shinya Fujita, Yunshu Gao, and Guojun Li.
On a sharp degree sum condition for disjoint chorded cycles in graphs.

Keresztély Corradi and András Hajnal.
On the maximal number of independent circuits in a graph.

Hikoe Enomoto.
On the existence of disjoint cycles in a graph.

Daniel Finkel.
On the number of independent chorded cycles in a graph.

Theodore Molla, Michael Santana, and Elyse Yeager.
A refinement of theorems on vertex-disjoint chorded cycles.