A List Version of Graph Packing

Derrek Yager

University of Illinois at Urbana-Champaign

yager2@illinois.edu

February 17, 2015
Overview

1. Introduction to Graphs
2. Definitions
3. Previous Results
4. Proof of Sauer and Spencer Result
5. List Packing Definitions
6. List Packing Results
The Königsberg Bridge Problem

Can you start somewhere, traverse every bridge exactly once, and return to the starting point?
Introduction

The Königsberg Bridge Problem

Can you start somewhere, traverse every bridge exactly once, and return to the starting point?
A graph G is comprised of a set of vertices V and a set of edges E, where the edges are 2-element subsets of V.
A graph G is comprised of a set of vertices V and a set of edges E, where the edges are 2-element subsets of V.

$V(G) = \{u, v, x, y\}$

$E(G) = \{xu, uv, vx, xy\}$
Definition

A graph G is comprised of a set of vertices V and a set of edges E, where the edges are 2-element subsets of V.

$d(x) = 3,$
$d(y) = 1,$
$d(u) = d(v) = 2$

$\Delta(G) = 3$
Definitions

Definition

A packing of graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, both on the same number of vertices, is a bijection $f : V_1 \to V_2$ such that $uv \in E_1$ implies $f(u)f(v) \notin E_2$.

Example: $G_1 \cong K_{1,n-2} + K_1$ and $G_2 \cong C_{n-1} + K_1$ pack.
A packing of graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, both on the same number of vertices, is a bijection $f : V_1 \rightarrow V_2$ such that $uv \in E_1$ implies $f(u)f(v) \notin E_2$.

Example: $G_1 \cong K_{1,n-2} + K_1$ and $G_2 \cong C_{n-1} + K_1$ pack.
A packing of graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, both on the same number of vertices, is a bijection $f : V_1 \to V_2$ such that $uv \in E_1$ implies $f(u)f(v) \notin E_2$.

Example: The two graphs G_1 and G_2 do not pack.
A **packing** of graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, both on the same number of vertices, is a bijection $f : V_1 \rightarrow V_2$ such that $uv \in E_1$ implies $f(u)f(v) \notin E_2$.

Example: The two graphs G_1 and G_2 do not pack.
A packing of graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, both on the same number of vertices, is a bijection $f : V_1 \to V_2$ such that $uv \in E_1$ implies $f(u)f(v) \notin E_2$.

Example: The two graphs G_1 and G_2 do not pack.
Definitions

Definition

A packing of graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, both on the same number of vertices, is a bijection $f : V_1 \rightarrow V_2$ such that $uv \in E_1$ implies $f(u)f(v) \notin E_2$.

Example: The two graphs G_1 and G_2 do not pack.
A *packing* of graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, both on the same number of vertices, is a bijection $f : V_1 \rightarrow V_2$ such that $uv \in E_1$ implies $f(u)f(v) \notin E_2$.

Example: The two graphs G_1 and G_2 do not pack.
Definitions

Definition

For any graph G with vertex set V and edge set E, we call \overline{G} the complement of G where $V(\overline{G}) = V(G)$ and $E(\overline{G})$ consists of all edges that were not in G.

Figure: A graph G and its complement \overline{G}
Definitions

Definition

For any graph G with vertex set V and edge set E, we call \overline{G} the complement of G where $V(\overline{G}) = V(G)$ and $E(\overline{G})$ consists of all edges that were not in G.

Figure: A packing of G and \overline{G}
Figure: Two graphs G_1 and G_2 that pack
Induction fails?

Figure: Two graphs G_1 and G_2 that pack
Induction fails?

Figure: Two new graphs G_1 and G_2 that do not pack
Induction fails?

Figure: Two new graphs G_1 and G_2 that do not pack.
Theorem (Sauer, Spencer 1978)

Let G_1 and G_2 be two graphs of order n. If $\Delta(G_1)\Delta(G_2) < \frac{n}{2}$, then G_1 and G_2 pack.
Previous Results and Extensions

Theorem (Sauer, Spencer 1978)

Let G_1 and G_2 be two graphs of order n. If $\Delta(G_1)\Delta(G_2) < \frac{n}{2}$, then G_1 and G_2 pack.

Theorem (Kaul, Kostochka 2007)

Let $\Delta(G_1)\Delta(G_2) \leq \frac{n}{2}$. G_1 and G_2 do not pack if and only if one of G_1 and G_2 is a perfect matching and the other is either $K_{\frac{n}{2}, \frac{n}{2}}$ with $\frac{n}{2}$ odd or contains $K_{\frac{n}{2}+1}$.
Theorem (Sauer, Spencer 1978)

Let G_1 and G_2 be two graphs on n vertices. If $\Delta(G_1)\Delta(G_2) < \frac{n}{2}$, then G_1 and G_2 pack.

1) Suppose we consider a best mapping that minimizes the number of conflicts, and suppose for contradiction that this number is not zero.
Theorem (Sauer, Spencer 1978)

Let G_1 and G_2 be two graphs on n vertices. If $\Delta(G_1) \Delta(G_2) < \frac{n}{2}$, then G_1 and G_2 pack.

2) Then, we want to reposition the blue graph on top of the red graph so that there are no new conflicts and no conflicts at our focal point.
Theorem (Sauer, Spencer 1978)

Let G_1 and G_2 be two graphs on n vertices. If $\Delta(G_1)\Delta(G_2) < \frac{n}{2}$, then G_1 and G_2 pack.

3) Bad “swaps”

- a with b_1; conflict edge remains
Theorem (Sauer, Spencer 1978)

Let \(G_1 \) and \(G_2 \) be two graphs on \(n \) vertices. If \(\Delta(G_1)\Delta(G_2) < \frac{n}{2} \), then \(G_1 \) and \(G_2 \) pack.

3) Bad “swaps”

- \(a \) with \(b_1 \); conflict edge remains
Sketch of Proof

Theorem (Sauer, Spencer 1978)

Let G_1 and G_2 be two graphs on n vertices. If $\Delta(G_1)\Delta(G_2) < \frac{n}{2}$, then G_1 and G_2 pack.

3) Bad “swaps”

- a with b_1; conflict edge remains
- a with b_2 or b_3; blue edge moves onto red edge thus creating a new conflict

Are these the only problems?
Theorem (Sauer, Spencer 1978)

Let G_1 and G_2 be two graphs on n vertices. If $\Delta(G_1) \Delta(G_2) < \frac{n}{2}$, then G_1 and G_2 pack.

3) Bad “swaps”

- a with b_1; conflict edge remains
- a with b_2 or b_3; blue edge moves onto red edge thus creating a new conflict

Are these the only problems?
Sketch of Proof

Theorem (Sauer, Spencer 1978)

Let G_1 and G_2 be two graphs on n vertices. If $\Delta(G_1)\Delta(G_2) < \frac{n}{2}$, then G_1 and G_2 pack.

3) Bad “swaps”

- a with b_1; conflict edge remains
- a with b_2 or b_3; blue edge moves onto red edge thus creating a new conflict

Are these the only problems?
Theorem (Sauer, Spencer 1978)

Let G_1 and G_2 be two graphs on n vertices. If $\Delta(G_1) \Delta(G_2) < \frac{n}{2}$, then G_1 and G_2 pack.

3) Bad “swaps”

- a with b_1; conflict edge remains
- a with b_2 or b_3; blue edge moves onto red edge thus creating a new conflict

Are these the only problems?
Theorem (Sauer, Spencer 1978)

Let G_1 and G_2 be two graphs on n vertices. If $\Delta(G_1)\Delta(G_2) < \frac{n}{2}$, then G_1 and G_2 pack.

3) Bad “swaps”
- a with b_1; conflict edge remains
- a with b_2 or b_3; blue edge moves onto red edge thus creating a new conflict

Are these the only problems?
Theorem (Sauer, Spencer 1978)

Let G_1 and G_2 be two graphs on n vertices. If $\Delta(G_1)\Delta(G_2) < \frac{n}{2}$, then G_1 and G_2 pack.

4) How many bad "swaps"?

<table>
<thead>
<tr>
<th>Type of Swap</th>
<th>Maximum Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>a with b_1</td>
<td>t</td>
</tr>
<tr>
<td>a with b_2</td>
<td>$\Delta(G_1)\Delta(G_2) - t$</td>
</tr>
<tr>
<td>a with b_3</td>
<td>$\Delta(G_2)\Delta(G_1) - t$</td>
</tr>
<tr>
<td>any bad</td>
<td>$t + 2[\Delta(G_1)\Delta(G_2) - t]$</td>
</tr>
</tbody>
</table>
Theorem (Sauer, Spencer 1978)

Let G_1 and G_2 be two graphs on n vertices. If $\Delta(G_1)\Delta(G_2) < \frac{n}{2}$, then G_1 and G_2 pack.

5) Thus, our desired vertex b is available as long as

$$t + 2[\Delta(G_1)\Delta(G_2) - t] < n - 1$$

or equivalently

$$2\Delta(G_1)\Delta(G_2) - t < n - 1$$
Theorem (Sauer, Spencer 1978)

Let G_1 and G_2 be two graphs on n vertices. If $\Delta(G_1) \Delta(G_2) < \frac{n}{2}$, then G_1 and G_2 pack.
Theorem (Sauer, Spencer 1978)

Let G_1 and G_2 be two graphs of order n. If $|E_1| + |E_2| \leq \frac{3}{2} n - 2$, then G_1 and G_2 pack.

Sharpness Example:
Definition

A graph triple $G = (G_1, G_2, G_3)$, of size n, consists of a pair of n-vertex graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ together with a bipartite graph $G_3 = (V_1 \cup V_2, E_3)$.

Example: $G_1 \cong K_{1,n-2}$, $G_2 \cong C_{n-1} \cup K_1$, $G_3 \cong 4K_2$
Definition

A list packing of the graph triple G is a bijection $f : V_1 \rightarrow V_2$ such that $uv \in E_1$ implies $f(u)f(v) \notin E_2$ and $v \in V_1$ implies $vf(v) \notin E_3$. Observe that the newly introduced set of edges basically represent forbidden mappings.

Example 1: This graph triple can pack.
A *list packing* of the graph triple G is a bijection $f : V_1 \to V_2$ such that $uv \in E_1$ implies $f(u)f(v) \notin E_2$ and $v \in V_1$ implies $vf(v) \notin E_3$. Observe that the newly introduced set of edges basically represent forbidden mappings.

Example 1: This graph triple can pack.
Definition

A list packing of the graph triple G is a bijection $f : V_1 \rightarrow V_2$ such that $uv \in E_1$ implies $f(u)f(v) \notin E_2$ and $v \in V_1$ implies $vf(v) \notin E_3$. Observe that the newly introduced set of edges basically represent forbidden mappings.

Example 2: This graph triple does not pack.
Definition

A list packing of the graph triple G is a bijection $f : V_1 \to V_2$ such that $uv \in E_1$ implies $f(u)f(v) \notin E_2$ and $v \in V_1$ implies $vf(v) \notin E_3$. Observe that the newly introduced set of edges basically represent forbidden mappings.

Example 2: This graph triple does not pack.
A list packing of the graph triple G is a bijection $f : V_1 \rightarrow V_2$ such that $uv \in E_1$ implies $f(u)f(v) \notin E_2$ and $v \in V_1$ implies $vf(v) \notin E_3$.
Observation

With list packing, we still have the same problems with induction, but we can fix them with a minor adjustment.
Observation

With list packing, we still have the same problems with induction, but we can fix them with a minor adjustment.
Observation

With list packing, we still have the same problems with induction, but we can fix them with a minor adjustment.
With list packing, we still have the same problems with induction, but we can fix them with a minor adjustment.

Now, we can ask if this packs. But how did the number of edges change? And the maximum degrees?
A fixed-point free embedding is a packing of G and \overline{G} such that for each $v \in V$, $f(v) \neq v$.

Fixed-point free embedding:
Theorem (Győri, Kostochka, McConvey, Y 2015+)

Let $G = (G_1, G_2, G_3)$ be a graph triple of size n with $\Delta_1 \Delta_2 + \Delta_3 \leq \frac{n}{2}$. Then G does not pack if and only if $\Delta_3 = 0$ and one of G_1 and G_2 is a perfect matching and the other is either $K_{\frac{n}{2}, \frac{n}{2}}$ with $\frac{n}{2}$ odd or contains $K_{\frac{n}{2}+1}$.

Theorem (Győri, Kostochka, McConvey, Y 2015+)

Let $G = (G_1, G_2, G_3)$ be a graph triple of size n. If $|E_1| + |E_2| + |E_3| \leq \frac{3}{2} n - 2$, then G packs.
Theorem (Bollobás, Eldridge 1978)

If $\Delta_1, \Delta_2 \leq n - 2, |E_1| + |E_2| \leq 2n - 3,$ and $\{G_1, G_2\}$ is not one of the 7 pairs shown below, then G_1 and G_2 pack.
Theorem (Győri, Kostochka, McConvey, Y 2015+)

Let $G = (G_1, G_2, G_3)$ be a graph triple of size n. If $\Delta_1, \Delta_2 \leq n - 2$, $\Delta_3 \leq n - 1$, and $|E_1| + |E_2| + |E_3| \leq 2n - 3$, and $\{G_1, G_2\}$ is not one of the Bollobás-Eldridge pairs. Then either G packs or is one of the same 7 examples.

The result is sharp:
A Conjecture of Zâk

Theorem (Zâk 2014)

Let G_1 and G_2 be graphs on n vertices with $\Delta_1, \Delta_2 \leq n - 2$. If $|E_1| + |E_2| + \Delta_1 + \Delta_2 \leq 3n - 68n^{3/4} - 62$, then G_1 and G_2 pack.

Conjecture (Zâk 2014)

Let G_1 and G_2 be graphs on n vertices with $\Delta_1, \Delta_2 \leq n - 2$. If $|E_1| + |E_2| + \Delta_1 + \Delta_2 \leq 3n - 3$, then G_1 and G_2 pack.
Zák's conjecture false for small n:

$$|E_1| + |E_2| + \Delta_1 + \Delta_2 = 3n - 5$$

For large n, conjecture is best possible:

$$|E_1| + |E_2| + \Delta_1 + \Delta_2 = 3n - 2$$
Main Result

Theorem (Győri, Kostochka, McConvey, Y 2015+)

Let $G = (G_1, G_2, G_3)$ be a graph triple of size n with $\Delta_1, \Delta_2 \leq n - 2$ and $\Delta_3 \leq n - 1$. There is an absolute constant C such that if $|E_1| + |E_2| + |E_3| + D_1 + D_2 \leq 3n - C$, then G packs.

Our current proof gives $C = 418275$.

Corollary

Let G_1 and G_2 be a graphs of order n with $\Delta_1, \Delta_2 \leq n - 2$. There is an absolute constant C such that if $|E_1| + |E_2| + \Delta_1 + \Delta_2 \leq 3n - C$, then G_1 and G_2 pack.
Thank You