A List Version of Graph Packing

Derrek Yager

University of Illinois at Urbana-Champaign

yager2@illinois.edu

April 18, 2015

Joint work with Ervin Győri, Alexandr Kostochka, and Andrew McConvey
Overview

1. Graph Packing Definitions
2. Previous Results
3. List Packing Definitions
4. List Packing Results
A packing of graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, both on the same number of vertices, is a bijection $f : V_1 \rightarrow V_2$ such that $uv \in E_1$ implies $f(u)f(v) \notin E_2$.

Example: $G_1 \cong K_{1,n-2} + K_1$ and $G_2 \cong C_{n-1} + K_1$ pack.
A packing of graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, both on the same number of vertices, is a bijection $f : V_1 \to V_2$ such that $uv \in E_1$ implies $f(u)f(v) \not\in E_2$.

Example: $G_1 \cong K_{1,n-2} + K_1$ and $G_2 \cong C_{n-1} + K_1$ pack.
A packing of graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, both on the same number of vertices, is a bijection $f : V_1 \rightarrow V_2$ such that $uv \in E_1$ implies $f(u)f(v) \notin E_2$.

Example: The two graphs G_1 and G_2 do not pack.
Definitions

Definition

A packing of graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, both on the same number of vertices, is a bijection $f : V_1 \to V_2$ such that $uv \in E_1$ implies $f(u)f(v) \notin E_2$.

Example: The two graphs G_1 and G_2 do not pack.
A *packing* of graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, both on the same number of vertices, is a bijection $f : V_1 \rightarrow V_2$ such that $uv \in E_1$ implies $f(u)f(v) \notin E_2$.

Example: The two graphs G_1 and G_2 do not pack.
A packing of graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, both on the same number of vertices, is a bijection $f : V_1 \rightarrow V_2$ such that $uv \in E_1$ implies $f(u)f(v) \notin E_2$.

Example: The two graphs G_1 and G_2 do not pack.
A packing of graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, both on the same number of vertices, is a bijection $f : V_1 \rightarrow V_2$ such that $uv \in E_1$ implies $f(u)f(v) \notin E_2$.

Example: The two graphs G_1 and G_2 do not pack.
Theorem (Sauer, Spencer 1978)

Let G_1 and G_2 be two graphs of order n. If $\Delta(G_1)\Delta(G_2) < \frac{n}{2}$, then G_1 and G_2 pack.
Previous Results

Theorem (Sauer, Spencer 1978)

Let G_1 and G_2 be two graphs of order n. If $\Delta(G_1)\Delta(G_2) < \frac{n}{2}$, then G_1 and G_2 pack.

Theorem (Kaul, Kostochka 2007)

Let $\Delta(G_1)\Delta(G_2) \leq \frac{n}{2}$. G_1 and G_2 do not pack if and only if one of G_1 and G_2 is a perfect matching and the other is either $K_{\frac{n}{2}, \frac{n}{2}}$ with $\frac{n}{2}$ odd or contains $K_{\frac{n}{2}+1}$.
Theorem (Sauer, Spencer 1978)

Let G_1 and G_2 be two graphs of order n. If $|E_1| + |E_2| \leq \frac{3}{2} n - 2$, then G_1 and G_2 pack.

Sharpness Example:
A **graph triple** $G = (G_1, G_2, G_3)$, of size n, consists of a pair of n-vertex graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ together with a bipartite graph $G_3 = (V_1 \cup V_2, E_3)$.

Example: $G_1 \cong K_{1,n-2} \cup K_1$, $G_2 \cong C_{n-1} \cup K_1$, $G_3 \cong 4K_2 \cup \overline{K_{2n-8}}$
Definition

A list packing of the graph triple G is a bijection $f : V_1 \rightarrow V_2$ such that $uv \in E_1$ implies $f(u)f(v) \notin E_2$ and $v \in V_1$ implies $vf(v) \notin E_3$. Observe that the newly introduced set of edges basically represent forbidden mappings.

Example 1: This graph triple can pack.
A list packing of the graph triple G is a bijection $f : V_1 \rightarrow V_2$ such that $uv \in E_1$ implies $f(u)f(v) \notin E_2$ and $v \in V_1$ implies $vf(v) \notin E_3$. Observe that the newly introduced set of edges basically represent forbidden mappings.

Example 1: This graph triple can pack.
A list packing of the graph triple G is a bijection $f : V_1 \to V_2$ such that $uv \in E_1$ implies $f(u)f(v) \notin E_2$ and $v \in V_1$ implies $vf(v) \notin E_3$. Observe that the newly introduced set of edges basically represent forbidden mappings.

Example 2: This graph triple does not pack.
A list packing of the graph triple G is a bijection $f : V_1 \rightarrow V_2$ such that $uv \in E_1$ implies $f(u)f(v) \notin E_2$ and $v \in V_1$ implies $vf(v) \notin E_3$. Observe that the newly introduced set of edges basically represent forbidden mappings.

Example 2: This graph triple does not pack.
Observation

With list packing, we still have the same problems with induction, but we can fix them with a minor adjustment.
Observation

With list packing, we still have the same problems with induction, but we can fix them with a minor adjustment.
With list packing, we still have the same problems with induction, but we can fix them with a minor adjustment.
With list packing, we still have the same problems with induction, but we can fix them with a minor adjustment.

Now, we can ask if this packs. But how did the number of edges change? And the maximum degrees?
Theorem (Győri, Kostochka, McConvey, Y 2014+)

Let $G = (G_1, G_2, G_3)$ be a graph triple of size n with $\Delta_1 \Delta_2 + \Delta_3 \leq \frac{n}{2}$. Then G does not pack if and only if $\Delta_3 = 0$ and one of G_1 and G_2 is a perfect matching and the other is either $K_{\frac{n}{2}, \frac{n}{2}}$ with $\frac{n}{2}$ odd or contains $K_{\frac{n}{2}+1}$.
Extensions of Previous Results

Theorem (Győri, Kostochka, McConvey, Y 2014+)

Let \(G = (G_1, G_2, G_3) \) be a graph triple of size \(n \) with \(\Delta_1 \Delta_2 + \Delta_3 \leq \frac{n}{2} \). Then \(G \) does not pack if and only if \(\Delta_3 = 0 \) and one of \(G_1 \) and \(G_2 \) is a perfect matching and the other is either \(K_{\frac{n}{2}, \frac{n}{2}} \) with \(\frac{n}{2} \) odd or contains \(K_{\frac{n}{2}+1} \).

\[
(n - 1) - [(\Delta(G_3) - 1) + (\Delta(G_3) - 1) + 2\Delta(G_1)\Delta(G_2)] \leq 0
\]
Extensions of Previous Results

Theorem (Győri, Kostochka, McConvey, Y 2015+)

Let $G = (G_1, G_2, G_3)$ be a graph triple of size n with $\Delta_1 \Delta_2 + \Delta_3 \leq \frac{n}{2}$. Then G does not pack if and only if $\Delta_3 = 0$ and one of G_1 and G_2 is a perfect matching and the other is either $K_{\frac{n}{2}, \frac{n}{2}}$ with $\frac{n}{2}$ odd or contains $K_{\frac{n}{2}+1}$.
Extensions of Previous Results

Theorem (Győri, Kostochka, McConvey, Y 2015+)

Let $G = (G_1, G_2, G_3)$ be a graph triple of size n with $\Delta_1 \Delta_2 + \Delta_3 \leq \frac{n}{2}$. Then G does not pack if and only if $\Delta_3 = 0$ and one of G_1 and G_2 is a perfect matching and the other is either $K_{\frac{n}{2}, \frac{n}{2}}$ with $\frac{n}{2}$ odd or contains $K_{\frac{n}{2}+1}$.

Theorem (Győri, Kostochka, McConvey, Y 2015+)

Let $G = (G_1, G_2, G_3)$ be a graph triple of size n. If $|E_1| + |E_2| + |E_3| \leq \frac{3}{2}n - 2$, then G packs.
Extensions of Previous Results

Theorem (Bollobás, Eldridge 1978)

If $\Delta_1, \Delta_2 \leq n - 2$, $|E_1| + |E_2| \leq 2n - 3$, and $\{G_1, G_2\}$ is not one of the 7 pairs shown below, then G_1 and G_2 pack.

April 18, 2015
Extensions of Previous Results

Theorem (Győri, Kostochka, McConvey, Y 2015+)

Let \(G = (G_1, G_2, G_3) \) be a graph triple of size \(n \). If \(\Delta_1, \Delta_2 \leq n - 2 \), \(\Delta_3 \leq n - 1 \), and \(|E_1| + |E_2| + |E_3| \leq 2n - 3 \), and \(\{G_1, G_2\} \) is not one of the Bollobás-Eldridge pairs. Then either \(G \) packs or is one of the same 7 examples.

The result is sharp:
Extensions of Previous Results

Theorem (Győri, Kostochka, McConvey, Y 2015+)

Let $G = (G_1, G_2, G_3)$ be a graph triple of size n. If $\Delta_1, \Delta_2 \leq n - 2$, $\Delta_3 \leq n - 1$, and $|E_1| + |E_2| + |E_3| \leq 2n - 3$, and $\{G_1, G_2\}$ is not one of the Bollobás-Eldridge pairs. Then either G packs or is one of the same 7 examples.

The result is sharp:
Extensions of Previous Results

Theorem (Győri, Kostochka, McConvey, Y 2015+)

Let $G = (G_1, G_2, G_3)$ be a graph triple of size n. If $\Delta_1, \Delta_2 \leq n - 2$, $\Delta_3 \leq n - 1$, and $|E_1| + |E_2| + |E_3| \leq 2n - 3$, and $\{G_1, G_2\}$ is not one of the Bollobás-Eldridge pairs. Then either G packs or is one of the same 7 examples.

The result is sharp:
Extensions of Previous Results

Theorem (Győri, Kostochka, McConvey, Y 2015+)

Let $G = (G_1, G_2, G_3)$ be a graph triple of size n. If $\Delta_1, \Delta_2 \leq n - 2$, $\Delta_3 \leq n - 1$, and $|E_1| + |E_2| + |E_3| \leq 2n - 3$, and $\{G_1, G_2\}$ is not one of the Bollobás-Eldridge pairs. Then either G packs or is one of the same 7 examples.

The result is sharp:
Theorem (Győri, Kostochka, McConvey, Y 2015+)

Let $G = (G_1, G_2, G_3)$ be a graph triple of size n. If $\Delta_1, \Delta_2 \leq n - 2$, $\Delta_3 \leq n - 1$, and $|E_1| + |E_2| + |E_3| \leq 2n - 3$, and $\{G_1, G_2\}$ is not one of the Bollobás-Eldridge pairs. Then either G packs or is one of the same 7 examples.

The result is sharp:
Extensions of Previous Results

Theorem (Győri, Kostochka, McConvey, Y 2015+)

Let $G = (G_1, G_2, G_3)$ be a graph triple of size n. If $\Delta_1, \Delta_2 \leq n - 2$, $\Delta_3 \leq n - 1$, and $|E_1| + |E_2| + |E_3| \leq 2n - 3$, and $\{G_1, G_2\}$ is not one of the Bollobás-Eldridge pairs. Then either G packs or is one of the same 7 examples.

The result is sharp:
Extensions of Previous Results

Theorem (Győri, Kostochka, McConvey, Y 2015+)

Let $G = (G_1, G_2, G_3)$ be a graph triple of size n. If $\Delta_1, \Delta_2 \leq n - 2$, $\Delta_3 \leq n - 1$, and $|E_1| + |E_2| + |E_3| \leq 2n - 3$, and $\{G_1, G_2\}$ is not one of the Bollobás-Eldridge pairs. Then either G packs or is one of the same 7 examples.

The result is sharp:
Applications of List Packing

<table>
<thead>
<tr>
<th>Conjecture (Ţak 2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let G_1 and G_2 be graphs of order n such that $\max{\Delta(G_1), \Delta(G_2)} \leq n - 2$. If $</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Győri, Kostochka, McConvey, Y 2015+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let $C = 418,275$ and let (G_1, G_2, G_3) be a graph triple of order n with $\max{\Delta(G_1), \Delta(G_2)} \leq n - 2$ and $\Delta(G_3) \leq n - 1$. If $</td>
</tr>
</tbody>
</table>
Theorem (Győri, Kostochka, McConvey, Y 2015+)

Let $G = (G_1, G_2, G_3)$ be a graph triple of size n. If $|E_1| + |E_2| + |E_3| \leq \frac{3}{2} n - 2$, then G packs.

Case 1: There exists a vertex $x \in V_i$ with $d_i(x) = d_3(x) = 0$. Assume $x \in V_1$.

If $d_2(y) + d_3(y) \geq 2$ for some $y \in V_2$, done.
Proof of Sauer-Spencer Extension

Theorem (Győri, Kostochka, McConvey, Y 2015+)

Let $G = (G_1, G_2, G_3)$ be a graph triple of size n. If
$|E_1| + |E_2| + |E_3| \leq \frac{3}{2} n - 2$, then G packs.

Case 1: There exists a vertex $x \in V_i$ with $d_i(x) = d_3(x) = 0$. Assume $x \in V_1$.
If $d_3(y) = 1$ for all $y \in V_2$,
Proof of Sauer-Spencer Extension

Theorem (Győri, Kostochka, McConvey, Y 2015+)

Let $G = (G_1, G_2, G_3)$ be a graph triple of size n. If
$|E_1| + |E_2| + |E_3| \leq \frac{3}{2}n - 2$, then G packs.

Case 1: There exists a vertex $x \in V_i$ with $d_i(x) = d_3(x) = 0$. Assume $x \in V_1$.
If $d_2(y) = 1$ for some $y \in V_2$,
Proof of Sauer-Spencer Extension

Theorem (Győri, Kostochka, McConvey, Y 2015+)

Let \(G = (G_1, G_2, G_3) \) be a graph triple of size \(n \). If
\[
|E_1| + |E_2| + |E_3| \leq \frac{3}{2} n - 2,
\]
then \(G \) packs.

Case 2: There exists a vertex \(x \in V_i \) with \(d_i(x) = 0, d_3(x) > 0 \). Assume \(x \in V_1 \).
If \(d_3(x) \geq 2 \), done.
Theorem (Győri, Kostochka, McConvey, Y 2015+)

Let $G = (G_1, G_2, G_3)$ be a graph triple of size n. If $|E_1| + |E_2| + |E_3| \leq \frac{3}{2} n - 2$, then G packs.

Case 2: There exists a vertex $x \in V_i$ with $d_i(x) = 0$, $d_3(x) > 0$. Assume $x \in V_1$.

If $d_3(x) = 1$,

![Diagram](image)
Proof of Sauer-Spencer Extension

Theorem (Győri, Kostochka, McConvey, Y 2015+)

Let $G = (G_1, G_2, G_3)$ be a graph triple of size n. If
$$|E_1| + |E_2| + |E_3| \leq \frac{3}{2} n - 2,$$
then G packs.

Case 3: $\delta_1, \delta_2 > 0$.
Based on edge and degree conditions, there exists $x \in V_1$ with
$d_1(x) = 1, d_3(x) = 0$.

April 18, 2015
Proof of Sauer-Spencer Extension

Theorem (Győri, Kostochka, McConvey, Y 2015+)

Let \(G = (G_1, G_2, G_3) \) be a graph triple of size \(n \). If
\[
|E_1| + |E_2| + |E_3| \leq \frac{3}{2}n - 2,
\]
then \(G \) packs.

Case 3: \(\delta_1, \delta_2 > 0 \).
Theorem (Győri, Kostochka, McConvey, Y 2015+)

Let $G = (G_1, G_2, G_3)$ be a graph triple of size n. If $|E_1| + |E_2| + |E_3| \leq \frac{3}{2} n - 2$, then G packs.

Case 3: $\delta_1, \delta_2 > 0$.
Thank You