MATH 241 :: Calculus III

Mock Exam I

September 22, 2018

Name: ________________________________

• Show **ALL** your work.
• There are **NO** calculators allowed on this exam.
• This exam has 9 questions.
1. Mark the following as True or False

<table>
<thead>
<tr>
<th>Equation</th>
<th>T or F</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) If the planes $ax + by + cz = d$ and $Ax + By + Cz = D$ are parallel then $a = A, b = B, c = C$.</td>
<td></td>
</tr>
<tr>
<td>b) If $i, j,$ and k are the standard unit vectors, then $(k \times i) \times i = j \times (i \times k)$</td>
<td></td>
</tr>
<tr>
<td>c) Two non-parallel planes with normal vectors v and w intersect in a plane with normal vector $v \times w$.</td>
<td></td>
</tr>
<tr>
<td>d) The volume of the parallelepiped spanned by the vectors $(1,0,0),(0,2,0)$ and $(0,0,3)$ is 6.</td>
<td></td>
</tr>
<tr>
<td>e) For all vectors v and w, the vector $w \times (w \times v)$ is perpendicular to v.</td>
<td></td>
</tr>
<tr>
<td>f) The number $</td>
<td>u \times (v \times w)</td>
</tr>
<tr>
<td>g) The equation $(u + v) \cdot (u - v) = 0$ implies $</td>
<td></td>
</tr>
<tr>
<td>h) If $a \cdot b = a \cdot c$ then $b = c$.</td>
<td></td>
</tr>
<tr>
<td>i) Two lines in \mathbb{R}^3 are either parallel or intersect.</td>
<td></td>
</tr>
<tr>
<td>j) Two planes in \mathbb{R}^3 are either parallel or intersect.</td>
<td></td>
</tr>
</tbody>
</table>

Solution: (a)F (b)F (c)F (d)T (e)F (f)F (g)T (h)F (i)F (j)T

2. Consider the partial differential equation $u_t = u_{xx}$. Determine which of the following are solutions of this equation:

A. $u(x, t) = e^{-t} \sin(x)$
B. $u(x, t) = \sin(x - t)$
C. $u(x, t) = e^{-t} \cos(x)$
D. $u(x, t) = \cos(x - t)$
E. $u(x, t) = e^{x+t}$

Solution:

Take the relevant partial derivatives and see if they satisfy the equation. For example, for A:

$u_t = -e^{-t} \sin(x)$
$u_x = e^{-t} \cos(x)$
$u_{xx} = -e^{-t} \sin(x)$

and hence:

$u_t - u_{xx} = -e^{-t} \sin(x) - (-e^{-t} \sin(x)) = 0$
3. Find the limit, if it exists, or show that the limit does not exist. Show all your work.

(a) \[\lim_{(x,y) \to (0,0)} \frac{x^4y}{x^8 + y^2} \]

Solution:
Along \(y = 0 \):
\[\lim_{x \to 0} \frac{x^40}{x^8 + 0^2} = \lim_{x \to 0} \frac{0}{x^8} = \lim_{x \to 0} 0 = 0 \]
For \(y = x^k \) note:
\[\frac{x^4x^k}{x^8 + x^{2k}} = \frac{x^{4+k}}{x^8 + x^{2k}} = \frac{1}{(x^8 + x^{2k})x^{-4-k}} = \frac{1}{x^{4-k} + x^{k-4}} \]
Hence, along \(y = x^4 \) (that is, for \(k = 4 \)):
\[\lim_{x \to 0} \frac{x^4x^4}{x^8 + x^{2(4)}} = \lim_{x \to 0} \frac{1}{x^0 + x^0} = \lim_{x \to 0} \frac{1}{2} = \frac{1}{2} \]
Thus, the limit does not exist.

(b) \[\lim_{(x,y) \to (0,0)} \frac{\sin(x^2 + y^2)}{x^2 + y^2} \]

Solution: Use polar coordinates.
\[\lim_{(x,y) \to 0} \frac{\sin(x^2 + y^2)}{x^2 + y^2} = \lim_{r \to 0} \frac{\sin(r^2)}{r^2} = \lim_{u \to 0} \frac{\sin(u)}{u} = 1 \]

(c) \[\lim_{(x,y) \to (1,-1)} e^{-xy} \cos(x + y) \]

Solution: The function is continuous at \((1, -1)\) so:
\[\lim_{(x,y) \to (1,-1)} e^{-xy} \cos(x + y) = e^{-(1)(-1)} \cos(1 - 1) = e \]
4. Consider the differentiable function $f : \mathbb{R}^2 \to \mathbb{R}$ whose level curves (or contours) are shown in the figure.

(a) What is the sign of $f_x(P)$? Negative Zero Positive.

(b) What is the sign of $f_{yy}(P)$? Negative Zero Positive.

(c) What is the sign of $f_{xy}(P)$? Negative Zero Positive.

(d) Circle the best estimate for $h'(0)$, where $h(t) = f(t^2 + 4t + 2, \cos(t) + 1)$.

-4 -2 0 2 4

Solution: (a) We fix y at -2. As x increases, f increases, and so $f_x(P)$ is positive.

(b) Fix x. Now, we look at how f_y changes as y increases. Below P, f_y is negative. Above P, f_y is also negative, but it is less negative than below P because the level curves are further apart in the vertical direction. Hence, $f_{yy}(P)$ is positive.

(c) Fix x. Now, we look at how f_x changes as y increases. Below P, f_x is positive. After P, f_x is also positive. As the level curves below P are closer together in the horizontal direction than above P, this means that f_x is larger below P than above P. Hence, as y increases, f_x decreases, making $f_{xx}(P)$ negative.

(d) *** There was a TYPO in the problem. It should have said $h(t) = f(t^2 + 4t + 2, \cos(t) + 1)$.***
By the chain rule, we have that \(h'(0) = \frac{\partial f}{\partial x}(x(0), y(0)) \frac{dx}{dt}(0) + \frac{\partial f}{\partial y}(x(0), y(0)) \frac{dy}{dt}(0). \)

Since \(y'(0) = -\sin(0) = 0 \), this means we do not have to go about estimating \(\frac{\partial f}{\partial y}(x(0), y(0)) \). So, we only need to estimate \(\frac{\partial f}{\partial x}(x(0), y(0)) = \frac{\partial f}{\partial x}(2, 2) \). To estimate this quantity, we fix \(y = 2 \) and look at how the function changes around \(x = 2 \). We see that \(f(1, 2) = 0 \) and \(f(3, 2) = 2 \). Hence, \(\frac{\partial f}{\partial x}(x(0), y(0)) \approx \frac{f(3, 2) - f(2, 2)}{1} = 1 \). As \(x'(0) = 2(0) + 4 = 4 \), we see by the chain rule that \(h'(0) = 4 \).
5. Consider the following cross-sections:

Figure 1: x-fixed cross sections
Figure 2: y-fixed cross sections
Figure 3: z-fixed cross sections

And consider the following quadric surfaces:

Figure I
Figure II
Figure III

(a) Choose which of the above quadric surfaces (I, II, or III) has the above cross sections.

Solution: Figure II.

(b) Match EACH of the following equations to the corresponding surface (I, II, III) shown above:

A. $z^2 = 1 + 4x^2 + 4y^2$

Solution: Figure I
B. \(x^2 + y^2 = z^2 \)

Solution: Figure II

C. \(z = x^2 - y^2 \)

Solution: Figure III
6. Consider the plane P defined by $x + y + z = 1$ and a line L defined by

$$\frac{x - 3}{a} = \frac{2 - y}{a + 1} = \frac{z + 1}{3 - 2a}.$$

(a) For what value of a is the line L parallel to the plane P?

Solution: We first find the parametric equation of the line by setting each component of our symmetric equations equal to the parameter t. Then, we solve for x, y, and z. So, we get that L is parametrized by

$$L = l(t) = (3 + at, 2 - (a + 1)t, -1 + (3 - 2a)t).$$

Now, this line is parallel to the plane P exactly when the direction vector of the line is perpendicular to the normal vector of the plane. So, we set

$$(1, 1, 1) \cdot (a, -(a + 1), 3 - 2a) = 0$$

and solve for a:

$$a - a - 1 + 3 - 2a = 0$$

$$2a = 2$$

Therefore, when $a = 1$, the line is parallel to the plane.

(b) Find the distance from the line L to the plane P when L is parallel to P.

Solution: Since L is parallel to P, the distance from L to P is the same as the distance from ANY point that lies on the line L to the plane P. So, we will find the distance from the point $(3, 2, -1)$ to the plane P. A point that lives on the plane is $(1, 0, 0)$, and the vector $v = (2, 2, -1)$ goes from the point $(1, 0, 0)$ on the plane to the point $(3, 2, -1)$. Then, the distance from the line to the plane is the length of the projection of v onto the normal vector of the plane $n = (1, 1, 1)$:

$$\text{proj}_n v = \left(\frac{v \cdot n}{n \cdot n}\right) n = \left(\frac{2 + 2 - 1}{1 + 1 + 1}\right) n = (1, 1, 1).$$

Thus, the distance between L and P is $|(1, 1, 1)| = \sqrt{3}$.

7. Match the functions with their contour plots.
<table>
<thead>
<tr>
<th>function</th>
<th>Enter I,II,III, IV,V, VI here</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 $f(x, y) = \sin(x)$</td>
<td></td>
</tr>
<tr>
<td>2 $f(x, y) = x^2 + 2y^2$</td>
<td></td>
</tr>
<tr>
<td>3 $f(x, y) =</td>
<td>x</td>
</tr>
<tr>
<td>4 $f(x, y) = \sin(x)\cos(y)$</td>
<td></td>
</tr>
<tr>
<td>5 $f(x, y) = xe^{-x^2-y^2}$</td>
<td></td>
</tr>
<tr>
<td>6 $f(x, y) = x^2/(x^2 + y^2)$</td>
<td></td>
</tr>
</tbody>
</table>

Solution: (1)III (2)II (3)V (4)IV (5)I (6)VI
8. Find the equation of the plane containing the two lines:

\[l_1(t) = (-1 + t, 3t, -2 + 2t) \quad l_2(t) = (-3 - 2t, -1 - t, 1 + 3t). \]

Solution: Find the velocity vectors by looking at \(t\)-coefficients. For \(l_1\):

\[v_1 = (1, 3, 2), \]

while for \(l_2\):

\[v_2 = (-2, -1, 3). \]

Find a normal vector for the plane by taking the cross product of the velocity vectors (sketch a picture to visualize):

\[n := v_1 \times v_2 = (11, -7, 5). \]

Pick a point on the plane:

\[l_1(0) = (-1, 0, -2) \]

To obtain the equation of the plane simplify:

\[
0 = n \cdot \left((x, y, z) - l_1(0) \right)
= (11, -7, 5) \cdot (x + 1, y, z + 2)
= 11x + 11 - 7y + 5z + 10
= 11x - 7y + 5z + 21,
\]

which yields the equation:

\[11x - 7y + 5z = -21. \]

9. Consider the vectors \(u\), \(v\), \(w\), and \(s\) shown below.

For each of the following, circle the best answer.

(a) A. \(u = 2(w + v)\) B. \(u = 2w - s\) C. \(u = s - 2w\) D. \(u = 2(s + v)\)

(b) A. \(|u \times v| > |w \times u|\) B. \(|u \times v| = |w \times u|\) C. \(|u \times v| < |w \times u|\)
(c) A. \(u \cdot v > u \cdot w \)
B. \(u \cdot v = u \cdot w \)
C. \(u \cdot v < u \cdot w \)

(d) A. \(\text{proj}_s u = \frac{1}{4}u \)
B. \(\text{proj}_s u = 2s \)
C. \(\text{proj}_s u = s \)
D. \(\text{proj}_s u = \frac{1}{2}u \)