(1) Find the horizontal asymptotes of \(\frac{5x^3 + x^2 - 3}{-2x^3 + x} \)

First, we do some algebra; we divide the numerator and denominator by the highest power of \(x \):

\[
\frac{5x^3 + x^2 - 3}{-2x^3 + x} = \frac{5 + \frac{1}{x} - \frac{3}{x^3}}{-2 + \frac{1}{x^2}} \quad \text{when } x \neq 0
\]

As \(x \) goes to \(\infty \), the numerator goes to \(5 + 0 + 0 = 5 \) while the denominator goes to \(-2 + 0 = 0 \). So the horizontal asymptote as \(x \) goes to \(\infty \) of \(f(x) \) is \(y = -\frac{5}{2} \). As \(x \) goes to \(-\infty \), we may also conclude that \(f(x) \) goes to \(-\frac{5}{2} \) (as \(\frac{1}{x^3} \) goes to zero for \(x \) going to either \(\infty \) or \(-\infty \)).

(2) Find the horizontal asymptotes of \(\frac{\sqrt{x^2 - 2}}{x + 5} \)

This one is a little trickier. We need to think about how to pull the \(x^2 \) out of the square root; this is done first by factoring an \(x^2 \) out of \(x^2 - 2 \) and then pulling the \(x^2 \) out of the square root itself:

\[
\sqrt{x^2 - 2} = \sqrt{(x^2 - 2) \left(1 - \frac{2}{x^2}\right)} = |x| \sqrt{1 - \frac{2}{x^2}}
\]

So, for the full quotient, we have

\[
\frac{\sqrt{x^2 - 2}}{x + 5} = \frac{|x| \sqrt{1 - \frac{2}{x^2}}}{x(1 + \frac{5}{x})}
\]

For \(x > 0 \), \(\frac{|x|}{x} = 1 \), so as \(x \) goes to \(\infty \), this function goes to 1. However, for \(x < 0 \), \(\frac{|x|}{x} = -1 \), so as \(x \) goes to \(-\infty \), the fraction goes to \(-1 \). So this function has horizontal asymptotes \(x = 1 \) and \(x = -1 \).

(3) Find the horizontal asymptotes of \(\frac{e^{8x} + e^{3x} - 5}{4e^{8x} - 6} \)

By multiplying both the numerator and denominator by \(e^{-8x} \), we have:

\[
\frac{e^{8x} + e^{3x} - 5}{4e^{8x} - 6} = \frac{1 + e^{-5x} - 5e^{-8x}}{4 - 6e^{-8x}} \quad \text{when } x \neq 0
\]
As x goes to ∞, remember that e^{-x} goes to 0, so this fraction goes to $1/4$. As x goes to $-\infty$, the numerator of the original fraction goes to -5 while the denominator goes to -6, so the limit as x goes to $-\infty$ of the quotient is $5/6$. So this function has horizontal asymptotes $1/4$ and $5/6$.

(4) Find $\lim_{x \to -\infty} (x^7 + 5x^4)$.

We factor $(x^7 + 5x^4) = x^4(x^3 + x)$. As x goes to $-\infty$, x^4 goes to ∞ while $x^3 + x$ goes to $-\infty$ (since both x^3 and x go to $-\infty$ while x goes to $-\infty$). So we can use the product rule for infinite limits to conclude that the limit of $(x^7 + 5x^4)$ as x goes to $-\infty$ is $-\infty$.

(5) Find all real numbers a, b, and c so that:

$$f(x) = \frac{ax^2 + cx}{x^2 + bx + a}$$

has vertical asymptotes $x = 1$ and $x = 3$, horizontal asymptote $y = 3$, and only one zero.

First, we can check that $f(x)$ has a horizontal asymptote at $y = a$. So, we need $a = 3$. Next, note that the numerator factors as $3x^2 + cx = x(3x + c)$. So $f(x)$ has zeros at $x = 0$ and $x = -c/3$. So to enforce that f has only one zero, we should take $c = 0$. Finally, we have a denominator $x^2 + bx + 3$. We want vertical asymptotes of $x = 1$ and $x = 3$, meaning we want the denominator to go to zero at 1 and 3. This implies we want the denominator to be $(x-1)(x-3) = x^2 - 4x + 3$. So we need $b = -4$.

The rest of the problems will be included in a different worksheet later this week.