(1) Warm-up: for $f(x) = x^2$ and $g(x) = 7x + 2$, give each of the following functions:
 (a) $3f(x) = 3x^2$
 (b) $f(x + 3) = x^2 + 6x + 9$
 (c) $f(3x) = 9x^2$
 (d) $(f \cdot g)(x) = 7x^3 + 2x^2$
 (e) $(f + g)(x) = x^2 + 7x + 2$
 (f) $(f \circ g)(x) = 49x^2 + 28x + 4$
 (g) $(g \circ f)(x) = 7x^2 + 2$

(2) Find two functions $f(x)$ and $g(x)$ so that $h(x) = \sqrt[3]{x^8 + 5}$ satisfies $(f \circ g)(x) = h(x)$. Take $f(x) = \sqrt[3]{x}$ and $g(x) = x^8 + 5$.

(3) Repeat the previous problem, finding two different functions $f(x)$ and $g(x)$ with $(f \circ g)(x) = h(x)$.
 Take $f(x) = \sqrt[3]{x + 5}$ and $g(x) = x^8$.

(4) For two lines $f(x) = mx + a$ and $g(x) = nx + b$, find $g \circ f$. What kind of function is this?

$$g(f(x)) = g(mx + a) = n(mx + a) + b = mnx + na + b$$

So the composite of two lines is again a line with slope the product of the slopes of the original two lines (this will be important later in the semester).

(5) Let $f(x)$ and $g(x)$ be two functions. Then:
 (a) If f and g are both even, are $h(x) = f(x) \cdot g(x)$ and $i(x) = f(x) + g(x)$ even or odd (or possibly neither)?

$$h(-x) = f(-x) \cdot g(-x) = f(x) \cdot g(x) = h(x),$$ so h is even. $i(-x) = f(-x) + g(-x) = f(x) + g(x) = i(x)$, so i is also even.

(b) If f is even and g is odd, are $h(x) = f(x) \cdot g(x)$ and $i(x) = f(x) + g(x)$ even or odd (or possibly neither)?

$$h(-x) = f(-x) \cdot g(-x) = f(x) \cdot (-g(x)) = -(f(x) \cdot g(x)) = -h(x),$$ so h is odd. $i(x)$ needn’t be either even or odd; for instance, for $f(x) = 2$ and $g(x) = x$, $i(x) = x + 2$ is neither even nor odd.

(c) If f and g are both odd, are $h(x) = f(x) \cdot g(x)$ and $i(x) = f(x) + g(x)$ even or odd (or possibly neither)?
\[h(-x) = f(-x) \cdot g(-x) = (-f(x) \cdot -g(x)) = f(x) \cdot g(x) = h(x), \text{ so } h \text{ is even.} \]
\[i(-x) = f(-x) + g(-x) = -f(x) - g(x) = -i(x), \text{ so } i(x) \text{ is odd.} \]

(6) Given two functions \(f(x) \) and \(g(x) \), how do I find the domain for \(f \circ g \)? That is, is the domain of this function just the domain of \(g \), or is there something trickier going on? Hint: consider examples like \(f(x) = \sqrt{x} \) and \(g(x) = x^2 + 3 \).

First, since we’re plugging things into \(g \), the domain of \(f \circ g \) is at most the domain of \(g \). But we also need to be careful about what values \(g(x) \) are getting plugged into \(f \). So the domain of \(f \circ g \) is the set of real numbers \(x \) that are in the domain of \(g \) for which \(g(x) \) is in the domain of \(f \).

(7) Graphing variations of \(\sin(x) \):
(a) Explain why \(\sin(x) \) satisfies \(-1 \leq \sin(x) \leq 1 \) for every real number \(x \).

Since \(\sin(\theta) \) gives the \(y \)-coordinate on the circle \(x^2 + y^2 = 1 \) at the angle \(\theta \), it is enough to conclude that, since \(x^2, y^2 \geq 0 \), for \((x, y)\) on the circle \(x^2 + y^2 = 1 \), \(y^2 \) must satisfy \(0 \leq y^2 \leq 1 \), which means \(-1 \leq \sin(\theta) \leq 1 \).

(b) Graph \(y = \sin(x) \).
(c) What happens to the graph when I multiply \(\sin(x) \) by a constant real number \(A \)?

Algebraically, assuming \(A \geq 0 \), we have \(-A \leq A \sin(x) \leq A \). Graphing \(A \sin(x) \), we will see that the graph still “looks like” \(\sin(x) \) but stretched out in the \(y \)-directions.

(d) What does the graph \(\sin(3x) \) look like? (Hint: for \(f(x) = \sin(x), f(x + 2\pi) = f(x) \); what do we know about \(f(3x) \)?)

Multiplying the variable \(x \) first by three squishes the graph horizontally by a factor of three; we can see this by noting that \(\sin(3(x + \frac{2\pi}{3})) = \sin(x) \) so the period of this periodic function is cut by a third.

(e) For a real number \(\lambda \), what does the graph of \(\sin(x + \lambda) \) look like?

The entire graph is shifted horizontally by \(\lambda \).

(f) What does the graph of \(x^2 \sin(x) \) look like? (Hint: use part c above)

Well, we saw that, when we multiply by a constant \(A \), \(\sin(x) \) oscillates between \(-A \) and \(A \). When we multiply by the function \(x^2 \), \(\sin(x) \) oscillates between the function \(x^2 \sin(x) \).

(g) For a function \(f \) with domain all real numbers, what does \(f(x) \cdot \sin(x) \) look like?

Similar to above, \(f(x) \sin(x) \) oscillates between \(f(x) \) and \(-f(x) \). This makes seemingly complicated functions like \(e^x \sin(x) \) relatively easy to graph.