Problem 1. Use a comparison to determine whether the integral converges or diverges.

\[\int_{1}^{\infty} e^{-x^3} \, dx \]

Solution. On the interval \([1, \infty)\), we have that \(0 \leq e^{-x^3} \leq e^{-x}\). Now, \(\int_{1}^{\infty} e^{-x} \, dx\) converges (to \(e^{-1}\) in fact.) So by the Comparison Test, we have that the given integral will converge.

Problem 2. If \(\lim_{x \to \infty} f(x) = 1\) then \(\int_{0}^{\infty} f(x) \, dx\) diverges.

Solution. This is true. \(\lim_{x \to \infty} f(x) = 1\) means that for all \(\epsilon > 0\) there is some finite \(N > 0\) such that \(|F(x) - 1| < \epsilon\) whenever \(x > N\). Taking for instance \(\epsilon = \frac{1}{2}\), we have

\[\int_{N}^{\infty} f(x) \, dx > \int_{N}^{\infty} \frac{1}{2} \, dx = \infty \]

So this integral must diverge.

Problem 3. If \(\lim_{x \to \infty} f(x) = 0\) then \(\int_{0}^{\infty} f(x) \, dx\) converges.

Solution. This is false! Consider \(f(x) = \frac{1}{x}\), \(\lim_{x \to \infty} f(x) = 0\), but the integral diverges by the \(p\)-test. (In fact both \(p\)-tests since \(\frac{1}{x}\) will not integrate nicely at infinity or at zero.)

Problem 4. \(\lim_{x \to 0} f(x) = \infty\) then \(\int_{0}^{1} f(x) \, dx\) diverges.
Solution. This is false! Consider \(f(x) = \frac{1}{x^{1/2}} \), \(\lim_{x \to 0} f(x) = \infty \) but in fact,
\[
\int_0^1 f(x) \, dx = 2
\]
is convergent.

Problem 5. If \(f(-x) = -f(x) \) for all \(x \), then \(\int_{-\infty}^{\infty} f(x) \, dx = 0 \).

Solution. This is false! Recall that for such an integral you need to take two limits, so
\[
\int_{-\infty}^{\infty} f(x) \, dx = \lim_{R \to \infty} \lim_{S \to -\infty} \int_S^R f(x) \, dx
\]
with \(f(x) = x \) for example, this limit will not exist. It does not exist since if \(R \) goes to infinity much faster than \(S \) goes to negative infinity, the integral should go to \(\infty \). Yet if \(S \) goes faster, the integral should go to \(-\infty \), and if they go at the same speed, the integral should go to \(0 \). Thus, the limit will not exist and this integral diverges.