Fine Structure of a Summatory Error Function

12153 [2020, 85]. Proposed by Omran Kouba, Higher Institute for Applied Sciences and Technology, Damascus, Syria. For a real number x whose fractional part is not 1/2, let (x) denote the nearest integer to x. For a positive integer n, let

$$a_n = \left(\sum_{k=1}^{n} \frac{1}{\langle \sqrt{k} \rangle} \right) - 2\sqrt{n}.$$

(a) Prove that the sequence a_1, a_2, \ldots is convergent, and find its limit L.

(b) Prove that the set $\{\sqrt{n}(a_n - L): n \geq 1\}$ is a dense subset of $[0, 1/4]$.

Composite solution by Jean-Pierre Grivaux, Paris, France, Eugene A. Herman, Grinnell College, Grinnell, IA, and the editors. For (a), the limit is -1. The density assertion of (b) is true but weak. We prove that in fact the positive real line can be partitioned into successively adjacent intervals I_1, I_2, \ldots, with lengths growing only arithmetically, such that the values of the function defined in (b), at the integer points of an individual interval I_j become arbitrarily dense in $[0, 1/4]$ as $j \to \infty$.

Also solved by K. F. Andersen (Canada), A. Berkane (Algeria), R. Chapman (UK), H. Chau, H. Chen, C. Chiser (Romania), A. Deeb & H. Al-Assad (Syria), A. Dixit, G. Fera & G. Tescaro (Italy), O. Geupel (Germany), J.-P. Grivaux (France), E. A. Herman, N. Hodges (UK), W. Janous (Austria), P. Lalonde (Canada), J. H. Lindsey II, O. P. Lossers (Netherlands), M. Omarjee (France), M. A. Prasad (India), C. Schacht, E. Schmeichel, A. Stadler (Switzerland), A. Stenger, R. Stong, R. Tauraso (Italy), T. Wiandt, T. Wilde (UK), Florida State University Problem Solving Group, and the proposer.