Cut-edges and Regular Subgraphs in Odd-degree Regular Graphs

Douglas B. West

Zhejiang Normal University
and
University of Illinois at Urbana-Champaign
west@math.uiuc.edu

slides available on DBW preprint page

Joint work with
Alexandr Kostochka, André Raspaud, Bjarne Toft,
Dara Zirlin, Ilkyoo Choi, Ringi Kim, Boram Park
Background

Def. ℓ-factor - a spanning ℓ-regular subgraph.
Background

Def. ℓ-factor - a spanning ℓ-regular subgraph.

Thm. (Petersen [1891]) For $r \geq 1$, every $2r$-regular graph has a 2-factor (and thus a $2k$-factor for $k \leq r$).
Background

Def. l-factor - a spanning l-regular subgraph.

Thm. (Petersen [1891]) For $r \geq 1$, every $2r$-regular graph has a 2-factor (and thus a $2k$-factor for $k \leq r$).

Thm. (Petersen [1891]) Every 3-regular graph whose cut-edges lie on a single path contains a 2-factor.
Def. \(\ell \)-factor - a spanning \(\ell \)-regular subgraph.

Thm. (Petersen [1891]) For \(r \geq 1 \), every \(2r \)-regular graph has a \(2 \)-factor (and thus a \(2k \)-factor for \(k \leq r \)).

Thm. (Petersen [1891]) Every \(3 \)-regular graph whose cut-edges lie on a single path contains a \(2 \)-factor. (\(\because \) \(3 \)-regular \(G \) with \(\leq 2 \) cut-edges has \(2 \)-factor.)
Def. \(\ell\)-factor - a spanning \(\ell\)-regular subgraph.

Thm. (Petersen [1891]) For \(r \geq 1\), every \(2r\)-regular graph has a 2-factor (and thus a \(2k\)-factor for \(k \leq r\)).

Thm. (Petersen [1891]) Every 3-regular graph whose cut-edges lie on a single path contains a 2-factor. (\(\therefore \) 3-regular \(G\) with \(\leq 2\) cut-edges has 2-factor.)

Ex. Sylvester found 3-regular graphs with three cut-edges having no 2-factor.
Background

Def. l-factor - a spanning l-regular subgraph.

Thm. (Petersen [1891]) For $r \geq 1$, every $2r$-regular graph has a 2-factor (and thus a $2k$-factor for $k \leq r$).

Thm. (Petersen [1891]) Every 3-regular graph whose cut-edges lie on a single path contains a 2-factor. (\because 3-regular G with ≤ 2 cut-edges has 2-factor.)

Ex. Sylvester found 3-regular graphs with three cut-edges having no 2-factor.

Thm. (Hanson–Loten–Toft [1998]) For $r \geq 1$, every $(2r+1)$-regular graph with $\leq 2r$ cut-edges has 2-factor.
Def. l-factor - a spanning l-regular subgraph.

Thm. (Petersen [1891]) For $r \geq 1$, every $2r$-regular graph has a 2-factor (and thus a $2k$-factor for $k \leq r$).

Thm. (Petersen [1891]) Every 3-regular graph whose cut-edges lie on a single path contains a 2-factor. (∴ 3-regular G with ≤ 2 cut-edges has 2-factor.)

Ex. Sylvester found 3-regular graphs with three cut-edges having no 2-factor.

Thm. (Hanson–Loten–Toft [1998]) For $r \geq 1$, every $(2r+1)$-regular graph with $\leq 2r$ cut-edges has 2-factor.

What about $2k$-factors for $k > 1$?
Background

Def. \(\ell \)-factor - a spanning \(\ell \)-regular subgraph.

Thm. (Petersen [1891]) For \(r \geq 1 \), every \(2r \)-regular graph has a 2-factor (and thus a \(2k \)-factor for \(k \leq r \)).

Thm. (Petersen [1891]) Every 3-regular graph whose cut-edges lie on a single path contains a 2-factor. \((\therefore\) 3-regular \(G \) with \(\leq 2 \) cut-edges has 2-factor.)

Ex. Sylvester found 3-regular graphs with three cut-edges having no 2-factor.

Thm. (Hanson–Loten–Toft [1998]) For \(r \geq 1 \), every \((2r+1)\)-regular graph with \(\leq 2r \) cut-edges has 2-factor.

What about \(2k \)-factors for \(k > 1 \)? Harder to guarantee, since every \(2k \)-factor contains a 2-factor.
Our Results

Thm. (Hanson–Loten–Toft [1998]) For $r \geq 1$, every $(2r+1)$-regular graph with $\leq 2r$ cut-edges has 2-factor.
Our Results

Thm. (Hanson–Loten–Toft [1998]) For $r \geq 1$, every $(2r+1)$-regular graph with $\leq 2r$ cut-edges has 2-factor.

Thm. (KRTWZ [2018+]) For $k \leq (2r + 1)/3$, every $(2r+1)$-regular graph with $\leq 2r - 3(k - 1)$ cut-edges has a $2k$-factor.
Our Results

Thm. (Hanson–Loten–Toft [1998]) For $r \geq 1$, every $(2r+1)$-regular graph with $\leq 2r$ cut-edges has 2-factor.

Thm. (KRTWZ [2018+]) For $k \leq (2r + 1)/3$, every $(2r+1)$-regular graph with $\leq 2r – 3(k – 1)$ cut-edges has a $2k$-factor. Also, both inequalities are sharp.
Our Results

Thm. (Hanson–Loten–Toft [1998]) For $r \geq 1$, every $(2r+1)$-regular graph with $\leq 2r$ cut-edges has 2-factor.

Thm. (KRTWZ [2018+]) For $k \leq (2r + 1)/3$, every $(2r+1)$-regular graph with $\leq 2r - 3(k - 1)$ cut-edges has a $2k$-factor. Also, both inequalities are sharp.

Thm. We find all $(2r+1)$-regular connected graphs with exactly $2r+1 - 3(k - 1)$ cut-edges having no $2k$-factor.
Our Results

Thm. (Hanson–Loten–Toft [1998]) For $r \geq 1$, every $(2r+1)$-regular graph with $\leq 2r$ cut-edges has 2-factor.

Thm. (KRTWZ [2018+]) For $k \leq (2r + 1)/3$, every $(2r+1)$-regular graph with $\leq 2r – 3(k – 1)$ cut-edges has a $2k$-factor. Also, both inequalities are sharp.

Thm. We find all $(2r+1)$-regular connected graphs with exactly $2r+1 – 3(k – 1)$ cut-edges having no $2k$-factor.

When $k > (2r + 1)/3$ or G has more than $2r – 3(k – 1)$ cut-edges, how large a $2k$-regular subgraph is forced?
Our Results

Thm. (Hanson–Loten–Toft [1998]) For \(r \geq 1 \), every \((2r+1)\)-regular graph with \(\leq 2r \) cut-edges has \(2 \)-factor.

Thm. (KRTWZ [2018+]) For \(k \leq (2r + 1)/3 \), every \((2r+1)\)-regular graph with \(\leq 2r – 3(k – 1) \) cut-edges has a \(2k \)-factor. Also, both inequalities are sharp.

Thm. We find all \((2r+1)\)-regular connected graphs with exactly \(2r+1 – 3(k – 1) \) cut-edges having no \(2k \)-factor.

When \(k > (2r + 1)/3 \) or \(G \) has more than \(2r – 3(k – 1) \) cut-edges, how large a \(2k \)-regular subgraph is forced? We solve this for \(k = r = 1 \).
Our Results

Thm. (Hanson–Loten–Toft [1998]) For $r \geq 1$, every $(2r+1)$-regular graph with $\leq 2r$ cut-edges has 2-factor.

Thm. (KRTWZ [2018+]) For $k \leq (2r + 1)/3$, every $(2r+1)$-regular graph with $\leq 2r – 3(k – 1)$ cut-edges has a $2k$-factor. Also, both inequalities are sharp.

Thm. We find all $(2r+1)$-regular connected graphs with exactly $2r+1 – 3(k – 1)$ cut-edges having no $2k$-factor.

When $k > (2r + 1)/3$ or G has more than $2r – 3(k – 1)$ cut-edges, how large a $2k$-regular subgraph is forced? We solve this for $k = r = 1$.

Thm. (CKKPW [2018+]) Every 3-regular n-vertex graph with c cut-edges has a 2-regular subgraph with at least $n – \left\lfloor \frac{c-1}{2} \right\rfloor$ vertices (when $c > 0$), and this is sharp.
Our Results

Thm. (Hanson–Loten–Toft [1998]) For $r \geq 1$, every $(2r+1)$-regular graph with $\leq 2r$ cut-edges has 2-factor.

Thm. (KRTWZ [2018+]) For $k \leq (2r + 1)/3$, every $(2r+1)$-regular graph with $\leq 2r - 3(k - 1)$ cut-edges has a $2k$-factor. Also, both inequalities are sharp.

Thm. We find all $(2r+1)$-regular connected graphs with exactly $2r+1 - 3(k - 1)$ cut-edges having no $2k$-factor.

When $k > (2r + 1)/3$ or G has more than $2r - 3(k - 1)$ cut-edges, how large a $2k$-regular subgraph is forced? We solve this for $k = r = 1$.

Thm. (CKKPW [2018+]) Every 3-regular n-vertex graph with c cut-edges has a 2-regular subgraph with at least $n - \left\lfloor \frac{c-1}{2} \right\rfloor$ vertices (when $c > 0$), and this is sharp.

All the results also apply to multigraphs.
Our tool: Belck’s Theorem for \(l \)-factors

A special case of the \(f \)-factor Theorem of Tutte [1952].
Our tool: Belck’s Theorem for l-factors

A special case of the f-factor Theorem of Tutte [1952].

Notation: For $T \subseteq V(G)$, let $d_G(T) = \sum_{v \in T} d_G(v)$.
Our tool: Belck’s Theorem for l-factors

A special case of the f-factor Theorem of Tutte [1952].

Notation: For $T \subseteq V(G)$, let $d_G(T) = \sum_{v \in T} d_G(v)$. Also $\|T\| = |E(G[T])|$ and
Our tool: Belck’s Theorem for \(l\)-factors

A special case of the \(f\)-factor Theorem of Tutte [1952].

Notation: For \(T \subseteq V(G)\), let \(d_G(T) = \sum_{v \in T} d_G(v)\).
Also \(\|T\| = |E(G[T])|\) and \(\|A, B\| = |[A, B]|\).
Our tool: Belck's Theorem for ℓ-factors

A special case of the f-factor Theorem of Tutte [1952].

Notation: For $T \subseteq V(G)$, let $d_G(T) = \sum_{v \in T} d_G(v)$.

Also $\|T\| = |E(G[T])|$ and $\|A, B\| = |[A, B]|$.

Thm. (Belck [1950]) A multigraph G has a ℓ-factor iff

$$q(S, T) \leq \ell(|S| - |T|) + d_{G-S}(T)$$

for all disjoint $S, T \subset V(G)$, where $q(S, T)$ counts the components Q of $G-S-T$ with $\|T, V(Q)\| + \ell|V(Q)|$ odd.
Our tool: Belck’s Theorem for \(l \)-factors

A special case of the \(f \)-factor Theorem of Tutte [1952].

Notation: For \(T \subseteq V(G) \), let \(d_G(T) = \sum_{v \in T} d_G(v) \).
Also \(\|T\| = |E(G[T])| \) and \(\|A, B\| = |[A, B]| \).

Thm. (Belck [1950]) A multigraph \(G \) has a \(l \)-factor iff

\[
q(S, T) \leq l(|S| - |T|) + d_{G-S}(T)
\]

for all disjoint \(S, T \subset V(G) \), where \(q(S, T) \) counts the components \(Q \) of \(G-S-T \) with \(\|T, V(Q)\| + l|V(Q)| \) odd.

- For \(l = 1 \), setting \(T = \emptyset \) reduces to the 1-factor condition \(o(G - S) \leq |S| \).
Our tool: Belck’s Theorem for l-factors

A special case of the f-factor Theorem of Tutte [1952].

Notation: For $T \subseteq V(G)$, let $d_G(T) = \sum_{\nu \in T} d_G(\nu)$.
Also $\|T\| = |E(G[T])|$ and $\|A, B\| = |[A, B]|$.

Thm. (Belck [1950]) A multigraph G has a l-factor iff

$$q(S, T) \leq l(|S| - |T|) + d_{G-S}(T)$$

for all disjoint $S, T \subset V(G)$, where $q(S, T)$ counts the components Q of $G-S-T$ with $\|T, V(Q)\| + l |V(Q)|$ odd.

- For $l = 1$, setting $T = \emptyset$ reduces to the 1-factor condition $o(G-S) \leq |S|$.

If $l = 2k$, then Q is “T-odd” iff $\|T, V(Q)\|$ is odd.
Our tool: Belck’s Theorem for l-factors

A special case of the f-factor Theorem of Tutte [1952].

Notation: For $T \subseteq V(G)$, let $d_G(T) = \sum_{\nu \in T} d_G(\nu)$. Also $\|T\| = |E(G[T])|$ and $\|A, B\| = |[A, B]|$.

Thm. (Belck [1950]) A multigraph G has a l-factor iff

$$q(S, T) \leq l(|S| - |T|) + d_{G-S}(T)$$

for all disjoint $S, T \subset V(G)$, where $q(S, T)$ counts the components Q of $G - S - T$ with $\|T, V(Q)\| + l|V(Q)|$ odd.

- For $l = 1$, setting $T = \emptyset$ reduces to the 1-factor condition $o(G - S) \leq |S|$.

If $l = 2k$, then Q is “T-odd” iff $\|T, V(Q)\|$ is odd.

Hence $q(S, T) \equiv \|T, R\| \mod 2$, where $R = V(G) - S - T$.
Our tool: Belck’s Theorem for ℓ-factors

A special case of the f-factor Theorem of Tutte [1952].

Notation: For $T \subseteq V(G)$, let $d_G(T) = \sum_{\nu \in T} d_G(\nu)$. Also $||T|| = |E(G[T])|$ and $||A, B|| = |[A, B]|$.

Thm. (Belck [1950]) A multigraph G has a ℓ-factor iff

$$q(S, T) \leq \ell(|S| - |T|) + d_{G-S}(T)$$

for all disjoint $S, T \subset V(G)$, where $q(S, T)$ counts the components Q of $G-S-T$ with $||T, V(Q)|| + \ell|V(Q)|$ odd.

- For $\ell = 1$, setting $T = \emptyset$ reduces to the 1-factor condition $o(G - S) \leq |S|$.

If $\ell = 2k$, then Q is “T-odd” iff $||T, V(Q)||$ is odd.

Hence $q(S, T) \equiv ||T, R|| \mod 2$, where $R = V(G) - S - T$.

Also $d_{G-S}(T) = 2 ||T|| + ||T, R||$.
Our tool: Belck’s Theorem for l-factors

A special case of the f-factor Theorem of Tutte [1952].

Notation: For $T \subseteq V(G)$, let $d_G(T) = \sum_{\nu \in T} d_G(\nu)$. Also $\|T\| = |E(G[T])|$ and $\|A, B\| = |[A, B]|$.

Thm. (Belck [1950]) A multigraph G has a l-factor iff

$$q(S, T) \leq l(|S| - |T|) + d_{G-S}(T)$$

for all disjoint $S, T \subset V(G)$, where $q(S, T)$ counts the components Q of $G-S-T$ with $\|T, V(Q)\| + l|V(Q)|$ odd.

- For $l = 1$, setting $T = \emptyset$ reduces to the 1-factor condition $o(G - S) \leq |S|$.

If $l = 2k$, then Q is “T-odd” iff $\|T, V(Q)\|$ is odd.

Hence $q(S, T) \equiv \|T, R\| \mod 2$, where $R = V(G) - S - T$.

Also $d_{G-S}(T) = 2 \|T\| + \|T, R\|$. \quad \therefore d_{G-S}(T) \equiv \|T, R\|.$
Our tool: Belck’s Theorem for ℓ-factors

A special case of the \(f \)-factor Theorem of Tutte [1952].

Notation: For \(T \subseteq V(G) \), let \(d_G(T) = \sum_{\nu \in T} d_G(\nu) \).

Also \(||T|| = |E(G[T])| \) and \(||A, B|| = |[A, B]| \).

Thm. (Belck [1950]) A multigraph \(G \) has a \(ℓ \)-factor iff

\[
q(S, T) \leq ℓ(|S| - |T|) + d_{G−S}(T)
\]

for all disjoint \(S, T \subset V(G) \), where \(q(S, T) \) counts the components \(Q \) of \(G−S−T \) with \(||T, V(Q)|| + ℓ|V(Q)| \) odd.

- For \(ℓ = 1 \), setting \(T = ∅ \) reduces to the 1-factor condition \(o(G − S) \leq |S| \).

If \(ℓ = 2k \), then \(Q \) is “\(T \)-odd” iff \(||T, V(Q)|| \) is odd.

Hence \(q(S, T) \equiv ||T, R|| \mod 2 \), where \(R = V(G) − S − T \).

Also \(d_{G−S}(T) = 2 ||T|| + ||T, R||. \) \(\therefore d_{G−S}(T) \equiv ||T, R||. \)

Parity Lemma: No \(2k \)-factor \(\Rightarrow \exists \) disjoint \(S, T \) with

\[
q(S, T) \geq 2k(|S| − |T|) + d_{G−S}(T) + 2.
\]
Sufficient Condition for $2k$-factor

Thm. For $k \leq (2r+1)/3$, every $(2r+1)$-regular multigraph with at most $2r - 3(k - 1)$ cut-edges has a $2k$-factor.
Sufficient Condition for $2k$-factor

Thm. For $k \leq (2r+1)/3$, every $(2r+1)$-regular multigraph with at most $2r - 3(k - 1)$ cut-edges has a $2k$-factor.

Pf. Suppose no $2k$-factor. We prove $c > 2r - 3(k - 1)$.
Sufficient Condition for $2k$-factor

Thm. For $k \leq (2r+1)/3$, every $(2r+1)$-regular multigraph with at most $2r - 3(k - 1)$ cut-edges has a $2k$-factor.

Pf. Suppose no $2k$-factor. We prove $c > 2r - 3(k - 1)$. Split $V(G)$ into R, S, T such that

$$q(S, T) \geq 2k(|S| - |T|) + d_{G-S}(T) + 2. \quad (\ast)$$
Thm. For $k \leq (2r+1)/3$, every $(2r+1)$-regular multigraph with at most $2r - 3(k - 1)$ cut-edges has a $2k$-factor.

Pf. Suppose no $2k$-factor. We prove $c > 2r - 3(k - 1)$.

Split $V(G)$ into R, S, T such that

$$q(S, T) \geq 2k(|S| - |T|) + d_{G-S}(T) + 2. \quad (\ast)$$

Recall $q(S, T) = \#Q$ in $G - S - T$ so that $||T, V(Q)||$ is odd.
Sufficient Condition for $2k$-**factor**

Thm. For $k \leq (2r+1)/3$, every $(2r+1)$-regular multigraph with at most $2r - 3(k - 1)$ cut-edges has a $2k$-factor.

Pf. Suppose no $2k$-factor. We prove $c > 2r - 3(k - 1)$.

Split $V(G)$ into R, S, T such that

$$q(S, T) \geq 2k(|S| - |T|) + d_{G-S}(T) + 2. \quad (\ast)$$

Recall $q(S, T) = \#Q$ in $G - S - T$ so that $\|T, V(Q)\|$ is odd.

Let $q(S, T) = q_1 + q_2 + q_3$, counting three types of Q.
Sufficient Condition for $2k$-factor

Thm. For $k \leq (2r+1)/3$, every $(2r+1)$-regular multigraph with at most $2r - 3(k - 1)$ cut-edges has a $2k$-factor.

Pf. Suppose no $2k$-factor. We prove $c > 2r - 3(k - 1)$.

Split $V(G)$ into R, S, T such that

$$q(S, T) \geq 2k(|S| - |T|) + d_{G-S}(T) + 2. \quad (*)$$

Recall $q(S, T) = \#Q$ in $G - S - T$ so that $||T, V(Q)||$ is odd.

Let $q(S, T) = q_1 + q_2 + q_3$, counting three types of Q.

$q_1 : \quad S \quad Q \quad T \quad q_1 \leq c$
Sufficient Condition for $2k$-factor

Thm. For $k \leq (2r+1)/3$, every $(2r+1)$-regular multigraph with at most $2r - 3(k - 1)$ cut-edges has a $2k$-factor.

Pf. Suppose no $2k$-factor. We prove $c > 2r - 3(k - 1)$.

Split $V(G)$ into R, S, T such that

$$q(S, T) \geq 2k(|S| - |T|) + d_{G-S}(T) + 2.$$ \hspace{1cm} (\ast)

Recall $q(S, T) = \#Q$ in $G - S - T$ so that $\|T, V(Q)\|$ is odd.

Let $q(S, T) = q_1 + q_2 + q_3$, counting three types of Q.

q_1:

$$
\begin{align*}
& q_1 : \\
& S \quad \quad \quad \quad Q \quad \quad \quad T \\
& |S| \quad \quad \quad \quad |Q| \quad \quad \quad |T| \\
& q_1 \leq c
\end{align*}
$$

q_2:

$$
\begin{align*}
& q_2 : \\
& S \quad \quad \quad \quad Q \quad \quad \quad T \\
& |S| \quad \quad \quad \quad |Q| \quad \quad \quad |T| \\
& q_2 \leq \|R, S\|
\end{align*}
$$
Sufficient Condition for $2k$-factor

Thm. For $k \leq (2r+1)/3$, every $(2r+1)$-regular multigraph with at most $2r - 3(k - 1)$ cut-edges has a $2k$-factor.

Pf. Suppose no $2k$-factor. We prove $c > 2r - 3(k - 1)$.

Split $V(G)$ into R, S, T such that
\[q(S, T) \geq 2k(|S| - |T|) + d_{G-S}(T) + 2. \tag{*} \]

Recall $q(S, T) = \#Q$ in $G - S - T$ so that $||T, V(Q)||$ is odd.

Let $q(S, T) = q_1 + q_2 + q_3$, counting three types of Q.

$q_1 : \quad S \quad \quad Q \quad \quad T \quad \quad q_1 \leq c$

$q_2 : \quad S \quad \quad \geq \quad Q \quad \quad T \quad \quad q_2 \leq ||R, S||$

$q_3 : \quad S \quad \quad ? \quad Q \quad \quad T \quad \quad q_1 + q_2 + 3q_3 \leq d_{G-S}(T)$
Sufficient Condition for $2k$-factor

Thm. For $k \leq (2r+1)/3$, every $(2r+1)$-regular multigraph with at most $2r - 3(k - 1)$ cut-edges has a $2k$-factor.

Pf. Suppose no $2k$-factor. We prove $c > 2r - 3(k - 1)$.

Split $V(G)$ into R, S, T such that

$$q(S, T) \geq 2k(|S| - |T|) + d_{G-S}(T) + 2. \quad (*)$$

Recall $q(S, T) = \#Q$ in $G - S - T$ so that $||T, V(Q)||$ is odd.

Let $q(S, T) = q_1 + q_2 + q_3$, counting three types of Q.

- q_1:
 - $q_1 \leq c$

- q_2:
 - $q_2 \leq ||R, S||$

- q_3:
 - $q_1 + q_2 + 3q_3 \leq d_{G-S}(T)$

$$3q(S, T) = 3(q_1 + q_2 + q_3) \leq 2c + 2 ||R, S|| + d_{G-S}(T)$$
Lower Bound on Number of Cut-Edges, c

The upper and lower bounds on $3q(S, T)$ yield

$$2c + 2 \|R, S\| + d_{G-S}(T) \geq 3d_{G-S}(T) + 6k(|S| - |T|) + 6,$$
Lower Bound on Number of Cut-Edges, c

The upper and lower bounds on $3q(S, T)$ yield

$$2c + 2 \|R, S\| + d_{G-S}(T) \geq 3d_{G-S}(T) + 6k(|S| - |T|) + 6,$$

simplifying to

$$c \geq d_{G-S}(T) + 3k(|S| - |T|) - \|R, S\| + 3.$$
Lower Bound on Number of Cut-Edges, c

The upper and lower bounds on $3q(S, T)$ yield

$$2c + 2 \|R, S\| + d_{G-S}(T) \geq 3d_{G-S}(T) + 6k(|S| - |T|) + 6,$$

simplifying to

$$c \geq d_{G-S}(T) + 3k(|S| - |T|) - \|R, S\| + 3.$$

Since G is $(2r + 1)$-regular, $d_{G-S}(T) = (2r + 1)|T| - \|T, S\| \geq (2r + 1)|T| - [(2r + 1)|S| - \|R, S\|].$
Lower Bound on Number of Cut-Edges, c

The upper and lower bounds on $3q(S, T)$ yield
\[
2c + 2 \|R, S\| + d_{G-S}(T) \geq 3d_{G-S}(T) + 6k(|S| - |T|) + 6,
\]

simplifying to $c \geq d_{G-S}(T) + 3k(|S| - |T|) - \|R, S\| + 3$.

Since G is $(2r + 1)$-regular, $d_{G-S}(T) = (2r + 1)|T| - \|T, S\| \geq (2r + 1)|T| - [(2r + 1)|S| - \|R, S\|]$.

Hence $c \geq (2r + 1 - 3k)(|T| - |S|) + 3$.
Lower Bound on Number of Cut-Edges, c

The upper and lower bounds on $3q(S, T)$ yield

$$2c + 2 \|R, S\| + d_{G-S}(T) \geq 3d_{G-S}(T) + 6k(|S| - |T|) + 6,$$

simplifying to

$$c \geq d_{G-S}(T) + 3k(|S| - |T|) - \|R, S\| + 3.$$

Since G is $(2r + 1)$-regular, $d_{G-S}(T) = (2r + 1)|T| - \|T, S\| \geq (2r + 1)|T| - [(2r + 1)|S| - \|R, S\|].$

Hence

$$c \geq (2r + 1 - 3k)(|T| - |S|) + 3.$$

Finally, every Q counted by $q(S, T)$ adds at least 1 to $d_{G-S}(T)$, since $\|T, V(Q)\|$ is odd.
Lower Bound on Number of Cut-Edges, c

The upper and lower bounds on $3q(S, T)$ yield
$$2c + 2 \|R, S\| + d_{G-S}(T) \geq 3d_{G-S}(T) + 6k(|S| - |T|) + 6,$$
simplifying to
$$c \geq d_{G-S}(T) + 3k(|S| - |T|) - \|R, S\| + 3.$$

Since G is $(2r + 1)$-regular, $d_{G-S}(T) = (2r + 1)|T| - \|T, S\| \geq (2r + 1)|T| - [(2r + 1)|S| - \|R, S\|].$

Hence
$$c \geq (2r + 1 - 3k)(|T| - |S|) + 3.$$

Finally, every Q counted by $q(S, T)$ adds at least 1 to $d_{G-S}(T)$, since $\|T, V(Q)\|$ is odd.

∴
$$d_{G-S}(T) \geq q(S, T),$$
The upper and lower bounds on $3q(S, T)$ yield
$2c + 2 \|R, S\| + d_{G-S}(T) \geq 3d_{G-S}(T) + 6k(|S| - |T|) + 6,$
simplifying to $c \geq d_{G-S}(T) + 3k(|S| - |T|) - \|R, S\| + 3.$

Since G is $(2r + 1)$-regular, $d_{G-S}(T) = (2r + 1)|T| - \|T, S\| \geq (2r + 1)|T| - [(2r + 1)|S| - \|R, S\|].$
Hence $c \geq (2r + 1 - 3k)(|T| - |S|) + 3.$

Finally, every Q counted by $q(S, T)$ adds at least 1 to $d_{G-S}(T),$ since $\|T, V(Q)\|$ is odd.

\[d_{G-S}(T) \geq q(S, T), \]
so $q(S, T) > d_{G-S}(T) + 2k(|S| - |T|)$ requires $|T| - |S| \geq 1.$
Lower Bound on Number of Cut-Edges, c

The upper and lower bounds on $3q(S, T)$ yield

$$2c + 2 \|R, S\| + d_{G-S}(T) \geq 3d_{G-S}(T) + 6k(|S| - |T|) + 6,$$

simplifying to $c \geq d_{G-S}(T) + 3k(|S| - |T|) - \|R, S\| + 3$.

Since G is $(2r + 1)$-regular, $d_{G-S}(T) = (2r + 1)|T| - \|T, S\| \geq (2r + 1)|T| - [(2r + 1)|S| - \|R, S\|].$

Hence $c \geq (2r + 1 - 3k)(|T| - |S|) + 3$.

Finally, every Q counted by $q(S, T)$ adds at least 1 to $d_{G-S}(T)$, since $\|T, V(Q)\|$ is odd.

$\therefore d_{G-S}(T) \geq q(S, T),$

so $q(S, T) > d_{G-S}(T) + 2k(|S| - |T|)$ requires $|T| - |S| \geq 1$.

Therefore, $c \geq 2r + 1 - 3(k - 1)$. \qed
The upper and lower bounds on $3q(S, T)$ yield
$2c + 2 \parallel R, S\parallel + d_{G-S}(T) \geq 3d_{G-S}(T) + 6k(|S| - |T|) + 6,$
simplifying to $c \geq d_{G-S}(T) + 3k(|S| - |T|) - \parallel R, S\parallel + 3.$

Since G is $(2r + 1)$-regular, $d_{G-S}(T) = (2r + 1)|T| - \parallel T, S\parallel \geq (2r + 1)|T| - [(2r + 1)|S| - \parallel R, S\parallel].$
Hence $c \geq (2r + 1 - 3k)(|T| - |S|) + 3.$

Finally, every Q counted by $q(S, T)$ adds at least 1 to $d_{G-S}(T)$, since $\parallel T, V(Q)\parallel$ is odd.

$\therefore d_{G-S}(T) \geq q(S, T),$
so $q(S, T) > d_{G-S}(T) + 2k(|S| - |T|)$ requires $|T| - |S| \geq 1.$

Therefore, $c \geq 2r + 1 - 3(k - 1).$ □

When does equality hold?
Characterization

For $k \leq (2r + 1)/3$, a $(2r + 1)$-regular multigraph with $c = 2r + 4 - 3k$ and no $2k$-factor must satisfy equality in all the inequalities producing $c \geq 2r + 1 - 3(k - 1)$.
Characterization

For \(k \leq \frac{2r+1}{3} \), a \((2r+1)\)-regular multigraph with \(c = 2r + 4 - 3k \) and no \(2k \)-factor must satisfy equality in all the inequalities producing \(c \geq 2r + 1 - 3(k - 1) \). Thus \(q_1 = c \), \(q_2 = \|R, S\| \), \(q_1 + q_2 + 3q_3 = d_{G-S}(T) \),

\[
(2r + 1)|S| = \|T, S\| + \|R, S\|,
\]

and \(|T| - |S| \geq 1 \) (with equality when \(k < \frac{(2r+1)}{3} \)).
Characterization

For $k \leq (2r + 1)/3$, a $(2r + 1)$-regular multigraph with $c = 2r + 4 − 3k$ and no $2k$-factor must satisfy equality in all the inequalities producing $c \geq 2r + 1 − 3(k − 1)$. Thus $q_1 = c$, $q_2 = ||R, S||$, $q_1 + q_2 + 3q_3 = d_{G−S}(T)$, $(2r + 1)|S| = ||T, S|| + ||R, S||$, and $|T| − |S| \geq 1$ (with equality when $k < (2r + 1)/3$).

Thm. For $k \leq (2r + 1)/3$, a $(2r + 1)$-regular G with $c = 2r + 4 − 3k$ has no $2k$-factor iff $V(G)$ splits to R, S, T so
(a) S and T are independent sets with $|T| > |S|$,
(b) all cut-edges join T to distinct components of $G[R]$,
(c) all edges at S lead to T (maybe via “blisters”),
(d) exactly $k(|T| − |S|) − 1$ components of $G[R]$ are joined to T by exactly three edges each,
(e) other comps. of R are $(2r + 1)$-regular, w/o cut-edge,
(f) if $k < (2r + 1)/3$, then $|T| − |S| = 1$.
Fewest Cut-Edges with No $2k$-factor
Fewest Cut-Edges with No $2k$-factor
Fewest Cut-Edges with No $2k$-factor

Def. Blistering an edge uv in a $(2r+1)$-regular multigraph

= insert a 2-edge-connected $(2r+1)$-regular multigraph

with one edge or loop cut and ends pasted to u & v.

\[u \rightarrow v \]

\[u \rightarrow v \]

\[u \rightarrow v \]
Fewest Cut-Edges with No $2k$-factor

Def. Blistering an edge uv in a $(2r+1)$-regular multigraph = insert a 2-edge-connected $(2r+1)$-regular multigraph with one edge or loop **cut** and **ends pasted** to u & v.

\[u \quad v \quad \rightarrow \quad u \quad \quad v \quad \text{ or } \quad u \quad \circ \quad v \]
Necessity of \(k \leq (2r + 1)/3 \)

Prop. For \(r \in \mathbb{N} \), when \(k > (2r + 1)/3 \) there are \((2r + 1)\)-regular graphs that are 3-edge-connected but have no \(2k \)-factor.
Necessity of \(k \leq (2r + 1)/3 \)

Prop. For \(r \in \mathbb{N} \), when \(k > (2r + 1)/3 \) there are \((2r + 1)\)-regular graphs that are 3-edge-connected but have no \(2k \)-factor.

Pf. Let \(B_r = C_3 + rP_2 \) (\(2r + 3 \) vertices, three with degree \(2r \) and the rest with degree \(2r + 1 \)).
Prop. For \(r \in \mathbb{N} \), when \(k > (2r + 1)/3 \) there are \((2r + 1)\)-regular graphs that are 3-edge-connected but have no 2k-factor.

Pf. Let \(B_r = C_3 + rP_2 \) (2r + 3 vertices, three with degree 2r and the rest with degree 2r + 1).

Form \(G \): add to \((2r + 1)B_r\) an independent 3-set \(T \), each adjacent to one deficient vertex in each copy of \(B_r \).
Necessity of \(k \leq (2r + 1)/3 \)

Prop. For \(r \in \mathbb{N} \), when \(k > (2r + 1)/3 \) there are \((2r + 1)\)-regular graphs that are 3-edge-connected but have no \(2k\)-factor.

Pf. Let \(B_r = C_3 + rP_2 \) (\(2r + 3 \) vertices, three with degree \(2r\) and the rest with degree \(2r + 1\)).

Form \(G \): add to \((2r + 1)B_r\) an independent 3-set \(T \), each adjacent to one deficient vertex in each copy of \(B_r \).

Let \(S = \emptyset \). Now \(q(S, T) = 2r + 1 \) and \(d_{G-S}(T) = 6r + 3 \).
Necessity of \(k \leq (2r + 1)/3 \)

Prop. For \(r \in \mathbb{N} \), when \(k > (2r + 1)/3 \) there are \((2r + 1)\)-regular graphs that are 3-edge-connected but have no \(2k\)-factor.

Pf. Let \(B_r = C_3 + rP_2 \) (\(2r + 3\) vertices, three with degree \(2r\) and the rest with degree \(2r + 1\)).

Form \(G \): add to \((2r + 1)B_r\) an independent 3-set \(T \), each adjacent to one deficient vertex in each copy of \(B_r \).

Let \(S = \emptyset \). Now \(q(S, T) = 2r + 1 \) and \(d_{G-S}(T) = 6r + 3 \).

\(G \) has no \(2k\)-factor if \(q(S, T) > d_{G-S}(T) + 2k(|S| - |T|) \), which is equivalent to \(6k > 4r + 2 \), or \(k > (2r + 1)/3 \).
2-Regular Subgraphs \((k = 1)\)

When \(c > 2r\), how large must \(f_2(G)\) be, where \(f_d(G) = \max \#\) verts in a \(d\)-regular subgraph?
2-Regular Subgraphs ($k = 1$)

When $c > 2r$, how large must $f_2(G)$ be, where $f_d(G) = \max \#\text{verts in a } d\text{-regular subgraph}$?

Thm. If G is a 3-regular n-vertex multigraph with c cut-edges (> 0), then $f_2(G) \geq n - \left\lfloor \frac{c-1}{2} \right\rfloor$.
2-Regular Subgraphs ($k = 1$)

When $c > 2r$, how large must $f_2(G)$ be, where $f_d(G) = \max$ #verts in a d-regular subgraph?

Thm. If G is a 3-regular n-vertex multigraph with c cut-edges (> 0), then $f_2(G) \geq n - \left\lfloor \frac{c-1}{2} \right\rfloor$. This is sharp.
2-Regular Subgraphs ($k = 1$)

When $c > 2r$, how large must $f_2(G)$ be, where $f_d(G) = \max$ #verts in a d-regular subgraph?

Thm. If G is a 3-regular n-vertex multigraph with c cut-edges (> 0), then $f_2(G) \geq n - \left\lfloor \frac{c-1}{2} \right\rfloor$. This is sharp.

Prop. (O–West [2010]) In cubic n-vertex graphs, $c \leq \frac{n-7}{3}$.
2-Regular Subgraphs \((k = 1) \)

When \(c > 2r \), how large must \(f_2(G) \) be, where \(f_d(G) = \max \# \text{verts in a } d \)-regular subgraph?

Thm. If \(G \) is a 3-regular \(n \)-vertex multigraph with \(c \) cut-edges \((> 0)\), then \(f_2(G) \geq n - \left\lfloor \frac{c-1}{2} \right\rfloor \). This is sharp.

Prop. (O–West [2010]) In cubic \(n \)-vertex graphs, \(c \leq \frac{n-7}{3} \).

Cor. \(G \) a cubic \(n \)-vertex graph \(\Rightarrow \ f_2(G) \geq \left\lceil \frac{5}{6}(n+2) \right\rceil \). (For loopless multigraphs, change \(\frac{5}{6} \) to \(\frac{3}{4} \).) Both sharp.
2-Regular Subgraphs \((k = 1)\)

When \(c > 2r\), how large must \(f_2(G)\) be, where \(f_d(G) = \max \# \text{verts in a } d\text{-regular subgraph?}\)

Thm. If \(G\) is a 3-regular \(n\)-vertex multigraph with \(c\) cut-edges \((> 0)\), then \(f_2(G) \geq n - \left\lfloor \frac{c-1}{2} \right\rfloor\). This is sharp.

Prop. (O–West [2010]) In cubic \(n\)-vertex graphs, \(c \leq \frac{n-7}{3}\).

Cor. \(G\) a cubic \(n\)-vertex graph \(\Rightarrow f_2(G) \geq \left\lceil \frac{5}{6}(n + 2) \right\rceil\).

(For loopless multigraphs, change \(\frac{5}{6}\) to \(\frac{3}{4}\).) Both sharp.

To prove Thm, extend to subcubic multigraph \((\Delta(G) \leq 3)\).
2-Regular Subgraphs \((k = 1)\)

When \(c > 2r\), how large must \(f_2(G)\) be, where \(f_d(G) = \max \#\text{verts in a } d\)-regular subgraph?

Thm. If \(G\) is a 3-regular \(n\)-vertex multigraph with \(c\) cut-edges (> 0), then \(f_2(G) \geq n - \left\lfloor \frac{c-1}{2} \right\rfloor\). This is sharp.

Prop. (O–West [2010]) In cubic \(n\)-vertex graphs, \(c \leq \frac{n-7}{3}\).

Cor. \(G\) a cubic \(n\)-vertex graph \(\Rightarrow f_2(G) \geq \left\lceil \frac{5}{6}(n + 2) \right\rceil\). (For loopless multigraphs, change \(\frac{5}{6}\) to \(\frac{3}{4}\).) Both sharp.

To prove Thm, extend to subcubic multigraph \((\Delta(G) \leq 3)\). The deficit \(d\) is \(3n - \sum d_G(v)\), or \(3n - 2|E(G)|\).
2-Regular Subgraphs \((k = 1)\)

When \(c > 2r\), how large must \(f_2(G)\) be, where \(f_d(G) = \max \#\text{verts in a } d\text{-regular subgraph}\

Thm. If \(G\) is a 3-regular \(n\)-vertex multigraph with \(c\) cut-edges \((> 0)\), then \(f_2(G) \geq n - \left\lfloor \frac{c-1}{2} \right\rfloor\). This is sharp.

Prop. (O–West [2010]) In cubic \(n\)-vertex graphs, \(c \leq \frac{n-7}{3}\).

Cor. \(G\) a cubic \(n\)-vertex graph \(\Rightarrow f_2(G) \geq \left\lceil \frac{5}{6}(n + 2) \right\rceil\). (For loopless multigraphs, change \(\frac{5}{6}\) to \(\frac{3}{4}\).) Both sharp.

To prove Thm, extend to subcubic multigraph \((\Delta(G) \leq 3)\). The deficit \(d\) is \(3n - \sum d_G(v)\), or \(3n - 2|E(G)|\).

Thm. For \(c + d > 0\), a subcubic \(n\)-vertex multigraph \(G\) with \(c\) cut-edges and deficit \(d\) has a 2-regular subgraph omitting at most \(\left\lfloor \frac{d+c-1}{2} \right\rfloor\) vertices, and this is sharp.
Examples

\[d + c > 0 \implies \text{2-regular subgr. with } \geq n - \left\lfloor \frac{d+c-1}{2} \right\rfloor \text{ verts.} \]
Examples

\[d + c > 0 \implies \text{2-regular subgr. with } \geq n - \left\lfloor \frac{d+c-1}{2} \right\rfloor \text{ verts}. \]

Ex. **Trees:** \(d = 3n - 2(n - 1) = n + 2, \ c = n - 1, \)
\(d + c - 1 = 2n. \) A tree has no 2-regular subgraph.
Examples

\[d + c > 0 \implies \text{2-regular subgr. with } \geq n - \left\lfloor \frac{d+c-1}{2} \right\rfloor \text{ verts.} \]

Ex. Trees: \[d = 3n - 2(n - 1) = n + 2, \ c = n - 1, \]
\[d + c - 1 = 2n. \] A tree has no 2-regular subgraph.

Ex. Balloons: (Subdivide one edge in 3-regular graph \(H\) with \(c = 0\) to get \(G\). \[d + c - 1 = 0 \] and \(G\) has 2-factor (since \(H\) has a 1-factor avoiding any edge).
Examples

\[d + c > 0 \implies \text{2-regular subgr. with } \geq n - \left\lfloor \frac{d+c-1}{2} \right\rfloor \text{ verts.} \]

Ex. Trees: \(d = 3n - 2(n - 1) = n + 2, \ c = n - 1, \ d + c - 1 = 2n \). A tree has no 2-regular subgraph.

Ex. Balloons: (Subdivide one edge in 3-regular graph \(H \) with \(c = 0 \) to get \(G \)). \(d + c - 1 = 0 \) and \(G \) has 2-factor (since \(H \) has a 1-factor avoiding any edge).

Ex. Bipartite multigraphs: \(H = \) cubic, \(G = H - \hat{y} \) (2-connected). \(d + c - 1 = 3 + 0 - 1 = 2 \), has no 2-factor.
Examples

\[d + c > 0 \implies \text{2-regular subgr. with } \geq n - \left\lfloor \frac{d+c-1}{2} \right\rfloor \text{ verts.} \]

Ex. Trees: \(d = 3n - 2(n - 1) = n + 2, \ c = n - 1, \ d + c - 1 = 2n. \) A tree has no 2-regular subgraph.

Ex. Balloons: (Subdivide one edge in 3-regular graph \(H \) with \(c = 0 \) to get \(G \). \(d + c - 1 = 0 \) and \(G \) has 2-factor (since \(H \) has a 1-factor avoiding any edge).

Ex. Bipartite multigraphs: \(H = \text{cubic}, \ G = H - \hat{y} \) (2-connected). \(d + c - 1 = 3 + 0 - 1 = 2, \) has no 2-factor.

Explode any vertex \(y \in Y \) using 2-connected cubic \(F \)
Examples

\[d + c > 0 \Rightarrow \text{2-regular subgr. with} \geq n - \left\lfloor \frac{d+c-1}{2} \right\rfloor \text{ verts.} \]

Ex. Trees: \(d = 3n - 2(n - 1) = n + 2, \ c = n - 1, \ d + c - 1 = 2n. \) A tree has no 2-regular subgraph.

Ex. Balloons: (Subdivide one edge in 3-regular graph \(H \) with \(c = 0 \) to get \(G \)). \(d + c - 1 = 0 \) and \(G \) has 2-factor (since \(H \) has a 1-factor avoiding any edge).

Ex. Bipartite multigraphs: \(H = \text{cubic}, \ G = H - \hat{y} \) (2-connected). \(d + c - 1 = 3 + 0 - 1 = 2, \) has no 2-factor.

Explode any vertex \(y \in Y \) using 2-connected cubic \(F \).
The Result

Let \mathcal{F} be the family of all multigraphs obtained from cubic bipartite multigraphs in this way. (Delete one vertex, explode some subset of vertices in that part.)
The Result

Let \mathcal{F} be the family of all multigraphs obtained from cubic bipartite multigraphs in this way. (Delete one vertex, explode some subset of vertices in that part.)

Thm. For a subcubic n-vertex multigraph G with deficit d and c cut-edges, $f_2(G) \geq n - \max\{0, \left\lfloor \frac{d+c-1}{2} \right\rfloor \}$.
The Result

Let \mathcal{F} be the family of all multigraphs obtained from cubic bipartite multigraphs in this way. (Delete one vertex, explode some subset of vertices in that part.)

Thm. For a subcubic n-vertex multigraph G with deficit d and c cut-edges, $f_2(G) \geq n - \max\{0, \left\lfloor \frac{d+c-1}{2} \right\rfloor \}$. When G is connected, equality holds if and only if each component after deleting all the cut-edges is a single vertex, a balloon, or a graph in \mathcal{F}.
The Result

Let \mathcal{F} be the family of all multigraphs obtained from cubic bipartite multigraphs in this way. (Delete one vertex, explode some subset of vertices in that part.)

Thm. For a subcubic n-vertex multigraph G with deficit d and c cut-edges, $f_2(G) \geq n - \max\{0, \left\lfloor \frac{d+c-1}{2} \right\rfloor \}$. When G is connected, equality holds if and only if each component after deleting all the cut-edges is a single vertex, a balloon, or a graph in \mathcal{F}.

Pf. Use induction on c.

The induction step $c > 0$ is easy and reduces the problem to the base case $c = 0$ for subcubic multigraphs w/o cut-edges.
Induction Step \((c > 0)\)

\(G\) has \(c\) cut-edges and deficit \(d\).
Induction Step \((c > 0)\)

\(G\) has \(c\) cut-edges and deficit \(d\).

Let \(G_i\) have \(c_i\) cut-edges and deficit \(d_i\).
Induction Step \((c > 0)\)

\(G\) has \(c\) cut-edges and deficit \(d\).

Let \(G_i\) have \(c_i\) cut-edges and deficit \(d_i\).

Some 2-regular subgraph \(H_i\) omits \(\leq \frac{d_i+c_i-1}{2}\) vertices.
Induction Step \((c > 0)\)

\(G\) has \(c\) cut-edges and deficit \(d\).

Let \(G_i\) have \(c_i\) cut-edges and deficit \(d_i\).

Some 2-regular subgraph \(H_i\) omits \(\leq \frac{d_i + c_i - 1}{2}\) vertices.

Since \(c = c_1 + c_2 + 1\) and \(d = d_1 + d_2 - 2\),
Induction Step ($c > 0$)

G has c cut-edges and deficit d.

Let G_i have c_i cut-edges and deficit d_i.

Some 2-regular subgraph H_i omits $\leq \frac{d_i + c_i - 1}{2}$ vertices.

Since $c = c_1 + c_2 + 1$ and $d = d_1 + d_2 - 2$,

Use $H_1 + H_2$; it omits at most $\frac{d + c - 1}{2}$ vertices.
Induction Step \((c > 0)\)

\(G\) has \(c\) cut-edges and deficit \(d\).

Let \(G_i\) have \(c_i\) cut-edges and deficit \(d_i\).

Some 2-regular subgraph \(H_i\) omits \(\leq \frac{d_i + c_i - 1}{2}\) vertices.

Since \(c = c_1 + c_2 + 1\) and \(d = d_1 + d_2 - 2\),

Use \(H_1 + H_2\); it omits at most \(\frac{d + c - 1}{2}\) vertices.

Furthermore, equality in the bound for \(G\) requires equality for both \(G_1\) and \(G_2\).
Base Case \((c = 0)\)

Reduce to \(n \geq 2\), mindegree 2, maxdegree 3.
Base Case \((c = 0)\)

Reduce to \(n \geq 2\), mindegree 2, maxdegree 3.

From \(G\), get weighted cubic \(G'\) – ‘suppress’ 2-vertices:

\[\begin{array}{c}
\bullet & \bullet & \bullet \\
\end{array} \quad \rightarrow \quad \begin{array}{c}
\bullet & 3 \\
\end{array} \]
Base Case \((c = 0)\)

Reduce to \(n \geq 2\), mindegree 2, maxdegree 3.

From \(G\), get weighted cubic \(G'\) – ‘suppress’ 2-vertices:

\[
\begin{array}{c}
\bullet \quad \bullet \quad \bullet \\
\end{array}
\quad \rightarrow \quad \begin{array}{c}
\bullet \quad 3 \quad \bullet \\
\end{array}
\]

\(G'\) is 3-regular, no cut-edge, has a perfect matching \(M\)
Base Case \((c = 0)\)

Reduce to \(n \geq 2\), mindegree 2, maxdegree 3.

From \(G\), get weighted cubic \(G'\) – ‘suppress’ 2-vertices:

\[
\begin{array}{c}
\text{\includegraphics[width=0.5\textwidth]{diagram.png}} \quad \rightarrow \quad \text{\includegraphics[width=0.1\textwidth]{diagram.png}}
\end{array}
\]

\(G'\) is 3-regular, no cut-edge, has a perfect matching \(M\) whose \textbf{weight} is at most \(1/3\) of the total weight.
Base Case \((c = 0)\)

Reduce to \(n \geq 2\), mindegree 2, maxdegree 3.

From \(G\), get weighted cubic \(G'\) – ‘suppress’ 2-vertices:

\[
\begin{array}{cccccc}
\bullet & \bullet & \bullet & \rightarrow & \bullet & \bullet
\end{array}
\]

\(G'\) is 3-regular, no cut-edge, has a perfect matching \(M\) whose weight is at most \(1/3\) of the total weight.

(O–West ['15], Naddef–Pulleyblank ['81], via Edmonds ['65])
Base Case \((c = 0)\)

Reduce to \(n \geq 2\), mindegree 2, maxdegree 3.

From \(G\), get weighted cubic \(G'\) – ‘suppress’ 2-vertices:

\[\bullet \bullet \bullet \bullet \rightarrow \bullet ^3 \]

\(G'\) is 3-regular, no cut-edge, has a perfect matching \(M\) whose weight is at most \(1/3\) of the total weight.

(O–West ['15], Naddef–Pulleyblank ['81], via Edmonds ['65])

\(G' - M\) is 2-regular, in \(G\) it gives a 2-regular subgraph \(H\) with \(\geq 2m/3\) edges and vertices, where \(m = |E(G)|\).
Base Case \((c = 0)\)

Reduce to \(n \geq 2\), mindegree 2, maxdegree 3.

From \(G\), get weighted cubic \(G'\) – ‘suppress’ 2-vertices:

\[
\begin{align*}
\begin{array}{c}
\bullet \bullet \bullet \\
\to \\
\bullet 3
\end{array}
\end{align*}
\]

\(G'\) is 3-regular, no cut-edge, has a perfect matching \(M\) whose weight is at most \(1/3\) of the total weight.

(O–West ['15], Naddef–Pulleyblank ['81], via Edmonds ['65])

\(G' - M\) is 2-regular, in \(G\) it gives a 2-regular subgraph \(H\) with \(\geq 2m/3\) edges and vertices, where \(m = |E(G)|\).

Omits \(n - |V(H)| \leq n - 2m/3\)
Base Case \((c = 0)\)

Reduce to \(n \geq 2\), mindegree 2, maxdegree 3.

From \(G\), get weighted cubic \(G'\) – ‘suppress’ 2-vertices:

\[
\begin{array}{c}
\bullet & \bullet & \bullet & \rightarrow \\
\bullet & \bullet & \bullet & 3
\end{array}
\]

\(G'\) is 3-regular, no cut-edge, has a perfect matching \(M\) whose weight is at most \(1/3\) of the total weight.

(O–West ['15], Naddef–Pulleyblank ['81], via Edmonds ['65])

\(G' - M\) is 2-regular, in \(G\) it gives a 2-regular subgraph \(H\) with \(\geq 2m/3\) edges and vertices, where \(m = |E(G)|\).

Omits \(n - |V(H)| \leq n - 2m/3 = d/3\), since \(d = 3n - 2m\).
Base Case \((c = 0)\)

Reduce to \(n \geq 2\), mindegree 2, maxdegree 3.

From \(G\), get weighted cubic \(G'\) – ‘suppress’ 2-vertices:

\[
\begin{array}{c}
\bullet \bullet \bullet \bullet \rightarrow \bullet \bullet \bullet \\
0 \quad 1 \quad 2 \quad 3
\end{array}
\]

\(G'\) is 3-regular, no cut-edge, has a perfect matching \(M\) whose weight is at most \(1/3\) of the total weight.

(O–West ['15], Naddef–Pulleyblank ['81], via Edmonds ['65])

\(G' - M\) is 2-regular, in \(G\) it gives a 2-regular subgraph \(H\) with \(\geq 2m/3\) edges and vertices, where \(m = |E(G)|\).

Omits \(n - |V(H)| \leq n - 2m/3 = d/3\), since \(d = 3n - 2m\).

If \(d > 3\), then \(\frac{d}{3} < \frac{d-1}{2} = \frac{d+c-1}{2}\).
Base Case \((c = 0)\)

Reduce to \(n \geq 2\), mindegree 2, maxdegree 3.

From \(G\), get weighted cubic \(G'\) – ‘suppress’ 2-vertices:

\[
\begin{array}{ccc}
\bullet & \bullet & \bullet \\
\end{array} \rightarrow \quad \begin{array}{c}
3
\end{array}
\]

\(G'\) is 3-regular, no cut-edge, has a perfect matching \(M\) whose weight is at most \(1/3\) of the total weight.

(O–West ['15], Naddef–Pulleyblank ['81], via Edmonds ['65])

\(G' - M\) is 2-regular, in \(G\) it gives a 2-regular subgraph \(H\) with \(\geq 2m/3\) edges and vertices, where \(m = |E(G)|\).

Omits \(n - |V(H)| \leq n - 2m/3 = d/3\), since \(d = 3n - 2m\).

If \(d > 3\), then \(\frac{d}{3} < \frac{d - 1}{2} = \frac{d + c - 1}{2}\). Bound holds, strictly!
Base Case \((c = 0)\)

Reduce to \(n \geq 2\), mindegree 2, maxdegree 3.

From \(G\), get weighted cubic \(G'\) – ‘suppress’ 2-vertices:

\[
\begin{array}{c}
\bullet \quad \bullet \quad \bullet \\
\end{array} \rightarrow \begin{array}{c}
\bullet \quad \bullet \\
\end{array} \quad 3
\]

\(G'\) is 3-regular, no cut-edge, has a perfect matching \(M\) whose weight is at most \(1/3\) of the total weight.

(\(O\–West \ ['15]\), Naddef–Pulleyblank \ ['81], via Edmonds \ ['65])

\(G' - M\) is 2-regular, in \(G\) it gives a 2-regular subgraph \(H\) with \(\geq 2m/3\) edges and vertices, where \(m = |E(G)|\).

Omits \(n - |V(H)| \leq n - 2m/3 = d/3\), since \(d = 3n - 2m\).

If \(d > 3\), then \(\frac{d}{3} < \frac{d-1}{2} = \frac{d+c-1}{2}\). \(\text{Bound holds, strictly!}\)

If \(d \leq 2\), then \(G'\) has a 1-factor avoiding the edges from suppressed vertices (\(Plesník [1972]\)); delete it from \(G\)!
Base Case \((c = 0)\)

Reduce to \(n \geq 2\), mindegree 2, maxdegree 3.

From \(G\), get weighted cubic \(G'\) – ‘suppress’ 2-vertices:

\[
\begin{array}{c}
\bullet-ullet-ullet \\
\quad \rightarrow \quad \bullet \quad 3
\end{array}
\]

\(G'\) is 3-regular, no cut-edge, has a perfect matching \(M\) whose weight is at most \(1/3\) of the total weight.

(O–West ['15], Naddef–Pulleyblank ['81], via Edmonds ['65])

\(G' - M\) is 2-regular, in \(G\) it gives a 2-regular subgraph \(H\) with \(\geq 2m/3\) edges and vertices, where \(m = |E(G)|\).

Omits \(n - |V(H)| \leq n - 2m/3 = d/3\), since \(d = 3n - 2m\).

If \(d > 3\), then \(\frac{d}{3} < \frac{d-1}{2} = \frac{d+c-1}{2}\). Bound holds, strictly!

If \(d \leq 2\), then \(G'\) has a 1-factor avoiding the edges from suppressed vertices (Plesník [1972]); delete it from \(G\)!

If \(d = 3\) and no 2-factor (and \(c = 0\)), show that \(G \in \mathcal{F}\).
The Case $d = 3$ and $c = 0$ and no 2-factor

At each of the three 2-vertices of G, add a cut-edge and a balloon to form a 3-regular graph G'.
The Case $d = 3$ and $c = 0$ and no 2-factor

At each of the three 2-vertices of G, add a cut-edge and a balloon to form a 3-regular graph G'. If G' has a 1-factor, deleting it leaves a 2-factor in G.
The Case \(d = 3 \) and \(c = 0 \) and no 2-factor

At each of the three 2-vertices of \(G \), add a cut-edge and a balloon to form a 3-regular graph \(G' \).

If \(G' \) has a 1-factor, deleting it leaves a 2-factor in \(G \). Otherwise, \(G' \) has a Tutte set \(S \) with \(o(G' - S) \geq |S| + 2 \).
The Case $d = 3$ and $c = 0$ and no 2-factor

At each of the three 2-vertices of G, add a cut-edge and a balloon to form a 3-regular graph G'. If G' has a 1-factor, deleting it leaves a 2-factor in G. Otherwise, G' has a Tutte set S with $o(G' - S) \geq |S| + 2$. The number of edges from S to each odd component of $G' - S$ is odd.
The Case $d = 3$ and $c = 0$ and no 2-factor

At each of the three 2-vertices of G, add a cut-edge and a balloon to form a 3-regular graph G'. If G' has a 1-factor, deleting it leaves a 2-factor in G. Otherwise, G' has a Tutte set S with $o(G' - S) \geq |S| + 2$. The number of edges from S to each odd component of $G' - S$ is odd. Let $m = ||S, V(G' - S)||$; note $m \leq 3|S|$.
The Case $d = 3$ and $c = 0$ and no 2-factor

At each of the three 2-vertices of G, add a cut-edge and a balloon to form a 3-regular graph G'.

If G' has a 1-factor, deleting it leaves a 2-factor in G. Otherwise, G' has a Tutte set S with $o(G' - S) \geq |S| + 2$.
#edges from S to each odd component of $G' - S$ is odd.

Let $m = ||S, V(G' - S)||$; note $m \leq 3|S|$.

G has no cut-edge, so $m \geq 3 + 3[o(G' - S) - 3] \geq 3 + 3(|S| - 1)$.
The Case \(d = 3 \) and \(c = 0 \) and no 2-factor

At each of the three 2-vertices of \(G \), add a cut-edge and a balloon to form a 3-regular graph \(G' \).

If \(G' \) has a 1-factor, deleting it leaves a 2-factor in \(G \). Otherwise, \(G' \) has a Tutte set \(S \) with \(o(G' - S) \geq |S| + 2 \).

#edges from \(S \) to each odd component of \(G' - S \) is odd.

Let \(m = ||S, V(G' - S)|| \); note \(m \leq 3|S| \).

\(G \) has no cut-edge, so \(m \geq 3 + 3[o(G' - S) - 3] \geq 3 + 3(|S| - 1) \).

\(\therefore m = 3|S| \), and \(S \) is independent, and \(G' - S \) consists of the balloons plus odd components getting three edges.
The Case $d = 3$ and $c = 0$ and no 2-factor

At each of the three 2-vertices of G, add a cut-edge and a balloon to form a 3-regular graph G'.

If G' has a 1-factor, deleting it leaves a 2-factor in G. Otherwise, G' has a Tutte set S with $\omega(G' - S) \geq |S| + 2$.

$\#$edges from S to each odd component of $G' - S$ is odd.

Let $m = \|S, V(G' - S)\|$; note $m \leq 3|S|$.

G has no cut-edge, so $m \geq 3 + 3[\omega(G' - S) - 3] \geq 3 + 3(|S| - 1)$.

$\therefore m = 3|S|$, and S is independent, and $G' - S$ consists of the balloons plus odd components getting three edges. The edges from S to them form the bipartite multigraph $H - \hat{y}$ used to build a graph in \mathcal{F}; the components that are not single vertices are exploded vertices.
The Case \(d = 3 \) and \(c = 0 \) and no 2-factor

At each of the three 2-vertices of \(G \), add a cut-edge and a balloon to form a 3-regular graph \(G' \).

If \(G' \) has a 1-factor, deleting it leaves a 2-factor in \(G \). Otherwise, \(G' \) has a Tutte set \(S \) with \(o(G' - S) \geq |S| + 2 \).

#edges from \(S \) to each odd component of \(G' - S \) is odd.

Let \(m = ||S, V(G' - S)|| \); note \(m \leq 3|S| \).

\(G \) has no cut-edge, so \(m \geq 3 + 3[o(G' - S) - 3] \geq 3 + 3(|S| - 1) \).

\(m = 3|S| \), and \(S \) is independent, and \(G' - S \) consists of the balloons plus odd components getting three edges.

The edges from \(S \) to them form the bipartite multigraph \(H - \hat{y} \) used to build a graph in \(\mathcal{F} \); the components that are not single vertices are exploded vertices.
Open Problems

Ques. For a \((2r + 1)\)-regular graph with \(c\) cut-edges, when \(c > 2r\) how large a 2-regular subgraph is forced?
Open Problems

Ques. For a \((2r + 1)\)-regular graph with \(c\) cut-edges, when \(c > 2r\) how large a 2-regular subgraph is forced?

Ques. For maxdegree \(2r + 1\), how large a 2-regular subgraph is forced?
Open Problems

Ques. For a \((2r + 1)\)-regular graph with \(c\) cut-edges, when \(c > 2r\) how large a 2-regular subgraph is forced?

Ques. For maxdegree \(2r + 1\), how large a 2-regular subgraph is forced? Trees and \((2r + 1)\)-regular graphs with \(c \leq 2r\) show that \(n - \left\lfloor \frac{d+c-1}{2r} \right\rfloor\) would be sharp.
Open Problems

Ques. For a \((2r + 1)\)-regular graph with \(c\) cut-edges, when \(c > 2r\) how large a \(2\)-regular subgraph is forced?

Ques. For maxdegree \(2r + 1\), how large a \(2\)-regular subgraph is forced? Trees and \((2r + 1)\)-regular graphs with \(c \leq 2r\) show that \(n - \left\lfloor \frac{d + c - 1}{2r} \right\rfloor\) would be sharp.

Ques. When \(k > (2r + 1)/3\), what edge-connectivity guarantees a \(2k\)-factor (in a \((2r + 1)\)-regular graph)?
Open Problems

Ques. For a \((2r + 1)\)-regular graph with \(c\) cut-edges, when \(c > 2r\) how large a 2-regular subgraph is forced?

Ques. For maxdegree \(2r + 1\), how large a 2-regular subgraph is forced? Trees and \((2r + 1)\)-regular graphs with \(c \leq 2r\) show that \(n - \left\lfloor \frac{d + c - 1}{2r} \right\rfloor\) would be sharp.

Ques. When \(k > (2r + 1)/3\), what edge-connectivity guarantees a \(2k\)-factor (in a \((2r + 1)\)-regular graph)?

- Bollobás–Saito–Wormald [1985] (and Belck [1950]) solved this for all degrees, even or odd. Here \(\kappa'(G) = h\) suffices if \(h^* \geq \frac{2r + 1}{2r + 1 - 2k}\), where \(h^* = 2 \left\lceil \frac{h}{2} \right\rceil + 1\).
Open Problems

Ques. For a \((2r + 1)\)-regular graph with \(c\) cut-edges, when \(c > 2r\) how large a 2-regular subgraph is forced?

Ques. For maxdegree \(2r + 1\), how large a 2-regular subgraph is forced? Trees and \((2r + 1)\)-regular graphs with \(c \leq 2r\) show that \(n - \left\lfloor \frac{d+c-1}{2r} \right\rfloor\) would be sharp.

Ques. When \(k > (2r + 1)/3\), what edge-connectivity guarantees a \(2k\)-factor (in a \((2r + 1)\)-regular graph)?

- **Bollobás–Saito–Wormald [1985]** (and Belck [1950]) solved this for all degrees, even or odd. Here \(\kappa'(G) = h\) suffices if \(h^* \geq \frac{2r+1}{2r+1-2k}\), where \(h^* = 2 \lfloor h/2 \rfloor + 1\).

- **Niessen–Randerath [1998]** all \(h\)-edge-connected \(r\)-regular \(n\)-vertex \(G\) have \(\ell\)-factor when \(n \leq n_0(h, r, \ell)\).
Open Problems

Ques. For a \((2r+1)\)-regular graph with \(c\) cut-edges, when \(c > 2r\) how large a 2-regular subgraph is forced?

Ques. For maxdegree \(2r+1\), how large a 2-regular subgraph is forced? Trees and \((2r+1)\)-regular graphs with \(c \leq 2r\) show that \(n - \left\lfloor \frac{d+c-1}{2r} \right\rfloor\) would be sharp.

Ques. When \(k > \frac{(2r+1)}{3}\), what edge-connectivity guarantees a \(2k\)-factor (in a \((2r+1)\)-regular graph)?

- **Bollobás–Saito–Wormald [1985]** (and Belck [1950]) solved this for all degrees, even or odd. Here \(\kappa'(G) = h\) suffices if \(h^* \geq \frac{2r+1}{2r+1-2k}\), where \(h^* = 2 \left\lfloor \frac{h}{2} \right\rfloor + 1\).

- **Niessen–Randerath [1998]** all \(h\)-edge-connected \(r\)-regular \(n\)-vertex \(G\) have \(\ell\)-factor when \(n \leq n_0(h, r, \ell)\).

Ques. In terms of \(n, r, k, h\) (for \(n > n_0\)), how big a \(2k\)-regular subgraph is guaranteed?