Extremal problems on saturation for the family of k-edge-connected graphs

Hui Lei∗ Suil O† Yongtang Shi‡ Douglas B. West‡ Xuding Zhu§

January 27, 2018

Abstract

Let F be a family of graphs. A graph G is F-saturated if G contains no member of F as a subgraph but $G + e$ contains some member of F whenever $e \in E(G)$. The saturation number and extremal number of F, denoted sat(n, F) and ex(n, F) respectively, are the minimum and maximum numbers of edges among n-vertex F-saturated graphs. For $k \in \mathbb{N}$, let F_k and F'_k be the families of k-connected and k-edge-connected graphs, respectively. Wenger proved \text{sat}(n, F_k) = $(k - 1)n - \binom{k}{2}$; we prove \text{sat}(n, F'_k) = $(k - 1)(n - 1) - \left\lfloor \frac{n}{k+1} \right\rfloor \binom{k-1}{2}$. We also prove \text{ex}(n, F'_k) = $(k - 1)n - \binom{k}{2}$ and characterize when equality holds. Finally, we give a lower bound on the spectral radius for F_k-saturated and F'_k-saturated graphs.

Keywords: saturation number, extremal number, k-edge-connected, spectral radius

AMS subject classification 2010: 05C15

1 Introduction

Given a family F of graphs, a graph G is F-saturated if (1) no subgraph of G belongs to F, and (2) adding to G any edge of its complement \overline{G} completes a subgraph that belongs to F. The saturation number of F, denoted sat(n, F), is the least number of edges in an n-vertex F-saturated graph. The extremal number ex(n, F) is the maximum number of edges in an

∗Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, China; leihui0711@163.com, shi@nankai.edu.cn. Research supported by the National Natural Science Foundation of China and the Natural Science Foundation of Tianjin No.17JCQNJC00300.

†Department of Applied Mathematics and Statistics, The State University of New York, Korea, Incheon, 21985; suil.o@sunykorea.ac.kr (corresponding author). Research supported by NRF-2017R1D1A1B03031758.

‡Departments of Mathematics, Zhejiang Normal University, Jinhua, 321004 and University of Illinois, Urbana, IL 61801, USA; dwest@math.uiuc.edu. Research supported by Recruitment Program of Foreign Experts, 1000 Talent Plan, State Administration of Foreign Experts Affairs, China.

§Department of Mathematics, Zhejiang Normal University, Jinhua, 321004; xdzhu@zjnu.edu.cn. Research supported in part by CNSF 00571319.
n-vertex F-saturated graph. When F has only one graph F, we simply write sat(n,F) and ex(n,F), such as when F is K_t, the complete graph with t vertices.

Initiating the study of extremal graph theory, Turán [6] determined the extremal number ex(n,K_{r+1}); the unique extremal graph is the n-vertex complete r-partite graph whose parts sizes differ by at most 1. Saturation numbers were first studied by Erdős, Hajnal, and Moon [2]; they proved sat(n,K_{k+1}) = $(k-1)n - \binom{k}{2}$. They also proved that equality holds only for the graph formed from a copy of K_{k-1} with vertex set S by adding $n-k+1$ vertices that each have neighborhood S. We call this the complete split graph S_n,k; note that S_n,k has clique number k and no k-connected subgraph, and $S_{n,2}$ is a star. For an excellent survey on saturation numbers, we refer the reader to Faudree, Faudree, and Schmitt [3].

In this paper, we study the relationship between saturation and edge-connectivity. For a given positive integer k, let F_k be the family of k-connected graphs, and let F'_k be the family of k-edge-connected graphs. Wenger [7] determined sat(n,F_k). Since K_{k+1} is a minimal k-connected graph, it is not surprising that $S_{n,k}$ is also a smallest F_k-saturated graph, but in fact the family of extremal graphs is much larger. A k-tree is any graph obtained from K_k by iteratively introducing a new vertex whose neighborhood in the previous graph consists of k pairwise adjacent vertices. Note that $S_{n,k}$ is a $(k-1)$-tree.

Theorem 1.1 (Wenger [7]). sat(n,F_k) = $(k-1)n - \binom{k}{2}$ when $n \geq k$. Furthermore, every $(k-1)$-tree with n vertices has this many edges and is F_k-saturated.

For $n \geq k+1$, we determine sat(F'_k) and ex(F'_k). An F'_k-saturated graph has no edges, so henceforth we may assume $k \geq 2$. Let $\rho_k(n) = (k-1)(n-1) - \lfloor \frac{n}{k+1} \rfloor \binom{k-1}{2}$. In Section 2, we construct for $n \geq k + 1$ an F'_k-saturated graph with n vertices having $\rho_k(n)$ edges, proving sat(n,F'_k) ≤ $\rho_k(n)$.

Using induction on n, in Section 3 we prove that if G is F'_k-saturated, then $\rho_k(n) \leq |E(G)| \leq (k-1)n - \binom{k}{2}$, where $E(G)$ denotes the edge set of a graph G. Since $S_{n,k}$ is also F'_k-saturated, the upper bound is sharp. Thus sat(n,F'_k) = $\rho_k(n)$ and ex(n,F'_k) = $(k-1)n - \binom{k}{2}$.

The spectral radius of a graph is the largest eigenvalue of its adjacency matrix. In Section 4, we give a lower bound on the spectral radius for F_k-saturated and F'_k-saturated graphs.

Additional notation is as follows. For $v \in V(G)$, let $d_G(v)$ and $N_G(v)$ denote the degree and the neighborhood of v in G, respectively. For $A, B \subseteq V(G)$, let $\overline{A} = V(G) - A$, let $[A,B]$ be the set of edges with endpoints in A and B, and let $G[A]$ to denote the subgraph of G induced by A. Let $[k] = \{1,2,\ldots,k\}$. Let K_{k+1} denote the graph obtained from K_{k+1} by deleting one edge; this graph is the unique smallest k-tree that is not a complete graph.
2 Construction

Recall that \(\rho_k(n) = (k - 1)(n - 1) - \left\lfloor \frac{n}{k+1} \right\rfloor \binom{k-1}{2} \) and that we restrict to \(k \geq 2 \) since \(\mathcal{F}_1' \)-saturated graphs have no edges. In this section, for \(n \geq k + 1 \), we construct an \(n \)-vertex \(\mathcal{F}_k' \)-saturated graph with \(\rho_k(n) \) edges. Since every \(\mathcal{F}_2' \)-saturated graph is a tree (and \(\rho_2(n) = n - 1 \)), we need only consider \(k \geq 3 \).

Definition 2.1. Given \(n, k \in \mathbb{N} \) with \(n > k \geq 3 \), let \(t = \left\lfloor \frac{n}{k+1} \right\rfloor \) and \(r = n - t(k + 1) \). Let \(H_{k,i} \) be a copy of \(K_{k+1}^- \) using vertices \(u_{i,1}, \ldots, u_{i,k+1} \), with \(u_{i,1} \) and \(u_{i,k+1} \) nonadjacent. Let \(F_{k,t} \) be the graph obtained from the disjoint union \(H_{k,1} + \cdots + H_{k,t} \) by adding the edge \(u_{i,j}u_{i+1,j} \) for all \(i \) and \(j \) such that \(i \in [t-1] \) and \(j \in [k+1] \setminus \{2, k\} \). Let \(G_{k,n} \) be the graph obtained from \(F_{k,t} \) by adding \(r \) new vertices, each having neighborhood \(V(H_{k,t}) \setminus \{u_{t,1}, u_{t,k+1}\} \).

![Figure 1: The graph \(G_{k,n} \).](image)

\[\text{Figure 1: The graph } G_{k,n}. \]

Proposition 2.2. For \(n > k \geq 3 \), the graph \(G_{k,n} \) is \(\mathcal{F}_k' \)-saturated and has \(n \) vertices and \(\rho_k(n) \) edges.

Proof. Since \(n = t(k + 1) + r \), the graph \(G_{k,n} \) has \(n \) vertices.

In \(G_{k,n} \), the vertices \(w_1, \ldots, w_r \) have degree \(k - 1 \) and hence cannot lie in a \(k \)-edge-connected subgraph. In \(F_{k,t} \), the edges joining \(V(H_{k,i}) \) and \(V(H_{k,i+1}) \) form a cut of size \(k - 1 \), so any \(k \)-edge-connected subgraph of \(G_{k,n} \) is contained in just one copy of \(K_{k+1}^- \). However, \(K_{k+1}^- \) has two vertices of degree \(k - 1 \), leaving only \(k - 1 \) other vertices. Hence \(G_{k,n} \) has no \(k \)-edge-connected subgraph.

In \(F_{k,t} \), there are \(t \left\lfloor \binom{k+1}{2} - 1 \right\rfloor + (k - 1)(t - 1) \) edges. The added vertices \(w_1, \ldots, w_r \)
contribute \(r(k - 1) \) more edges. Since \(n = t(k + 1) + r \), we compute

\[
|E(G_{k,n})| = t \left[\left(\frac{k+1}{2} \right) - 1 \right] + (k-1)(t+r-1) = \frac{t}{2}k^2 + 3k - 4 + (k-1)(r-1)
\]

\[
= t \left(\frac{k-1}{2} \right)(k+4) + (k-1)(r-1) = (k-1)[t(k+1)+r-1] - t \left(\frac{k-1}{2} \right)
\]

\[
= (k-1)(n-1) - t \left(\frac{k-1}{2} \right) = \rho_k(n).
\]

Let \(xy \) be an edge in the complement of \(G_{k,n} \). It remains to show that the graph \(G' \) obtained by adding \(xy \) to \(G_{k,n} \) has a \(k \)-edge-connected subgraph. Note that the subgraph of \(G_{k,n} \) induced by \(V(H_{k,i}) \cup \{w_1, \ldots, w_r\} \) is the \(K_{k+1} \)-saturated graph \(S_{n,k} \) of [2], so \(G' \) contains \(K_{k+1} \) when \(x \) and \(y \) lie in this set. Similarly, if \(xy \) is the one missing edge of \(H_{k,i} \), then \(G' \) again contains \(K_{k+1} \). This leaves two nontrivial cases, by symmetry.

Case 1: \(x \in V(H_{k,i}) \) and \(y \in V(H_{k,j}) \) with \(1 \leq i < j \leq t \). Since for each \(i \in [t] \), \(\kappa'(H_{k,i}) = k-1 \) and there are exactly \(k-1 \) edges between \(H_{k,j} \) and \(H_{k,j+1} \) for every \(j \in [t-1] \), the graph induced by \(\bigcup_{i=1}^{j} V(H_{k,i}) \) in \(G' \) is \(k \)-edge-connected. ***It is not clear that the reasons cited imply this conclusion. In any case, proof is needed.***

Case 2: \(x \in V(H_{k,i}) \) and \(y = w_j \) with \(i \in [t-1] \) and \(j \in [r] \). The subgraph of \(G' \) induced by \(\bigcup_{i=1}^{j} V(H_{k,i}) \cup \{y\} \) is \(k \)-edge-connected. ***No proof of this has been given.***

By Proposition 2.2, \(\text{sat}(n, F'_k) \leq \rho_k(n) \). Thus \(\text{sat}(n, F'_k) \) is much smaller than \(\text{sat}(n, F_k) \) when \(n \) is much larger than \(k \). Indeed, \(G_{k,n} \) is not \(F \)-saturated. In particular, adding the edge \(xy \) does not create a \(k \)-edge-connected subgraph.

3. **Saturation and extremal number of \(F'_k \)**

In this section, we show that if \(G \) is an \(F'_k \)-saturated \(n \)-vertex graph with \(n \geq k + 1 \), then \(|E(G)| \geq \rho_k(n)|. First, we investigate the properties of an \(F'_k \)-saturated graph.

Lemma 3.1. If \(G \) is \(F'_k \)-saturated and has more than \(k \) vertices, then \(\kappa'(G) = k-1 \).

Proof. Since \(G \) has no \(k \)-edge-connected subgraph, \(\kappa'(G) \leq k-1 \). If \(\kappa'(G) < k-1 \), then \(G \) has an edge cut \([S, \overline{S}]\) of size less than \(k-1 \). Since \(|V(G)| > k \), there are at least \(k \) pairs \((x, y)\) with \(x \in S \) and \(y \in \overline{S} \). Hence there is such a pair \((x, y)\) with \(xy \notin E(G) \). Let \(G' \) be the graph obtained by adding the edge \(xy \) to \(G \).

Since \(G \) has no \(k \)-edge-connected subgraph, any such subgraph of \(G' \) must contain the edge \(xy \). Hence it contains \(k \) edge-disjoint paths with endpoints \(x \) and \(y \), by Menger’s Theorem. Besides the edge \(xy \), there must be at least \(k-1 \) with endpoints \(x \) and \(y \) that
use edges of $[S, \overline{S}]$. This contradicts $|[S, \overline{S}]| < k - 1$. Hence G' has no k-edge-connected subgraph, and G cannot be \mathcal{F}_k'-saturated. \hfill \square

Lemma 3.2. Assume $k \geq 3$, and let G be a \mathcal{F}_k'-saturated graph with at least $k + 2$ vertices. If S is a vertex subset in $V(G)$ such that $|[S, \overline{S}]| = k - 1$ and $|S| \geq |\overline{S}|$, then $G[S]$ is a \mathcal{F}_k'-saturated graph with at least $k + 1$ vertices, and $G[\overline{S}]$ is K_1 or is a \mathcal{F}_k'-saturated graph with at least $k + 1$ vertices.

Proof. First, we prove for $T \in \{S, \overline{S}\}$ that the induced subgraph $G[T]$ is a complete subgraph or is \mathcal{F}_k'-saturated with at least $k + 1$ vertices. If $G[T]$ is not complete, then take $e \in E(G[T])$, and let G' be the graph obtained from G by adding e. Since G is \mathcal{F}_k'-saturated, G' contains a k-edge-connected subgraph H, and $e \in E(H)$. Since $|[T, \overline{T}]| = k - 1$, no vertex of H lies in \overline{T}. Hence $H \subseteq G[T]$, which implies that $G[T]$ is \mathcal{F}_k'-saturated. Since $G[T]$ is not complete, that requires $|T| \geq k + 1$.

By the preceding paragraph and the fact that K_{k+1} is k-edge-connected, it now suffices to show that $G[S]$ and $G[\overline{S}]$ cannot both be complete graphs. Suppose that they are. Since G has no k-edge-connected subgraph and $|V(G)| \geq k + 2$, we have $|S| \leq k$ and thus $|\overline{S}| \geq 2$.

A k-edge-connected subgraph H in the graph formed by adding an edge e to G must contain e. Hence $\delta(G) \geq k - 1$. The vertex of \overline{S} incident to the fewest edges of $[S, \overline{S}]$ has degree at most $\left\lfloor \frac{k-1}{j} \right\rfloor + j - 1$, where $j = |\overline{S}|$. Since $j \geq 2$, we thus have $j \geq k - 1$.

If $j = k - 1$, then $\delta(G) \geq k - 1$ requires each vertex of \overline{S} to be incident to exactly one edge of the cut. Adding an edge across the cut then increases the degree of only one vertex of \overline{S} to k. Hence only that vertex can lie in H, which restricts its degree in H to 1.

We may therefore assume $|\overline{S}| = |S| = k$. Since $|[S, \overline{S}]| = k - 1$, some $v \in \overline{S}$ has degree $k - 1$, and every vertex of \overline{S} has a nonneighbor in S. Choose $y \in \overline{S}$ with $y \neq v$, and choose $x \in S$ with $xy \notin E(G)$. The new k-edge-connected subgraph H cannot contain v. If H has j vertices in $\overline{S} - \{v, y\}$, then the vertex among these with least degree in H has degree at most $\left\lfloor \frac{k-1}{j} \right\rfloor + j$ in H. Since $j \leq k - 2$ and $\delta(H) \geq k$, we have $j \in \{0, 1\}$.

If $j = 0$, then $V(H) \cap \overline{S} = \{y\}$, and all edges of $[S, \overline{S}]$ are incident to y. If $j = 1$, then with z being the vertex of \overline{S} other than y in H, all $k - 1$ edges of $[S, \overline{S}]$ are incident to z. Hence in either case we have a single vertex of \overline{S} incident to all edges of the cut.

Since $|\overline{S}| = |S| = k$, the same argument applies to S. With only one vertex on each side incident to edges of the cut, we have $k - 1 \leq 1$, which contradicts $k \geq 3$. \hfill \square

Lemma 3.3. If G is an n-vertex \mathcal{F}_k'-saturated graph with $n \geq k + 1$, then G contains K_{k+1}^-.

Proof. We use induction on n, the number of vertices. The claim holds when $n = k + 1$, since K_{k+1}^- is the only \mathcal{F}_k'-saturated graph with $k + 1$-vertices.
Now consider \(n \geq k + 2 \). Since \(\kappa'(G) = k - 1 \) by Lemma 3.1, there exists \(S \subseteq V(G) \) such that \(|[S, \overline{S}]| = k - 1 \) and \(|S| \geq |\overline{S}| \). By Lemma 3.2, \(|S| \geq k + 1 \) and \(G[S] \) is \(F'_k \)-saturated. By the induction hypothesis, \(G[S] \) (and hence also \(G \)) contains \(K_{k+1}^- \).

The lemmas imply the main result of this section.

Theorem 3.4. For \(n \in \mathbb{N} \), with \(t = \left\lfloor \frac{n}{k+1} \right\rfloor \),

\[
\text{sat}(n, F'_k) = (k - 1)(n - 1) - t \binom{k - 1}{2},
\]

with equality achieved for \(k = 1 \) by \(K_n \), for \(k = 2 \) by trees, and for \(k \geq 3 \) by \(G_{k,n} \).

Proof. Since \(G_{k,t,r} \) is \(F'_k \)-saturated and \(|E(G_{k,t,r})| = \left(\frac{k^2 + 3k - 4}{2} \right) t + (r - 1)(k - 1) \), we have

\[
\text{sat}(n, F'_k) \leq \left(\frac{k^2 + 3k - 4}{2} \right) t + (r - 1)(k - 1).
\]

To prove that

\[
\text{sat}(n, F'_k) \geq \left(\frac{k^2 + 3k - 4}{2} \right) t + (r - 1)(k - 1),
\]

we use induction on \(n \). The bound holds for \(n = k + 1 \), as the only \(F'_k \)-saturated graph on \(k + 1 \)-vertices is \(K_{k+1} - e \). Let \(G \) be a \(F'_k \)-saturated graph with \(|V(G)| \geq k + 2 \). Since \(\kappa'(G) = k - 1 \) by Lemma 3.1, there exists \(S \subseteq V(G) \) such that \(|[S, \overline{S}]| = k - 1 \) with \(|S| \geq |\overline{S}| \). By Lemma 3.2, we have \(G[S] \) is \(F'_k \)-saturated and \(G[\overline{S}] \) is \(F'_k \)-saturated or is an isolated vertex. Let \(|S| \equiv r_1 \pmod{k + 1} \) and \(|\overline{S}| \equiv r_2 \pmod{k + 1} \). Since \(G[S] \) is \(F'_k \)-saturated, by the induction, we have

\[
E(G[S]) \geq \left(\frac{k^2 + 3k - 4}{2} \right) \left(\frac{|S| - r_1}{k + 1} \right) + (r_1 - 1)(k - 1).
\]

Case 1. Suppose \(G[\overline{S}] \) is an isolated vertex.

If \(r \geq 1 \), then we have \(r_1 = r - 1 \). Hence

\[
|E(G)| = |E(G[S])| + |E(G[\overline{S}])| + |[S, \overline{S}]| \geq \left(\frac{k^2 + 3k - 4}{2} \right) \left(\frac{|S| - r_1}{k + 1} \right) + (r_1 - 1)(k - 1) + (k - 1) = \left(\frac{k^2 + 3k - 4}{2} \right) t + (r - 1)(k - 1).
\]
If \(r = 0 \), then we have \(r_1 = r + k \). Hence
\[
|E(G)| = |E(G[S])| + |E(G[S])| + |S, S| \\
\geq \left(\frac{k^2 + 3k - 4}{2} \right) \left(\frac{|S| - r_1}{k + 1} \right) + (r_1 - 1)(k - 1) + (k - 1) \\
= \left(\frac{k^2 + 3k - 4}{2} \right) \left(\frac{t + (n - 1) - (r + k)}{k + 1} \right) + (r + k - 1)(k - 1) + (k - 1) \\
= \left(\frac{k^2 + 3k - 4}{2} \right) t + (r - 1)(k - 1) + \frac{k^2 - 3k + 2}{2} \\
\geq \left(\frac{k^2 + 3k - 4}{2} \right) t + (r - 1)(k - 1).
\]

Case 2. Suppose \(G[S] \) is \(\mathcal{F}_k^t \)-saturated.

By the induction, we have
\[
E(G[S]) \geq \left(\frac{k^2 + 3k - 4}{2} \right) \left(\frac{|S| - r_2}{k + 1} \right) + (r_2 - 1)(k - 1).
\]

If \(r_1 + r_2 \leq k \), then we have \(r_1 + r_2 = r \). Hence
\[
|E(G)| = |E(G[S])| + |E(G[S])| + |S, S| \\
\geq \left(\frac{k^2 + 3k - 4}{2} \right) \left(\frac{|S| - r_1}{k + 1} \right) + (r_1 - 1)(k - 1) \\
+ \left(\frac{k^2 + 3k - 4}{2} \right) \left(\frac{|S| - r_2}{k + 1} \right) + (r_2 - 1)(k - 1) + (k - 1) \\
= \left(\frac{k^2 + 3k - 4}{2} \right) t + (r - 1)(k - 1).
\]

7
If \(r_1 + r_2 \geq k + 1 \), then we have \(r_1 + r_2 = r + k + 1 \). Hence

\[
|E(G)| = |E(G[S])| + |E(G[S])| + |[S, \overline{S}]| \\
\geq \left(\frac{k^2 + 3k - 4}{2} \right) \left(\frac{|S| - r_1}{k + 1} \right) + (r_1 - 1)(k - 1) \\
+ \left(\frac{k^2 + 3k - 4}{2} \right) \left(\frac{|\overline{S}| - r_2}{k + 1} \right) + (r_2 - 1)(k - 1) + (k - 1) \\
= \left(\frac{k^2 + 3k - 4}{2} \right) \left(\frac{n - (r + k + 1)}{k + 1} \right) + (r + k - 1)(k - 1) + (k - 1) \\
= \left(\frac{k^2 + 3k - 4}{2} \right) t + (r - 1)(k - 1) + \frac{k^2 - 3k + 2}{2} \\
\geq \left(\frac{k^2 + 3k - 4}{2} \right) t + (r - 1)(k - 1).
\]

This completes the proof of Theorem 3.4. \(\square \)

Now we prove that if \(G \) is \(\mathcal{F}_k' \)-saturated, then \(|E(G)| \leq (k - 1)|V(G)| - \binom{k}{2} \). Before proving it, note that \(\text{ex}(n, \mathcal{F}_1') = 0 \) and \(\text{ex}(n, \mathcal{F}_2') = n - 1 \), thus we assume that \(k \geq 3 \).

Theorem 3.5. For \(n \geq k + 1 \), we have

\[
\text{ex}(n, \mathcal{F}_k') = (k - 1)n - \binom{k}{2}.
\]

Furthermore, equality holds only when \(G \) is a graph obtained from a \(\mathcal{F}_k' \)-saturated graph \(H \) with at least \(k + 1 \) vertices by adding \(k - 1 \) edges from a single vertex not in \(V(H) \) to \(H \).

Proof. We prove induction on \(|V(G)| \). When \(|V(G)| = k + 1 \), there is the unique \(\mathcal{F}_k' \)-saturated graph.

Now, assume that \(|V(G)| > k + 1 \). By Lemma 3.2, there exists a vertex subset \(S \) such that \(G[S] \) is \(\mathcal{F}_k' \)-saturated such that \(|G[S]| \geq k + 1 \) and \(G[\overline{S}] \) is \(\mathcal{F}_k' \)-saturated such that \(G[\overline{S}] \geq k + 1 \) or is an isolated vertex. If \(G[S] \) and \(G[\overline{S}] \) are both \(\mathcal{F}_k' \)-saturated graphs with at least \(k + 1 \) vertices, by the induction, we have

\[
|E(G)| = |E(G[S])| + |E(G[\overline{S}]|) + k - 1 \\
\leq (k - 1)s - \binom{k}{2} + (k - 1)(n - s) - \binom{k}{2} + k - 1 < (k - 1)n - \binom{k}{2},
\]

since \(k \geq 3 \).
If $G[S]$ is a \mathcal{F}_k'-saturated graphs with at least $k + 1$ vertices, and if $G[S]$ is a single vertex, by the induction, we have

$$|E(G)| = |E(G[S])| + k - 1$$

$$\leq (k - 1)(n - 1) - \binom{k}{2} + k - 1 = (k - 1)n - \binom{k}{2}.$$

Equality holds only when G is a graph obtained from a \mathcal{F}_k'-saturated graph H with at least $k + 1$ vertices by adding $k - 1$ edges from a single vertex not in $V(H)$ to H. \qed

4 Spectral radius and \mathcal{F}_k'-saturated graphs

In this section, we give a necessary condition related to the spectral radius for \mathcal{F}_k'-saturated graphs.

Let $\lambda_1(G)$ be the spectral radius of G. The following two lemmas are well-known in spectral graph theory.

Lemma 4.1 ([4]). If H is a subgraph of G, then $\lambda_1(H) \leq \lambda_1(G)$.

Lemma 4.2 ([1]). For any graph G,

$$\frac{2|E(G)|}{|V(G)|} \leq \lambda_1(G) \leq \Delta(G)$$

with equality if and only if G is regular.

Given a graph G, let $P = \{V_1, V_2, \ldots, V_t\}$ be a vertex partition of $V(G)$. The quotient matrix Q corresponding to the vertex partition P is defined as $Q_{ij} = \frac{|[V_i, V_j]|}{|V_i|}$, if $i \neq j$; $Q_{ii} = \frac{2|E(G[V_i])|}{|V_i|}$. The vertex partition P is an equitable partition if for any $1 \leq i, j \leq k$ and $v \in V_i$, we have $|N_G(v) \cap E_G(V_i, V_j)| = Q_{ij}$.

Lemma 4.3 ([4]). Let $P = \{V_1, V_2, \ldots, V_t\}$ be an equitable partition of $V(G)$. If Q is the quotient matrix corresponding to the partition P, then $\lambda_1(Q) = \lambda_1(G)$.

Theorem 4.4. If G is \mathcal{F}_k'-saturated, then $\lambda_1(G) \geq \frac{k - 2 + \sqrt{k^2 + 4k - 4}}{2}$.

Proof. First we prove $\lambda_1(K_{k+1} - e) = \frac{k - 2 + \sqrt{k^2 + 4k - 4}}{2}$. Suppose that $V(K_{k+1} - e) = \{x_1, \ldots, x_{k+1}\}$, $\deg(x_1) = \deg(x_{k+1}) = k - 1$ and $\deg(x_i) = k$ for all $i \in \{2, \ldots, k\}$. Let $V_1 = \{x_1, x_{k+1}\}$ and $V_2 = \{x_2, \ldots, x_k\}$ be an equitable partition of $K_{k+1} - e$. Thus the quotient matrix Q corresponding to the partition $P = \{V_1, V_2\}$ is

$$Q = \begin{pmatrix}
0 & 2 \\
2 & k - 2
\end{pmatrix}. \quad (1)$$
Thus we obtain
\[\lambda_1(Q) = \frac{k - 2 + \sqrt{k^2 + 4k - 4}}{2}. \]

By Lemma 4.3, we have
\[\lambda_1(K_{k+1} - e) = \lambda_1(Q) = \frac{k - 2 + \sqrt{k^2 + 4k - 4}}{2}. \]

Since \(G \) is \(F_k \)-saturated, by Lemma 3.3, \(K_{k+1} - e \) is a subgraph of \(G \). Thus, by Lemma 4.1, we have
\[\lambda_1(G) \geq \lambda_1(K_{k+1} + e) = \frac{k - 2 + \sqrt{k^2 + 4k - 4}}{2}. \]
\[\square \]

Theorem 4.5. If \(G \) is \(F_k \)-saturated with \(n \) vertices, then
\[\lambda_1(G) \geq \frac{k - 2 + \sqrt{k^2 + 4k - 4}}{2}. \]

Proof. Suppose that \(G \) is \(F_k \)-saturated. By Theorem 1.1, we have
\[|E(G)| \geq (k - 1)n - \binom{k}{2}. \]

By Lemma 4.2,
\[\lambda_1(G) \geq \frac{2|E(G)|}{n} \geq \frac{2(k - 1)n - 2\binom{k}{2}}{n} = 2(k - 1) - \frac{k(k - 1)}{n}. \]

Suppose \(n = k + 1 \), then \(K_{k+1} - e \) is the only \(F_k \)-saturated graph. By Theorem 4.4, we have \(\lambda_1(K_{k+1} - e) = \frac{k - 2 + \sqrt{k^2 + 4k - 4}}{2} \). Suppose \(n \geq k + 2 \). For \(k = 1 \), \(\frac{k - 2 + \sqrt{(k+2)^2 - 8}}{2} = 0 \). For \(k = 2, 3 \), we obtain
\[2(k - 1) - \frac{k(k - 1)}{n} \geq \frac{k - 2 + \sqrt{k^2 + 4k - 4}}{2}. \]

For \(k \geq 4 \), since
\[k > \frac{k - 2 + \sqrt{k^2 + 4k - 4}}{2}. \]

It is sufficient to prove
\[2(k - 1) - \frac{k(k - 1)}{n} \geq k. \]

Thus, we have
\[2(k - 1) - \frac{k(k - 1)}{n} - k = k - 2 - \frac{k(k - 1)}{n} \geq k - 2 - \frac{k(k - 1)}{k + 2} = \frac{k - 4}{k + 2} \geq 0. \]

This completes the proof. \(\square \)
For $t \geq 3$, let $\mathcal{F}_{d,t}$ be the family of d-regular simple graphs H with $\kappa'(H) \leq t$. Recently, with Hyun, Park, Park, and Yu, the second author [5] proved that the minimum of the second largest eigenvalue over $\mathcal{F}_{d,t}$ is the second largest one of a smallest graph in $\mathcal{F}_{d,t}$. Theorem 4.4 and 4.5 also say that the minimum of the spectral radius over \mathcal{F}-saturated graphs and \mathcal{F}'-saturated graphs are the spectral radius of the smallest graph in the families of \mathcal{F}-saturated graphs and \mathcal{F}'-saturated graphs, respectively.

References

