The Golden Partition Conjecture
posed by Marcin Peczarski

Let $P(\leq, S)$ be a partial order on the set S. An extension of \leq is a partial order \leq^* on S such that $u \leq v$ implies $u \leq^* v$, for all $u, v \in S$. A linear extension of P is an extension of \leq that forms a linear order (a.k.a a total order). The number of linear extensions of P is denoted $e(P)$.

Conjecture (The Golden Partition Conjecture). For any finite poset P that is not a chain, there exist two consecutive comparisons such that regardless of their results the inequality

$$e(P) \geq e(P_1) + e(P_2)$$

holds, where P_1 and P_2 are the posets obtained from P after the first comparison and after both comparisons, respectively.

The Golden Partition Conjecture is motivated by conjectures whose root is a famous sorting problem. Imagine that a finite set S with cardinality n has a hidden total order \prec that we would like to uncover by making comparisons between pairs of elements from S. Comparing a pair $u, v \in S$ means uncovering either $u \prec v$ or $v \prec u$. How many comparisons are needed in the worst case? The classical answer is $\Theta(n \log_2 n)$ comparisons are needed and ‘merge sort’, for example, gives an algorithm to achieve this bound.

How many comparisons are needed if some partial information about \prec is already known? Partial information about \prec can be summarized by a poset $P(\leq, S)$. Let $C(P)$ denote the number of comparisons required to find the hidden linear extension \prec, in the worst case, starting from partial information P? Clearly $C(P) \geq \log_2(e(P))$, since each comparison can reduce the number of linear extensions by a factor of at most 2. The Golden Partition Conjecture gets its name because Peczarski [Pec06] has shown that it implies $C(P) \leq \log_\phi(e(P))$, where $\phi = \frac{1+\sqrt{5}}{2} \approx 1.618033988$ is the golden ratio. As Peczarski states, “informally this [bound] means that during the sorting process the number of linear extensions can be decreased in every comparison on average by at least the golden ratio ϕ.” Linial [Lin84] has constructed a sequence of posets that show that, if true, this bound would be tight.

The survey article by Brightwell [Bri99] is highly recommended.

Notes:

1. Peczarski [Pec06, Pec08] has proven the conjecture for semi-orders, width two posets, 6-thin posets, posets containing at most 11 elements. The conjecture implies the famous $1/3 - 2/3$ conjecture. The fraction of n-element posets satisfying the conjecture goes to 1 as $n \to \infty$.

2. Brightwell’s survey [Bri99] notes that Fredman proved that $C(P) \leq 2n + \log_2(e(P))$.

References

