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Introduction and Key Definitions

We limit our discussion to graphs that are simple and finite of order . Although8
we often identify a graph  with its set of vertices, in cases where we need to beK
explicit we write . A set  of vertices of  is said to Z ÐKÑ Q K dominate K
provided each vertex of  is either in  or adjacent to a vertex of . K Q Q The

domination number of  is the minimum order of a dominating set. AK
dominating provided each vertex of  set of  is said to Q K totally dominate  K K
is adjacent to a vertex of . The  of  is the minimumQ Ktotal domination number

order of a totally dominating set. The total domination number is denoted by

# #> >œ ÐKÑ. The minimum order of a  dominating set is denoted byconnected

# #- -œ ÐKÑ. Other definitions will be introduced immediately prior to their first

appearance.

The total domination number of a graph was first introduced in [3]. This

invariant remains of interest to researchers as evidenced by numerous recent

papers. Various upper and lower bounds on total domination have been

discovered. The domination number has, of course, been well studied ([15],

[16]).

Graffiti, a computer program that makes conjectures, was written by S.

Fajtlowicz and dates from the mid-1980's. Graffiti.pc was written by E.

DeLaViña in 2001. The operation of Graffiti.pc and its similarities to Graffiti are

described in [4] and [5]; its conjectures can be found in [6]. A numbered, 

annotated listing of several hundred of Graffiti's conjectures can be found in
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[10]. Both Graffiti and Graffiti.pc have correctly conjectured a number of new

bounds for several well studied graph invariants; bibliographical information on

resulting papers can be found in [7].

Recently, DeLaViña used Graffiti.pc to generate conjectures involving the

total domination number. Several of the consequent conjectures either follow

from known results or have been resolved. A numbered, annotated listing of

Graffiti.pc's total domination conjectures and their current status can be found in

[6]. In this paper, we present the proofs of several of these conjectures that are

new, so far as we can determine, as well as the proofs of some related

conjectures motivated by Graffiti.pc's conjectures.

Graffiti.pc employs two main strategies for generating conjectures. The first

of these is due to Fajtlowicz and is known as the “Dalmatian heuristic” [11]. All

but two of the Graffiti.pc conjectures cited in this paper are Dalmatian

conjectures. The other two are Sophie conjectures. The “Sophie heuristic” (due

to DeLaViña and B. Waller) is the second main strategy Graffiti.pc uses to

generate conjectures. S Graffiti.pc's Sophie heuristic.ee [8] for a description of 

Results and Proofs

The  of a vertex  of a connected graph  is the maximum of theeccentricity @ K
distances from  to the other vertices of . The maximum eccentricity taken@ K
over all vertices of  is called the of  and is denoted by .K K . œ .ÐKÑdiam ter /
The minimum eccentricity taken over all vertices of  is called the  of K Kradius

and is denoted by . < œ <ÐKÑ The radius of a graph has sometimes been used to

provide lower bounds for domination-related invariants. One of the first results

along these lines is the following theorem, which originated as a conjecture of

the computer program Graffiti [10]. There are several independent proofs of this

theorem (see [9], [12], [13], [14]). Let  denote the α αœ ÐKÑ independence

number of : this is the maximum order of a set of pairwise non-adjacentK
vertices of .K

Theorem 1: Let  be a connected graph. ThenK

α   <.

A stronger result due to Fajtlowicz [13] uses the radius to provide a lower

bound for the of a graph . This is the maximumbipartite number  , œ ,ÐKÑ K
order of an induced bipartite subgraph of .K

Theorem 2: Let  be a connected graph. ThenK

,   #<.

We now show that the radius can also provide a lower bound for the total

domination number. This is Graffiti.pc's Conjecture 230 in [6].



Theorem 3: Let  be a connected graph with . ThenK 8 � "

#>   <.

The proof of this theorem is presented after the proofs of the following

lemmas.

Lemma 1: Let  be a tree with dominating set . Then the subgraph inducedX Q
by  has at most  edges, where  is the number of components of theX �Q 5 � " 5
subgraph induced by .Q

Proof. Let  denote the number of edges with both endpoints in , let / Q /" #

denote the number of edges with both endpoints in , and let  denote theX �Q /$
number of edges with one endpoint in  and one endpoint in .Q X �Q
Proceeding by contradiction, suppose there are  or more edges induced by5
X �Q . Namely we assume:

(1)    ./ 5#  

First, since  is a tree,X

(2)   .8 � " œ / � / � /" # $

Next, since the graph induced by  is a forest with  trees,Q 5

(3)    ./ œ lQl � 5"

Moreover, because each of the  vertices of  is dominated by a8 � lQl X �Q
vertex in ,Q

(4)    ./ 8 � lQl$  

Finally, we put inequalities (1) and (4) together with equations (2) and (3) to

obtain:

8 � " œ / � / � / lQlÑ" # $   ÐlQl � 5Ñ � 5 � Ð8 � œ 8,

a contradiction. Consequently,  as claimed./ 5 � "# Ÿ è

A  of a connected graph  is a subgraph that contains all verticesspanning tree K
of  and is a tree.K



Lemma 2: Let  be a connected graph with , and let  be a minimumK 8 � " Q
total dominating set of . Then there exists a spanning tree  of  such that K W K Q
is a minimum total dominating set of .W

Proof. If  is a tree, then put  and we are done. Otherwise, let  be aK W œ K G
cycle in . We delete an edge from  as follows.K G

(i) If  has two consecutive vertices  and  such that and , thenG B C B Â Q C Â Q
delete the edge between them. The set  is still a total dominating set for theQ
resulting graph.

(ii) Suppose the first case does not apply. If  has two consecutive vertices G B
and  such that  and , then delete the edge between them. SinceC B − Q C Â Q
the other neighbor of  on  is necessarily in  (or else the first case applies),C G Q
the set  is still a total dominating set for the resulting graph.Q

(iii) If neither of the first two cases applies, then all of the vertices of  are inG
Q G Q. Delete any edge of . The set  is still a total dominating set for the

resulting graph.

Repeat this process until all cycles are removed. Call the resulting spanning

tree . Since  is a total dominating set for , . Since theW Q W ÐWÑ Ÿ lQl œ ÐKÑ# #> >

total domination number of a graph is at most the total domination number of

any of its spanning trees, . Thus,  and  is a# # #> > >ÐKÑ Ÿ ÐWÑ ÐWÑ œ lQl Q
minimum total dominating set of .W è

Lemma 3: . Let  be a connected graph with ThenK 8 � "

#>  
. � "

#
.

Proof: Let  be a minimum total dominating set of  with  components. Let Q K 5 W
be a spanning tree of , as in Lemma 2, such that  is also a minimum totalK Q
dominating set of . Since  induces a forest with  trees, there are W Q 5 #> � 5
edges induced by . By Lemma 1, there are at most  edges induced byQ 5 � "
W �Q . In traversing a diametric path of , we can enter and leave eachW
component of  at most once. Thus in a diametric path of , there are at mostQ W
#5 Q W �Q edges that have an endpoint in  and an endpoint in . Noting that

#5 Ÿ .ÐWÑ W#>, we get the following upper bound on the diameter  of :

(5) .ÐWÑ Ÿ Ð � 5Ñ � Ð5 � "Ñ � #5 œ � #5 � " Ÿ # � "Þ# # #> > >



However, since the diameter of a graph is at most the diameter of any of its

spanning trees,  and this completes the proof..ÐKÑ Ÿ .ÐWÑ è

Now we are prepared to prove Theorem 3.

Proof of Theorem 3: Let  be a minimum total dominating set of . Let  be aQ K W
spanning tree of , as in Lemma 2, such that  is also a minimum totalK Q
dominating set of . Now, by Lemma 3,  However, since  is aW .ÐWÑ WŸ # � "#> .

tree, . From these we get the desired inequality since#<ÐWÑ � " Ÿ .ÐWÑ
<ÐKÑ èŸ <ÐWÑ.

The Sophie heuristic of Graffiti.pc (see [8] for description) conjectured the

following interesting (albeit weak) characterization of the case of equality for

Theorem 3 (numbers 277 and 278 in [6]). Let  be a subset of the vertex set of aH
graph . Then  is the set of edges of the subgraph of  induced by .K I ÐHÑ K HK

Theorem 4: Let  be a connected graph with  and minimum totalK 8 � "
dominating set . ThenQ

#> Kœ < lI ÐQÑl œ <
"

#
  if and only if .

Proof. Suppose . #> œ < Let  be a minimum total dominating set of  with Q K 5
components. From inequality (5) of Lemma 3,

#< � " Ÿ � #5 � " Ÿ # � "# #> > ,

which together with our assumption that  implies#> œ <

(6)            < œ #5 œ Þ#>

On the one hand, since  is a total dominating set, each component of theQ
subgraph induced by  contains at least two vertices and at least one edge,Q
which implies that the5 Ÿ lI ÐQÑlK . On the other hand, no component of 

subgraph induced by  contains more than one edge, otherwise the componentQ
contains at least three vertices, which contradicts that . Thus,#5 œ #>
5 œ lI ÐQÑl lI ÐQÑl œ <K K

"
#, and from (6) it follows that .

Suppose

lI ÐQÑl œ <
"

#
K .

Since each vertex of  has degree at least one in the subgraph induced byQ

Q ./1 Ð@Ñ   Q, . Moreover, for the subgraph induced by  we have�
@−Q

Q >#



#lI ÐQÑl œ ./1 Ð@ÑK Q
@−Q

� . Now combining the latter two relations, our

assumption for this case, and Theorem 3, we get:

< œ #lI ÐQÑl œ ./1 Ð@Ñ     < èK Q >

@−Q

� # .

The of a graph , denoted by center K GÐKÑ, is the set of all vertices of

minimum eccentricity . The distance from a vertex  to a set is the smallest< @
distance from  to any of the vertices in the set. The ,@ eccentricity of the center

denoted by , is the maximum distance from the center to vertices noteccÐGÐKÑÑ
in the center. By  we mean the eccentricity (with respect to ) of theeccÐGÐWÑÑ W
center of the subgraph  of . When , the following theoremW K ÐGÐKÑÑ œ <ÐKÑecc

provides an improvement on Theorem 3.

Theorem 5: Let  be a connected graph with . ThenK 8 � "

#>   " � ÐGÐKÑÑecc .

Proof. Let  be a minimum total dominating set of  and let  be the spanningQ K W
tree formed, as in Lemma 2, such that  is also a minimum total dominating setQ
of . Since  is a tree,  or .W W #<ÐWÑ � " œ .ÐWÑ #<ÐWÑ œ .ÐWÑ

Suppose that . In this case, any diametric path in  is an#<ÐWÑ � " œ .ÐWÑ W
even path and  has a bi-center (the center is a pair of adjacent vertices).W
Consequently, . Thus, using inequality (5) of ,eccÐGÐWÑÑ œ <ÐWÑ � " Lemma 3

" � eccÐGÐWÑÑ œ <ÐWÑ œ œ
.ÐWÑ � " Ð# � "

# #
Ÿ

#
#

>
>

� "Ñ
.

On the other hand, suppose . Now, any diametric path in  is an#<ÐWÑ œ .ÐWÑ W
odd path,  has a unique center vertex, and consequently .W ÐGÐWÑÑ œ <ÐWÑecc

Thus, using inequality (5) of ,Lemma 3

" � eccÐGÐWÑÑ œ " � <ÐWÑ œ " � œ
.ÐWÑ #

# #
Ÿ

#
#

>
>

� " "
�

#
.

This implies that  since the left hand side of the above" � eccÐGÐWÑÑ Ÿ #>
inequality is an integer. So in either case, ." � eccÐGÐWÑÑ Ÿ #>

We need now only show that the inequality, , isecc eccÐGÐKÑÑ ÐGÐWÑÑŸ
valid.  That is, that the eccentricity of the center of a graph is at most the

eccentricity of the center of a spanning tree of the graph. To do this consider the

following inequality,

ecc eccÐGÐKÑÑ <ÐKÑ ÐGÐWÑÑ � "Ÿ Ÿ <ÐWÑ Ÿ .

Suppose that  This implies that all of the aboveecc eccÐ ÐG ÐKÑÑ GÐWÑÑ � "Þœ
are equal. In particular, since ,  is a bi-centric tree. LeteccÐG ÐWÑÑ � " œ <ÐWÑ W
ÖBß C× W . Ð:ß ;Ñ : be the bi-center of . Moreover, let  denote the distance from K



to  in . Since for any vertex  in ,; K A K

. ÐBßAÑ . ÐBß AÑK WŸ Ÿ <ÐWÑ œ <ÐKÑ,

we conclude that  is also center of . Similarly,  is also a center of .B K C K
Let  be a vertex at eccentric distance from  in . Note that for any  inD GÐKÑ K @

GÐKÑ,

. Ð@ß DÑ ÐGÐKÑÑ œ ÐGÐWÑÑ � "K   ecc ecc .

Now because  is a center of ,B K

<ÐKÑ œ <ÐWÑ      . ÐBß DÑ . ÐBß DÑ ÐGÐKÑÑ œ <ÐKÑW K ecc ,

and we conclude that  . ÐBß DÑ œ <ÐWÑ . ÐCß DÑ œ <ÐWÑW W. Similarly, . However,

this situation is impossible because only one of these equations can be true for a

bi-centric tree. Hence, it must be the case that ,ecc eccÐGÐKÑÑ ÐGÐWÑÑ � "-
which proves our claim. è

The   is the minimum order of an induced cycle in a graph girth 1 œ 1ÐKÑ K
containing a cycle. It is easy to show that the girth of a graph can be used to

provide a lower bound for the total domination number (Graffiti.pc's Conjecture

249 in 6 ). Occasionally this lower bound may be slightly better than that givenÒ Ó
by the radius.

Proposition 1: Let G be a graph containing a cycle. Then

#>  
1

#
.

Proof. We can dismiss the case  handily, since . Thus suppose1 Ÿ % #>   #
1 � %. Let  be a minimum total dominating set. Let  be a cycle of minimumQ G

order and let  be the intersection of  and . We can assume that ,O Q G lOl -
1

#
since otherwise the inequality is trivial. Since each vertex of  totally dominatesO
two vertices of , at most  vertices of  are totally dominated by verticesG #lOl G
from . Each vertex of  not totally dominated by a vertex in  must be totallyO G O
dominated by a distinct vertex of  outside of , since two or more of theseQ G
vertices could not have been totally dominated by the same vertex of  orQ �O
a shorter cycle is present. This yields:

#>   lOl � 1 � #lOl œ 1 � lOl � è
1

#
.

The characterization of the case of equality for Proposition 1 can easily be

derived from its proof. For , this characterization is similar to the1 Ÿ %



characterization of graphs where :  if and only if there exists and# #> >œ # œ
1

#
edge  such that 1)  and  are both independent sets; 2)  andÖBß C× RÐBÑ RÐCÑ RÐBÑ
RÐCÑ K RÐBÑ are disjoint and their union is ; and 3) at least one vertex of  is

adjacent to at least one vertex of .RÐCÑ

On the other hand, for ,  if and only if  mod  and there1   & œ 1 ´ ! %
1

#
#>

exists an induced cycle of order  whose edges can be labeled clockwise1
"ß #ß ß 1 "…  such that all non-cycle vertices have degree  and are incident to cycle

edges that have labels from the same congruence class mod .%
We let  denote the maximum number of leaves (vertices of degreeP œ PÐKÑ

" K 6 œ 6ÐKÑ) over all spanning trees of  and   denote the minimum number of

leaves over all spanning trees of . Graffiti.pc's Conjecture 297 in [6] assertsK

that . A simple known fact is that the connected domination# #> -� Ÿ 8
"

#
number and  are related by , and thus 297 is equivalent to theP œ 8 � P#-
statement that the total domination number is bounded above by the average of 8
and . The authors found two independent proofs of this conjecture. Below, weP
observe that this conjecture is also a corollary to a result of M. Chellali and T.

Haynes found in [1], which we state next along with another of their results

found in [2]. In a tree, a vertex adjacent to a leaf of the tree is called a support

vertex.

Theorem 6 ( ):M. Chellali and T. Haynes [1] [2]ß  Let  be a tree with X 8 � #
vertices, l leaves, and s support vertices. Then

8 � # � 6 8 � =

# #
Ÿ Ÿ#> .

Corollary 1: Let G be a connected graph with . Then8 � "

#> Ÿ
8� 6

#
.

Proof. The case  is obvious. Otherwise, let  be a spanning tree of  with8 œ # X K
6 = leaves and  support vertices. Then

# #> >ÐKÑ Ÿ ÐXÑ Ÿ Ÿ è
8 � = 8 � 6

# #
.     

A subset of the edges of a graph  such that no two edges are incident is aK
matching maximal matchingin K. A  is a matching that is not contained in a

larger matching; let * *  denote the cardinality of a . .œ ÐKÑ minimum maximal

matching maximum matching ,. The number of edges in a  is the matching number

which is denoted by . A graph is  if it contains no induced. .œ ÐKÑ claw-free



O"ß$ (the complete bipartite graph with partitions of size one and three). It is

known that whenever a graph is claw-free and of minimum degree at least three,

the total domination number is bounded above by the matching number (see

[17]).

A collection of vertex disjoint paths of a graph  that partition the vertices ofK
K K is a of . The cardinality of a minimum path covering ispath covering 

denoted by = . Note that  if and only if the graph has a Hamiltonian3 3 3ÐKÑ œ "
path. Graffiti.pc conjectured an upper bound on  involving the matching#>ÐKÑ
and path covering numbers of a (number 288 in [6]), which we prove in theK
next theorem. Let ,  and  be the cycle, complete graph and path on G O T 77 7 7

vertices, respectively. Moreover, note that the bound is sharp for every value of

3, as demonstrated by taking  with the assumption thatG 77   ", using 

G œ O G œ T" " # # and , and identifying each vertex of the cycle with the center

of a copy of . Let the constructed graph be called , then ,T K ÐK Ñ œ %7( 7 > 7#
. 3ÐK Ñ œ $7 ÐK Ñ œ 7Þ7 7, and 

Theorem 7:  Let G be a connected graph with . Then8 � "

# . 3> Ÿ � .

Proof. Let  be a minimum path covering of  with c œ ÖT ß T ß ÞÞÞß T × K T" # 33

having  vertices. Starting from one end, let  be the matching consisting of8 Q3 3

the edges in odd position along , so that . For each  such thatT lQ l œ 33 3
8Ð3Ñ
#

¨ ©
8 � " H T lH l Ÿ lQ l � "3 3 3 3 3, we construct a total dominating set  for  such that .

If  for , then this completes the proof, since it yields a total8 � " " Ÿ 3 Ÿ3 3
dominating set for  with size at most .K �. 3

In general, to form  we take the edges of  in pairs from the beginning,H Q3 3

putting into  the two central vertices in this set of four vertices along .  IfH T3 3

8 ´ ! % lH l œ lQ l œ3 3 3
8Ð3Ñ
# mod , this works very simply, with . In other

congruence classes, we must be careful to dominate the vertices at the end, after

the last group of four vertices.  If  mod , then it suffices to add the next-8 ´ " %3

to-last vertex on  to , yielding .  This works because theT H lH l œ lQ l � "3 3 3 3

vertex before it is also in . If  mod , then we instead add the last twoH 8 ´ # %3 3

vertices.  They comprise the last edge of , so again .  IfQ lH l œ lQ l � "3 3 3

8 ´ # %3  mod , those two vertices we just added also take care of the last vertex.

As remarked earlier, the proof is now complete unless some paths in the

partition are isolated vertices; we index the paths so that these are .T ß ÞÞÞß T5�" 3

Let  and  , we have .  Consider  withH œ H Q œ Q lHl Ÿ lQl � 5 T- -
3œ" 3œ"

5 5

3 3 4

4 � 5 @ T K; let  be the one vertex of . Since  is connected and we have a4

minimum path covering,  has a neighbor  on some path  with .  Since@ B T 3 - 53

H T B H3 3 3 is a total dominating set for , we can add  to  (if it is not already there)



to dominate .  After doing this for each  with , we have constructed a@ 4 5 - 4 - 3
total dominating set of  with size at most .K �. 3 è

Graffiti.pc's Conjecture  asserts that  when  is a regular graph.#%(   # K# 3>

The desired inequality does not hold for all graphs. In particular, consider .O7ß8

If , then at least two paths are needed to cover the vertices, but thel7 � 8l � "
total domination number is two.

On the other hand, the inequality is trivial for -regular graphs with5
5 − Ö"ß #×. Each component takes one path to cover and contributes at least two

vertices to a total dominating set. Equality holds when  or when  and5 œ " 5 œ #
all components are either  or .G G$ %

We prove the inequality for cubic graphs. We will use a given total

dominating set  to construct a path partition of  such that each vertex of W Z ÐKÑ W
is associated with one path, and on average at least two vertices of  areW
associated with each path. Note that the bound is sharp infinitely often, in

particular whenever each component is isomorphic to  or  (theO O O$ß$ $ #ñ

cartesian product of  and ); moreover, we conjecture that equality holdsO O$ #

only in this case.

Theorem 8: Let  be a connected -regular graph. ThenK $

# 3>   # .

Proof: td-setLet  be a total dominating set (  for convenience), and letW
L œ K � W W W. Since each vertex outside  has a neighbor in , we have

?ÐLÑ Ÿ # L. Hence each component of  is a path or a cycle.

We construct a path partition, in two phases. In the first phase, we construct

pairwise disjoint paths that together include all of  and some vertices of .Z ÐLÑ W
The paths have vertices of  at both ends, and no two consecutive vertices alongW
one of these paths belong to . Each step of Phase 1 absorbs one component ofW
L , producing a family of paths with these properties. Let  be the currentc
family. Let  be the set of vertices of  that appear on the paths in .W Ww c

Case 1 of Phase 1: a component of  that is a path L T . Let  and  be theB C
endpoints of  (possibly ). Each endpoint of  has at least two neighborsT B œ C T
in  (three if  is an isolated vertex of ). Choose  andW T L ? − RÐBÑ ∩ W
@ − RÐCÑ ∩ W ? Á @ B œ C ? with . This can be done easily if . Note that if  is an

endpoint of a path in , then  cannot be adjacent to both  and , since  is aT ? B C W
td-set; similarly for . Indeed, the only case where both neighbors of  in  can@ B W
also be neighbors of  is when those vertices are not yet in ; we simply let oneC W w

be  and the other be .? @
Vertices  and  may or may not lie in . Since  is a td-set, neither  nor ? @ W W ? @w

can be an internal vertex of a path in , since such vertices have two neighborsc
already outside . Thus each of  and  is an endpoint of a path in  or is as yetW ? @ c
unused in . If  and  are endpoints of the same path  in , then  is notW ? @ T Bw w c



adjacent to , since  is a td-set. Hence  has a neighbor outside  in , and@ W B Ö?ß @× W
we use that vertex instead of .?

Hence  and  are not endpoints of the same path in . Combine  with the? @ Tc
edges  and  and the paths in  (if they exist) that are already associated?B C@ c
with  and/or  to form a single path that has the desired properties (replacing? @
the paths used that were in ).c

Case 2 of Phase 1: a component of  that is a cycle .L G  Each vertex  on B G
has exactly one neighbor in , since  is a dominating set and  has twoW W B
neighbors already on . No vertex of  has three neighbors on , since  is aG W G W
td-set. Since  has at least three vertices, we can therefore find two consecutiveG
vertices on  (call them  and ) whose neighbors in  (call them  and ,G B C W ? @
respectively) are distinct.

As in Case 1, neither  nor  is an internal vertex of a path in . If we can? @ c
choose  and  above so that  and  are distinct and are not the endpoints of aB C ? @
single path in , then we can absorb the path  as described in Case 1.c G � BC

On the other hand, if these neighbors  and  are endpoints of the same path? @
T T B C G B ?w w w in , then let  be the neighbor of  on  other than , and let  be the

neighbor of  in . Since  already has two neighbors not in  (both  and theB W @ W Cw

neighbor of  on ), we cannot have , since  is a td-set. Similarly@ T ? œ @ Ww w

? Á ? ? T G � CBw w w. Now  is not an endpoint of , and we can absorb the path  as

described in Case 1.

Phase 2: All of  has been absorbed.L  Recall that  denotes the subset of W Ww

that has been used on the paths in . These paths each have at least two verticesc
of  and cover all of  except . Let  be a maximum matching inW Z ÐKÑ W � W Qw w

the subgraph of  induced by . Each edge of  is a path with twoK W � W Qw

vertices of ; we add this path to our family . It remains only to absorb theW c
vertices of .W � W � Z ÐQÑw

Let . By the choice of , the set  is independent inX œ W � W � Z ÐQÑ Q Xw

K W A X W. Since  is a td-set, each vertex  in  has at least one neighbor in . Choose

one such neighbor arbitrarily; it lies on a path in . We absorb these vertices ofc
X  into our path partition.

Let  be a path in . The chosen edges joining  to vertices of  form aT T Xc
caterpillar with . Each internal vertex of  in  can have one such neighbor;T T W w

the endpoints of  can have two. If an endpoint acquires two new neighbors, weT
use one to extend , and the other becomes a path of length . This does notT !
cause a problem, because we have increased the number of components of the

path partition by 1 while absorbing two additional vertices of . If the endpointX
has one new neighbor, we just extend the path.

It remains to consider internal vertices of the original path that are selected

from ; each such vertex is selected at most once. If  internal vertices of  areX 4 T
selected, then we have  "extra" vertices of  associated with  (in addition to#4 W T
the endpoints and the vertices possibly appended to the endpoints), so we can

afford to cut the path  times (just before each internal vertex receiving a new4
neighbor), creating  additional paths in the path partition but having the total4



number of vertices of  associated with these paths be at least twice the numberW
of paths. è

The following theorem was inspired by Graffiti.pc's Conjecture 246, that the

total domination number in trees is at least one less the matching number. It is

not too difficult to see that this conjecture is false, however, the following

theorem shows that the total domination number and the minimum size of a

maximal matching (denoted *) are related..

Theorem 9 : Let  be a tree with . ThenX 8 � "

# .>   * .� "

Proof. Let  be a tree, and let  be a minimum total dominating set of  with X H X #>
vertices and  components. We will build a maximal matching  with at most5 Q
#> � " H edges. To start, take a maximal matching from the forest induced by 

and call this set . Next, take a maximal matching from the forest induced byQ"

X �H Q H Q and call this set . Finally, for each vertex of  not in , it may be# "

possible to match that vertex to a currently un-matched vertex of . Let X �H Q$

be the set of all such possible edges and set . By thisQ œ Q ∪Q ∪Q" # $

construction,  is maximal.Q
Now, from Lemma 1 we see,

lQ l# Ÿ 5 � ".

In addition, we can bound the number of edges in  with the inequality,Q$

lQ l$ >Ÿ � #lQ l# " .

Therefore,

. #* Ÿ lQl œ lQ l � lQ l � lQ l Ÿ lQ l � 5 � " � lQ l" # $ " "> � #
               .œ lQ l � 5Ñ#> � " � Ð "

From this we get the desired inequality * , since  .. #Ÿ lQ   5 è> � " l"

An assignment of  colors to the vertices of a graph  such that adjacent5 K
vertices are assigned different colors is a -coloring of . The minimum  for5 K 5
which a graph has a -coloring is called the  and is denoted by5 chromatic number

; ;œ ÐKÑ. Complete graphs and trees demonstrate that the total domination

number is not bounded below or above by the chromatic number. Graffiti.pc's

Conjecture 228 in [6] states that when  is triangle-free, the total dominationK
number is indeed bounded below by the chromatic number.



Proposition 2: Let G be a triangle-free graph with . Then8 � "
# ;>   .

Proof. Let  be a smallest total dominating set.  It suffices to cover  withW Z lWl
independent sets. Since  is triangle-free, the neighborhood of each vertex of K W
is an independent set. Since  is a total dominating set, the union of theseW
neighborhoods is .Z è

The local independence at a vertex  of a graph  is the independence@ K
number of the subgraph induced by the neighbors of . We use  as the@ œ ÐKÑ- -
maximum of local independence over all vertices of . Note that  ifK ÐKÑ œ #-
and only if  is claw-free and is not a complete graph. The order of a largestK
complete subgraph is known as the clique number and denoted by .= =œ ÐKÑ
The clique number of a graph does not bound the total domination number above

as seen by the following construction. Take  for  and add a pendantO 7   $7

edge at each, then add a pendant edge at one of the resulting vertices of degree ."
The resulting graph has total domination number  while the clique number7� "
is . This family of graphs also demonstrates that the bound in the next theorem7
(Graffiti.pc number 301), involving the clique number of the graph and the

maximum of local independence of the complement graph, is sharp.

Theorem 10: Let G be a connected graph with . Let8 � "
E œ Ö@ À @ K ×local independence of  in  is maximum . Then-

# => Ÿ � lEl.

Proof. We can assume that  is not complete, since the relation holds otherwise.K
Let  be a vertex of maximum local independence in .@ K-

Observation. A vertex  of maximum local independence  in  has the@ ÐK Ñ K- - -

property that in  there exists a clique of order  whose vertices are notK ÐK Ñ- -

adjacent to .@

By the above observation, there exists a clique  of order  in  suchO ÐK Ñ K- -

that no vertex of  is adjacent to  in . Clearly  is a total dominating setO @ K Z ÐOÑ
for the subgraph induced by . By assumption,  is in .RÐOÑ @ Z ÐKÑ � RÐOÑ
Since each vertex in  has local independence at least  inZ ÐKÑ � RÐOÑ ÐK Ñ- -

K K- -, each is a vertex of maximum local independence in , that is,

lZ ÐKÑ � RÐOÑl Ÿ lEl.

In the case that  is a total dominating set for the subgraph inducedZ ÐKÑ � RÐOÑ
by , it follows that  is a totalZ ÐKÑ � RÐOÑ Z ÐOÑ ∪ ÒZ ÐKÑ � RÐOÑÓ
dominating set for , andK



# => Ÿ lZ ÐOÑl � lZ ÐKÑ � RÐOÑl Ÿ � lEl.

On the other hand, in case  is not a total dominating set forZ ÐKÑ � RÐOÑ
the subgraph induced by , there must exist an isolated vertex  inZ ÐKÑ � RÐOÑ B
the subgraph induced by . Since  is assumed to be connected, Z ÐKÑ � RÐOÑ K B
must be adjacent to some vertex  in . Now let  be8 RÐOÑ � Z ÐOÑ B ß B ß ÞÞÞß B" # 5

the isolated vertices in the subgraph induced by . For each vertexZ ÐKÑ � RÐOÑ
B 8 B RÐOÑ K4 4 4, let  be a neighbor of  in  with respect to . Then

[ ]  is a total dominating set forZ ÐKÑ � RÐOÑ � ÖB ß B ß ÞÞÞB × ∪ Ö8 ß 8 ß ÞÞÞß 8 ×" # 5 " # 5

the subgraph induced by . Finally,Z ÐKÑ � RÐOÑ
Z ÐOÑ ∪ ÒÒZ ÐKÑ � RÐOÑÓ � ÖB ß B ß ÞÞÞB × ∪ Ö8 ß 8 ß ÞÞÞß 8 ×Ó" # 5 " # 5  is a total

dominating set for  of order at most . K � lEl è=
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