TOTAL INTERVAL NUMBER
FOR GRAPHS WITH BOUNDED DEGREE

Alexander V. Kostochka†
Institute of Mathematics, Russian Academy of Sciences, Novosibirsk, Russia

Douglas B. West‡
Department of Mathematics, University of Illinois, Urbana, IL 61801-2975

Abstract. The total interval number of an n-vertex graph with maximum degree Δ is at most $(\Delta + 1/\Delta)n/2$, with equality if and only if every component of the graph is $K_{\Delta, \Delta}$. If the graph is also required to be connected, then the maximum is $\Delta n/2 + 1$ when Δ is odd, but when Δ is even it exceeds $|\Delta + 1/(2.5\Delta + 7.7)|n/2$ for infinitely many n.

Given sets \{${S_v: v \in V}$\}, the intersection graph of the collection of sets is the simple graph with vertex set V such that v is adjacent to v if and only if $S_u \cap S_v \neq \emptyset$. The family of sets is an intersection representation of its intersection graph. The interval graphs are the intersection graphs representable by assigning each vertex a single interval on the real line. More generally, we allow a representation f to assign each vertex a union of intervals on the real line; if G is the intersection graph of this collection, then f is a multiple-interval representation of G. Let $\#f(v)$ be the number of disjoint intervals whose union is $f(v)$. If $\#f(v) = k$, we say that $f(v)$ consists of k intervals or that v is assigned k intervals.

We may try to make the representation of G “efficient” by minimizing $\max_{v \in V} \#f(v)$ or $\sum_{v \in V} \#f(v)$. The interval number $i(G)$ of a graph G is the minimum of $\max_{v \in V(G)} \#f(v)$ over all multiple-interval representations of G. Interval number has been studied since 1979, beginning with [7] and [2]. The total interval number $I(G)$ of a graph G is the minimum of $\sum_{v \in V(G)} \#f(v)$ over all multiple-interval representations of G. Although introduced in [2], total interval number was not studied until Aigner and Andreae [1] obtained extremal results for some fundamental families. Further results appear in [3,4,5,6].

† Research supported in part by grant 93-01-01486 of the Russian Foundation for Fundamental Research and the grant RPY300 of the International Science Foundation and Russian Government.
‡ Research supported in part by NSA/MSP Grants MDA904-90-H-4011 and MDA904-93-H-3040.

AMS codes: 05C35, 05C38
Keywords: total interval number, interval representation, vertex degree, trail cover
Running head: TOTAL INTERVAL NUMBER AND DEGREE
In this paper we prove that $I(G) \leq (\Delta + 1/\Delta)n/2$ for graphs with maximum degree at most Δ, which is best possible. The proof yields a polynomial algorithm for producing a representation that satisfies the bound. Kratzke and West [5] proved that if G contains a collection of t pairwise edge-disjoint trails that together contain an endpoint of every edge of G, then $I(G) \leq e(G) + t$, where $e(G) = |E(G)|$. Such a collection of trails is a trail cover of size t, generalizing the notion of vertex cover; in this paper, “covering e” means “containing an endpoint of e”. Let $t(G)$ denote the minimum size of a trail cover. If G is triangle-free, then $I(G) = e(G) + t(G)$; a simple counting argument [5] establishes the lower bound. The graph $mK_{\Delta,\Delta}$ has m components that are complete bipartite graphs; it is regular and triangle-free, with $n = 2m\Delta$ vertices, and its minimum trail covers have size m. Hence $I(mK_{\Delta,\Delta}) = m\Delta^2 + m = (\Delta + 1/\Delta)n/2$, and our bound is best possible. We also prove that these are the only graphs achieving the bound. The proof yields a polynomial-time algorithm to achieve the bound.

Connected Graphs

Before proving the bound for general graphs, we discuss the more restricted class of connected graphs. For Δ even, the maximum of $I(G)$ in terms of n and Δ is $\Delta n/2 + 1$. For Δ odd, we provide constructions where the excess over $\Delta n/2$ is linear in n.

PROPOSITION Suppose Δ is even. Among connected n-vertex graphs with maximum degree Δ, the maximum of the total interval number is $\Delta n/2 + 1$.

Proof: Suppose G is connected and has maximum degree Δ. If G is Eulerian, then $I(G) \leq e(G) + 1 \leq \Delta n/2 + 1$, with equality if G is triangle-free and regular. If G is not Eulerian, suppose G has $2k$ vertices of odd degree. Since G is connected, we can decompose $E(G)$ into k trails, so $t(G) \leq k$. Since each vertex of odd degree has degree less than Δ, we have $2e(G) \leq \Delta n - 2k$, and hence $I(G) \leq e(G) + k \leq \Delta n/2$.

In addition to the Δ-regular triangle-free graphs, equality holds also for Δ-regular graphs in which every vertex belonging to a triangle is a cut-vertex. When Δ is odd, the bound of $\Delta n/2 + 1$ no longer holds; we provide a construction.

PROPOSITION Suppose Δ is odd and at least 3. Among connected n-vertex graphs with maximum degree Δ, the maximum total interval number exceeds $[\Delta + 1/(2.5\Delta + 7.7)]n/2$ for infinitely many n.

Proof: We prove the claim by using copies of a triangle-free graph H with degree sequence $(\Delta, \ldots, \Delta, \Delta - 1)$ to construct a Δ-regular triangle-free connected graph G with n vertices such that $t(G) \geq [1/(2.5\Delta + 7.7)]n/2$. Begin with a caterpillar C consisting of a path with $k + 2$ vertices and $\Delta - 2$ leaves attached to each interior vertex of the path. For each of the $k(\Delta - 2) + 2$ leaves of C, we provide a copy of H and identify its vertex of degree $\Delta - 1$ with that leaf.
The resulting graph G is triangle-free and Δ-regular, so $I(G) = \Delta n/2 + t(G)$. Because each edge of C is a cut-edge of G, every trail cover of G has an endpoint in each copy of H. Hence $t(G) \geq [k(\Delta - 2) + 2]/2$, and in fact $t(G) = [k(\Delta - 2) + 2]/2$. If H has n' vertices, then $n = [k(\Delta - 2) + 2]n' + k$. We obtain $n < 2t|n' + 1/(\Delta - 2)|$, and hence $t(G) > \frac{1}{n'+1/(\Delta-2)}(n/2)$.

It remains to construct a suitable H with n' as small as possible. When $\Delta = 3$, we form H by subdividing one edge of $K_{3,3}$; here $n' = 7$ and $t(G) > \frac{1}{7}(n/2)$. For larger Δ, consider the lexicographic composition $F_s = C_5|K_s$, expanding each vertex of a 5-cycle into an independent set of size s. The graph F_s is $2s$-regular and triangle-free, and for $s \geq 2$ it has a pair of easily described edge-disjoint Hamiltonian cycles. When $(\Delta + 1)/2$ is odd, we form H by deleting from $F_{(\Delta+1)/2}$ the odd-indexed edges on one Hamiltonian cycle. Since $(\Delta + 1)/2$ is odd, this reduces one vertex degree from $(\Delta + 1)$ to $(\Delta - 1)$ and the others to Δ. When $(\Delta + 1)/2$ is even, we form H by deleting from $F_{(\Delta+3)/2}$ the odd-indexed edges on one Hamiltonian cycle and all edges on another Hamiltonian cycle. Since $n' = 2.5(\Delta + 3)$ is odd, we again obtain the desired degree sequence. Here $\Delta \geq 7$, which yields the 7.7 in the statement of the result.

\[\square \]

The Main Result

We consider an n-vertex graph G with maximum degree Δ and wish to prove that $I(G) \leq (\Delta + 1/\Delta)n/2$. We may assume that G has no isolated vertices, because such vertices require no intervals; when $f(v) = \emptyset$ and the intersection graph is taken, v becomes an isolated vertex.

Our approach is to select a set of edge-disjoint trails T_1, \ldots, T_k to cover $E(G)$, in a greedy manner subject to various conditions; each new trail contains some previously uncovered edge. We partition $E(G)$ into sets associated with the trails; the set E_i associated with T_i consists of $E(T_i)$ and the newly-covered edges that do not belong to later trails. We will also associate a set $S_i \subseteq V(G)$ with each trail (the union of closed neighborhoods of certain vertices of the trail); these sets will be pairwise disjoint. We can represent E_i using $|E_i| + 1$ intervals, fewer if E_i contains a triangle with at most one edge on T_i.

When G has maximum degree Δ, we have $e(G) \leq \Delta n/2$. If $e(G) = \Delta n/2 - k$, we will use $|E_i| + 1$ intervals for at most $k + n/(2\Delta)$ trails T_i. We do this by ensuring that we use an extra interval for T_i only when there exists $\alpha_i \in \{0, 1, 2\}$ such that $|S_i| \geq (2 - \alpha_i)\Delta$ and the degrees of two new vertices of T_i sum to at most $2\Delta - \alpha_i$. If the values of α_i over the s trails using an extra interval sum to r, then we have $I(G) \leq e(G) + s$ and $e(G) \leq \Delta n/2 - r/2$. Hence $I(G) \leq \Delta n/2 + (2s - r)/2$. Also we have associated $(2s - r)\Delta$ vertices with these trails. Since $(2s - r)\Delta \leq n$, we have the desired bound. The remainder of the proof consists of showing that we can choose the trails to ensure these conditions.

We use “open” trails: trails with two distinct endpoints. We say that a trail is closable if its endpoints are adjacent via an edge not belonging to the trail. When T is closable, we let T' denote the closed trail formed by adding the edge between the endpoints of T.
THEOREM Every simple graph with n vertices and maximum degree Δ has total interval number at most $(\Delta + 1/\Delta)n/2$. Furthermore, equality holds only when every component is $K_{\Delta, \Delta}$.

Proof: We select a sequence of pairwise edge-disjoint open trails T_1, \ldots, T_k in a greedy manner. The new vertices of T_i are the vertices in T_i that do not appear in T_1, \ldots, T_{i-1} and that cover at least one edge not covered by vertices of earlier trails. The new edges of T_i are the previously uncovered edges that are covered by new vertices of T_i. Note that an edge of T_i is new (for T_i) if and only if both its endpoints are new.

We choose each T_i to be an open trail having endpoints that are new. Among these, we choose T_i with maximum number of new vertices. Among these, we choose T_i to be closable, if such a candidate is available. Among the remaining candidates for T_i, we choose T_i with minimum length.

The sequence ends when all edges are covered. The set E_i of edges associated with T_i is $E(T_i)$ together with the new edges that do not belong to later trails. By construction, these edge sets are disjoint. We postpone the definition of the vertex set S_i associated with T_i.

Claim 1: If T_i is not closable and has endpoint v, then only one edge incident to v belongs to T_i. Otherwise, we delete the initial portion of T_i up to the next appearance of a new vertex other than the other endpoint of T_i (this may be v again). The shorter trail T is open and has the same new set as T_i; it may be closable, but since T_i is not closable, we would in either case choose T in preference to T_i.

Claim 2: If the vertices of T_i are not all new, then T_i is not closable and the end edges of T_i are new. Let x be the first vertex of T_i that is not new, belonging to an earlier trail T_j. If T_i is closable, then T_j can absorb the closed trail T_i' to enlarge its new set. If T_i is not closable, then the first edge of T_i is new unless it is ux. By the maximality of the new set, every neighbor of u along a new edge belongs to T_i. If v is the first such vertex on T_i, then the u, v-portion of T_i together with the edge uv forms a closed trail containing x that can be absorbed by T_j to enlarge its new set.

Claim 3: If T_i is closable, then no vertex of T_i appears in another trail or has a neighbor in a later trail. By Claim 2, every vertex of T_i is new. If w is a vertex of T_i that equals or is adjacent to a vertex w' of a later trail T_j, then we can traverse T_i' starting at w, enter T_j at w', and continue to an end of T_j, replacing T_i by a trail with at least two more new vertices.

Claim 4: If T_i is not closable, then there is no edge to a later trail from an endpoint of T_i or from its neighbor along T_i. Any such edge permits an extension of T_i (or of T_i minus its endpoint) using a portion of T_j that has at least two new vertices, thereby creating a trail with more new vertices than T_i.

The start vertices of T_i are its endpoints if T_i is not closable, or all of its vertices if T_i
is closable. By Claim 3, every start vertex of T_i is a new vertex of T_i.

Claim 5: No vertex of T_i is adjacent to two start vertices of later trails, or to a start vertex of T_i and a start vertex of a later trail. Suppose $w \in V(T_i)$ has neighbors x, y that are start vertices of T_j, T_k, respectively, with $i \leq j \leq k$ and $i \neq k$. By Claim 3, T_i is not closable. By the “newness” of start vertices (and by Claim 4 if $i = j$), wx, wy do not belong to $E(T_i)$. If $j = k$, T_i could thus absorb a portion of T_j that contains a new vertex, giving T_i more new vertices. Hence we may assume $i \leq j < k$. In this case, $wy \notin E(T_j)$, since y is new in T_k. If T_j is closable, then $j > i$ and Claim 3 yields $wx \notin E(T_j)$. If T_j is not closable, then Claim 1, Claim 4 and the edge wy imply that $wx \notin E(T_j)$. Now T_j, which we can view as ending at y, can be extended via w to absorb at least two new vertices from T_k.

Claim 6: If u, v are start vertices of T_i, T_j with $i < j$, then u, v are nonadjacent and have no common neighbor. By Claims 3 and 4, a start vertex of T_i has no neighbor in a later trail. No start vertex of T_i has a neighbor outside all trails, because such a neighbor could be used to enlarge the new set of T_i. By Claim 5, u and v have no common neighbor in trail T_i or earlier.

Claim 7: If E_i contains a triangle with at most one edge on T_i, then E_i can be represented using $|E_i|$ intervals. If the vertices of T_i are v_1, \ldots, v_n in order (with repetition), then we represent T_i by assigning the interval $(j - 2/3, j + 2/3)$ to v_j. This uses $e(T_i) + 1$ intervals. For each additional edge $e \in E_i$ that is not in the triangle, suppose $e = xv_j$ where v_j is a new vertex of T_i. We represent e by adding a small interval for x within $(j - 1/3, j + 1/3)$ (intersecting only the interval for v_j). If the triangle in E_i contains an edge v_jv_{j+1} of T_i, then we add an interval for their common neighbor in E_i within $(j + 1/3, j + 2/3)$, gaining two edges for one interval. If it contains no edge of T_i, we select some $v_j \in V(T_i)$ on the triangle and add a common interval for the other two vertices of the triangle within $(j - 1/3, j + 1/3)$, gaining three edges for two intervals. In total, we have used $|E_i|$ intervals.

Now, let S_i consist of the start vertices of T_i and their neighbors. By Claim 6, the sets S_i are pairwise disjoint. Choose two start vertices u, v in T_i with the minimum degree sum. If $d(u) + d(v) \leq 2\Delta - 2$, then by the discussion before the theorem statement we do not need to save an interval for T_i. If $d(u) + d(v) = 2\Delta - 1$, then one of u, v has degree Δ and we have $|S_i| > \Delta$.

Hence we may assume that every start vertex of T_i has degree Δ. By the computation before the theorem statement, it remains only to show that $|S_i| \geq 2\Delta$ if E_i does not contain a triangle with at most one edge on T_i. If some pair of start vertices on T_i has no common neighbor, then $|S_i| \geq 2\Delta$, so we may assume that every pair of start vertices has a common neighbor.

Suppose first that T_i is not closable. Let u, v be the endpoints of T_i, and let w be a common neighbor; by Claim 5 w does not belong to an earlier trail. If neither of $\{uw, vw\}$ belongs to T_i, then T_i can be extended by ww to obtain a closable trail with the same new
set as T_i, which would be preferred to T_i. This includes the case where u, v are adjacent and T_i has length 1. In the remaining case, u, v are nonadjacent and any common neighbor of them is adjacent to one of them using an end edge of T_i. There are at most two such common neighbors. Hence $|S_i| \geq 2 + 2\Delta - 2 = 2\Delta$, as desired.

Finally, suppose that T_i is closable, which requires at least three vertices, each pair of which has a common neighbor. By Claims 3 and 5, the common neighbors of vertices in T_i also lie in T_i. Furthermore, every edge of T'_i forms a triangle only using two other edges of T'_i; otherwise, we can use the endpoints of that edge as the endpoints of T_i and use the common neighbor to form a triangle having at most one edge on T_i.

Since T'_i forms a connected subgraph of G, it has a vertex w that is not a cut-vertex of T'_i. Deleting from T'_i any set of edges incident to w leaves a connected subgraph, except possibly for isolating w. Every edge wv incident to w in T'_i lies on a triangle in T'_i; let u be the third vertex of this triangle. Deleting \{wv, uw\} from T'_i leaves a subgraph having a u, v-Eulerian trail T. Now u, v, w form a triangle with only one edge on T. Furthermore, every edge of E_i is incident to at least one vertex of T, because when T_i is closable every edge of E_i has both endpoints on T_i. By the construction in Claim 7, we can use represent E_i using only $|E_i|$ intervals, saving one for the edges \{wv, uw\}.

We have resolved all cases, and the proof of the bound is complete. Next we consider how equality may be achieved. We may assume that G is connected. It suffices to show that if $G \neq K_{\Delta, \Delta}$, then we save an extra interval for T_i.

If T_i is closable, then Claim 3 implies that $V(T_i) = V(G)$, and hence $E_i = E(G)$. If G is not Δ-regular or if $n > 2\Delta$, then $|E(G)| + 1 < (\Delta + 1/\Delta)n/2$, and we are done. If G is Δ-regular and $\Delta \geq n/2$, then G is Hamiltonian, by Dirac’s Theorem. If $G \neq K_{\Delta, \Delta}$, then G has a triangle, by Turán’s Theorem. By the choice of T_i to minimize length, T'_i is a Hamiltonian cycle. If T'_i uses any edge of the triangle, then we delete that edge from T'_i to obtain T_i. Hence we can choose T_i so that we have a triangle with at most one edge on T_i. By Claim 7, we can now represent $E(G)$ using $|E(G)| = \Delta n/2$ edges.

If T_i is not closable, recall the computation of our bound on $I(G)$. We have $I(G) \leq \Delta n/2 + (2s - r)/2$, where there are s trails T_i using $|E_i| + 1$ intervals and $r = \sum \alpha_i$, with $2\Delta - \alpha_i$ being the sum of the degrees of the chosen vertices on T_i. We proved the bound by associating $(2s - r)\Delta$ vertices with these trials, since then $(2s - r)\Delta \leq n$. We have strict inequality if some T_i uses only $|E_i|$ intervals (since its start vertices are not in the sets S_j associated with other trails) or if for some T_i the associated set S_i has more than $2\Delta - \alpha_i$ vertices.

Now consider T_i, with endpoints u, v. If $d(u) + d(v) < 2\Delta$, then $|S_i| > (2 - \alpha_i)\Delta$ immediately, so we may assume $d(u) + d(v) = 2\Delta$. By Claim 4, all neighbors of v lie in T_i. By Claim 1, only one edge incident to v belongs to T_i. Since our greedy selection prefers closable trails, this implies that u, v are not adjacent (unless $uv \in E(T_i)$, in which case $\Delta = 1$ and $G = K_{\Delta, \Delta}$). Suppose the vertices of T_i are $u = x_1, x_2, \ldots, x_m = v$ in order. If v is adjacent to both x_i and x_{i+1} for some $i < m - 2$, then it forms a triangle with one edge on T_i, and Claim 7 applies. If $i = m - 2$, then because v has no neighbors on later
trails, we can again save an interval for this triangle. Hence we may assume that \(v \) does
not have consecutive neighbors on \(T_i \). If \(v \) is adjacent to \(x_i \) for \(i < m - 1 \), then \(x_{i+1} \) has no
neighbor \(w \) in another trail \(T_j \). Otherwise, we could follow \(x_1, \ldots, x_i, v, x_{m-1}, \ldots, x_{i+1}, w \)
and continue in \(T_j \) to enlarge the new set of \(T_1 \). Since the successors on \(T_1 \) of neighbors of
\(v \) have no neighbors in later trails, they appear in no later \(S_j \), and we can add them to \(S_1 \).
Now \(S_1 \) consists of at least the neighbors of \(v \), their successors on \(T_1 \), and \(u \), which totals
\(2\Delta + 1 \) vertices.

The alterations that are used to improve trails always increase the new set or decrease
the length (or make it closed); there can be at most \(n^2 \) of these changes for each trail.
Also the search for whether a change is needed takes polynomial time. Hence this proof
can be implemented as a polynomial algorithm to produce a representation that satisfies
the bound.

References

