The Game of Revolutionaries and Spies

Douglas B. West

Zhejiang Normal University
and
University of Illinois at Urbana-Champaign
west@math.uiuc.edu

slides available on DBW preprint page

Joint work with
Jane V. Butterfield, Daniel W. Cranston,
Gregory J. Puleo, and Reza Zamani;
plus
Clifford Smyth and David Howard
The Model

Two teams: r revolutionaries and s spies on a graph G.
The Model

Two teams: r revolutionaries and s spies on a graph G.

Start: Each rev and then each spy occupies a vertex.
The Model

Two teams: r revolutionaries and s spies on a graph G.

Start: Each rev and then each spy occupies a vertex.

Round: Each rev and then each spy moves or doesn’t.
The Model

Two teams: r revolutionaries and s spies on a graph G.

Start: Each rev and then each spy occupies a vertex.

Round: Each rev and then each spy moves or doesn’t.

Goal: Revs want a meeting of size m unguarded by spies; spies want to prevent this.
The Model

Two teams: r revolutionaries and s spies on a graph G.

Start: Each rev and then each spy occupies a vertex.

Round: Each rev and then each spy moves or doesn’t.

Goal: Revs want a meeting of size m unguarded by spies; spies want to prevent this.

Def. $RS(G, m, r, s)$ is the resulting game; who wins?
The Model

Two teams: r revolutionaries and s spies on a graph G.

Start: Each rev and then each spy occupies a vertex.

Round: Each rev and then each spy moves or doesn’t.

Goal: Revs want a meeting of size m unguarded by spies; spies want to prevent this.

Def. $RS(G, m, r, s)$ is the resulting game; who wins?

Ex. 3 revs beat 1 spy on C_4 (when $m = 2$).
The Model

Two teams: r revolutionaries and s spies on a graph G.

Start: Each rev and then each spy occupies a vertex.

Round: Each rev and then each spy moves or doesn’t.

Goal: Revs want a meeting of size m unguarded by spies; spies want to prevent this.

Def. $RS(G, m, r, s)$ is the resulting game; who wins?

Ex. 3 revs beat 1 spy on C_4 (when $m = 2$).
The Model

Two teams: r revolutionaries and s spies on a graph G.

Start: Each rev and then each spy occupies a vertex.

Round: Each rev and then each spy moves or doesn’t.

Goal: Revs want a meeting of size m unguarded by spies; spies want to prevent this.

Def. $RS(G, m, r, s)$ is the resulting game; who wins?

Ex. 3 revs beat 1 spy on C_4 (when $m = 2$).
The Model

Two teams: r revolutionaries and s spies on a graph G.

Start: Each rev and then each spy occupies a vertex.

Round: Each rev and then each spy moves or doesn’t.

Goal: Revs want a meeting of size m unguarded by spies; spies want to prevent this.

Def. $RS(G, m, r, s)$ is the resulting game; who wins?

Ex. 3 revs beat 1 spy on C_4 (when $m = 2$).
The Model

Two teams: r revolutionaries and s spies on a graph G.

Start: Each rev and then each spy occupies a vertex.

Round: Each rev and then each spy moves or doesn’t.

Goal: Revs want a meeting of size m unguarded by spies; spies want to prevent this.

Def. $RS(G, m, r, s)$ is the resulting game; who wins?

Ex. 3 revs beat 1 spy on C_4 (when $m = 2$).

Invented by Beck, 1990s.
Trivial Bounds

Obs. Assume always $s < |V(G)|$, else spies win.
Trivial Bounds

Obs. Assume always \(s < |V(G)| \), else spies win.

Obs. \(s \geq r - m + 1 \) \(\Rightarrow \) spies win.

Spies follow all but \(m - 1 \) revs.
Trivial Bounds

Obs. Assume always $s < |V(G)|$, else spies win.

Obs. $s \geq r - m + 1 \implies$ spies win.
Spies follow all but $m - 1$ revs.

Obs. $s < \lfloor r/m \rfloor \implies$ revs win.
Revs can make more meetings than spies can guard.
Trivial Bounds

Obs. Assume always \(s < |V(G)| \), else spies win.

Obs. \(s \geq r - m + 1 \) \(\Rightarrow \) spies win.

Spies follow all but \(m - 1 \) revs.

Obs. \(s < \lfloor r/m \rfloor \) \(\Rightarrow \) revs win.

Revs can make more meetings than spies can guard.

Ques. Fix \(G, m, r \). How many spies needed to win?
Trivial Bounds

Obs. Assume always $s < |V(G)|$, else spies win.

Obs. $s \geq r - m + 1 \Rightarrow$ spies win.
Spies follow all but $m - 1$ revs.

Obs. $s < \lfloor r/m \rfloor \Rightarrow$ revs win.
Revs can make more meetings than spies can guard.

Ques. Fix G, m, r. How many spies needed to win?

Def. $\sigma(G, m, r) = \text{least } s \text{ so spies win } RS(G, m, r, s)$.

Trivial Bounds

Obs. Assume always $s < |V(G)|$, else spies win.

Obs. $s \geq r - m + 1 \Rightarrow$ spies win.
Spies follow all but $m - 1$ revs.

Obs. $s < \lfloor r/m \rfloor \Rightarrow$ revs win.
Revs can make more meetings than spies can guard.

Ques. Fix G, m, r. How many spies needed to win?

Def. $\sigma(G, m, r) = \text{least } s \text{ so spies win } RS(G, m, r, s)$.

G is spy-good: $\sigma(G, m, r) = \lfloor r/m \rfloor$ for all r, m.
Trivial Bounds

Obs. Assume always $s < |V(G)|$, else spies win.

Obs. $s \geq r - m + 1 \Rightarrow$ spies win.
Spies follow all but $m - 1$ revs.

Obs. $s < \lfloor r/m \rfloor \Rightarrow$ revs win.
Revs can make more meetings than spies can guard.

Ques. Fix G, m, r. How many spies needed to win?

Def. $\sigma(G, m, r) =$ least s so spies win $RS(G, m, r, s)$.

G is spy-good: $\sigma(G, m, r) = \lfloor r/m \rfloor$ for all r, m.

G is spy-bad for particular (r, m): $\sigma(G, m, r) = r - m + 1$.
The Plan

• Some graphs are spy-good: \([r/m]\)
Trees, dominated graphs, webbed trees, unicyclic graphs (almost: \([r/m]\) spies suffice).
The Plan

• Some graphs are spy-good: \([r/m]\)
 Trees, dominated graphs, webbed trees, unicyclic graphs (almost: \([r/m]\) spies suffice).

• Some graphs are spy-bad: \(r - m + 1\)
 Chordal or bipartite examples, hypercubes (and product graphs), random graphs, king’s-move grids (almost?) (Howard–Smyth [2012])
The Plan

- Some graphs are **spy-good**: $[r/m]$
 Trees, dominated graphs, webbed trees, unicyclic graphs (almost: $[r/m]$ spies suffice).

- Some graphs are **spy-bad**: $r - m + 1$
 Chordal or bipartite examples, hypercubes (and product graphs), random graphs, king’s-move grids (almost?) (Howard–Smyth [2012])

- Some graphs are **in between**: cr/m
 Complete multipartite (good upper and lower bounds). Complete bipartite (exact answers for $m \in \{2, 3\}$).
The Plan

- Some graphs are **spy-good**: $\lceil r/m \rceil$
 Trees, dominated graphs, webbed trees, unicyclic graphs (almost: $\lfloor r/m \rfloor$ spies suffice).

- Some graphs are **spy-bad**: $r - m + 1$
 Chordal or bipartite examples, hypercubes (and product graphs), random graphs, king’s-move grids (almost?) (Howard–Smyth [2012])

- Some graphs are **in between**: cr/m
 Complete multipartite (good upper and lower bounds). Complete bipartite (exact answers for $m \in \{2, 3\}$).

But what can one say **in general**?
Spy-Good Graphs

Def. G is spy-good if $\lfloor r/m \rfloor$ spies win, for all r, m.
Spy-Good Graphs

Def. G is spy-good if $\lfloor r/m \rfloor$ spies win, for all r, m.

Thm. (Smyth [mid-90s]) Trees are spy-good.
Spy-Good Graphs

Def. G is spy-good if $\lfloor r/m \rfloor$ spies win, for all r, m.

Thm. (Smyth [mid-90s]) Trees are spy-good.

Thm. Graphs with a dominating vertex z are spy-good. Spies wait at z except when guarding meetings elsewhere.
Spy-Good Graphs

Def. G is spy-good if $\lfloor r/m \rfloor$ spies win, for all r, m.

Thm. (Smyth [mid-90s]) Trees are spy-good.

Thm. Graphs with a dominating vertex z are spy-good. Spies wait at z except when guarding meetings elsewhere.

Def. webbed tree - a graph G with a rooted spanning tree T where every edge of $G - E(T)$ joins siblings in T.

![Diagram of a webbed tree](image-url)
Spy-Good Graphs

Def. G is spy-good if $\lfloor r/m \rfloor$ spies win, for all r, m.

Thm. (Smyth [mid-90s]) Trees are spy-good.

Thm. Graphs with a dominating vertex z are spy-good. Spies wait at z except when guarding meetings elsewhere.

Def. webbed tree - a graph G with a rooted spanning tree T where every edge of $G - E(T)$ joins siblings in T.

Thm. Webbed trees are spy-good.
Dominating vertex z

Thm. Dominating Vertex $\implies \sigma(G,m,r) = \lfloor r/m \rfloor$.
Dominating vertex z

Thm. Dominating Vertex $\Rightarrow \sigma(G, m, r) = \lfloor r/m \rfloor$.

Pf. stable position - each vertex ν other than z has $\lfloor r(\nu)/m \rfloor$ spies, where $r(\nu) = \#\text{revs at } \nu$.

Thm. Dominating Vertex \(\Rightarrow \sigma(G, m, r) = \lfloor r/m \rfloor \).

Pf. stable position - each vertex \(v \) other than \(z \) has \(\lfloor r(v)/m \rfloor \) spies, where \(r(v) = \#\text{revs at } v \).

stable position \(\Rightarrow \) no unguarded meeting.
Thm. Dominating Vertex $\Rightarrow \sigma(G, m, r) = \lfloor r/m \rfloor$.

Pf. stable position - each vertex v other than z has $\lfloor r(v)/m \rfloor$ spies, where $r(v) = \#\text{revs at } v$.

stable position \Rightarrow no unguarded meeting.

Spies end initial round stable.

$m = 2$
Thm. Dominating Vertex $\Rightarrow \sigma(G, m, r) = \lfloor r/m \rfloor$.

Pf. stable position - each vertex v other than z has $\lfloor r(v)/m \rfloor$ spies, where $r(v) = \#\text{revs at } v$.

stable position \Rightarrow no unguarded meeting.

Spies end initial round stable.

![Diagram](image.png)
Dominating vertex z

Thm. Dominating Vertex $\Rightarrow \sigma(G,m,r) = \lfloor r/m \rfloor$.

Pf. stable position - each vertex v other than z has $\lfloor r(v)/m \rfloor$ spies, where $r(v) = \#\text{revs at } v$.

stable position \Rightarrow no unguarded meeting.

Spies end initial round stable.
Dominating vertex z

Thm. Dominating Vertex $\Rightarrow \sigma(G, m, r) = \lfloor r/m \rfloor$.

Pf. stable position - each vertex v other than z has $\lfloor r(v)/m \rfloor$ spies, where $r(v) = \#\text{revs at } v$.

stable position \Rightarrow no unguarded meeting.

Spies end initial round stable.

$m = 2$

\[\begin{array}{ccc}
S & R & R \\
R & R & R \\
R & R & R \\
R & R & R \\
S & S & S \\
\end{array}\]
Thm. Dominating Vertex \(\Rightarrow \sigma(G, m, r) = \lfloor r / m \rfloor \).

Pf. stable position - each vertex \(v \) other than \(z \) has \(\lfloor r(v) / m \rfloor \) spies, where \(r(v) = \#\text{revs at } v \).

stable position \(\Rightarrow \) no unguarded meeting.

Spies end initial round stable.

\[m = 2 \]
Dominating vertex \(z \)

Thm. Dominating Vertex \(\Rightarrow \sigma(G, m, r) = \lfloor r/m \rfloor \).

Pf. stable position - each vertex \(v \) other than \(z \) has \(\lfloor r(v)/m \rfloor \) spies, where \(r(v) = \# \text{revs at } v \).

stable position \(\Rightarrow \) no unguarded meeting.

Spies end initial round stable.

Idea: Restore stability after each round using matching in a bipartite graph.
Restoring Stability

$m = 2$

$X = \text{previous } m\text{-sets of revs at vertices other than } z.$

$X' = \text{previous excess spies at } z.$
Restoring Stability

$m = 2$

$X = \text{previous } m\text{-sets of revs at vertices other than } z.$

$X' = \text{previous excess spies at } z.$

$Y = m\text{-sets after revs move in this round.}$
Restoring Stability

\[m = 2 \]

\[X = \text{previous } m\text{-sets of revs at vertices other than } z. \]
\[X' = \text{previous excess spies at } z. \]
\[Y = m\text{-sets after revs move in this round.} \]

\[
\begin{align*}
X & \quad x_1 \quad x_2 \quad x_3 \quad x_4 \\
X' & \quad x_3 & \quad x_4 \\
\text{rev moves} & \quad \text{all edges} \\
Y & \quad y_1 \quad y_2 \quad y_3 \quad y_4 \\
Y & \quad y_3 \quad y_4
\end{align*}
\]
Restoring Stability

\[m = 2 \]

\[X = \text{previous } m\text{-sets of revs at vertices other than } z. \]

\[X' = \text{previous excess spies at } z. \]

\[Y = m\text{-sets after revs move in this round.} \]

Hall’s Condition: For \(T \subseteq Y \), the \(m|T| \) revs in these meetings came from \(N(T) \cap X \) or from no meeting in \(X \), so \(m|T| \leq m|N(T) \cap X| + r - m|X| \).
Restoring Stability

\[m = 2 \]

\[X = \text{previous } m\text{-sets of revs at vertices other than } z. \]
\[X' = \text{previous excess spies at } z. \]
\[Y = m\text{-sets after revs move in this round.} \]

Hall’s Condition: For \(T \subseteq Y \), the \(m|S| \) revs in these meetings came from \(N(T) \cap X \) or from no meeting in \(X \), so \(m|T| \leq m|N(T) \cap X| + r - m|X| \). We compute

\[
|N(T)| = |N(T) \cap X| + |X'| \geq |T| - (\lfloor r/m \rfloor - |X|) + |X'| = |T|.
\]
Webbed Tree

Thm. G is a webbed tree \Rightarrow $\sigma(G, m, r) = \lfloor r/m \rfloor$.
Webbed Tree

Thm. G is a webbed tree $\Rightarrow \sigma(G, m, r) = \lfloor r/m \rfloor$.

Pf. $r(\nu) = \#\text{revs now at } \nu$. $C(\nu) = \text{children of } \nu$. $s(\nu) = \#\text{spies now at } \nu$. $D(\nu) = \nu$ plus descendants.
Thm. \(G \) is a webbed tree \(\Rightarrow \sigma(G, m, r) = \lfloor r/m \rfloor. \)

Pf. \(r(\nu) = \#\) revs now at \(\nu \). \(C(\nu) = \) children of \(\nu \).
\(s(\nu) = \#\) spies now at \(\nu \). \(D(\nu) = \nu \) plus descendants.
\[w(\nu) = \sum_{u \in D(\nu)} r(u). \]
Thm. G is a webbed tree $\Rightarrow \sigma(G, m, r) = \lfloor r/m \rfloor$.

Pf. $r(\nu) = \#\text{revs now at } \nu$. $C(\nu) = \text{children of } \nu$. $s(\nu) = \#\text{spies now at } \nu$. $D(\nu) = \nu \text{ plus descendants}$.

$$w(\nu) = \sum_{u \in D(\nu)} r(u).$$

Spy Rule:

$$s(\nu) = \left\lfloor \frac{w(\nu)}{m} \right\rfloor - \sum_{x \in C(\nu)} \left\lfloor \frac{w(x)}{m} \right\rfloor \text{ at each vertex } \nu.$$
Thm. G is a webbed tree $\Rightarrow \sigma(G, m, r) = \lfloor r/m \rfloor$.

Pf. $r(\nu) = \#\text{revs now at } \nu$. $C(\nu) = \text{children of } \nu$.
$s(\nu) = \#\text{spies now at } \nu$. $D(\nu) = \nu$ plus descendants.

$$w(\nu) = \sum_{u \in D(\nu)} r(u).$$

Spy Rule:

$$s(\nu) = \left\lfloor \frac{w(\nu)}{m} \right\rfloor - \sum_{x \in C(\nu)} \left\lfloor \frac{w(x)}{m} \right\rfloor \geq \left\lfloor \frac{w(\nu)}{m} \right\rfloor - \left\lfloor \frac{w(\nu) - r(\nu)}{m} \right\rfloor.$$

Rule \Rightarrow every meeting is guarded.
Webbed Tree

Thm. G is a webbed tree $\Rightarrow \sigma(G, m, r) = \lceil r/m \rceil$.

Pf. $r(\nu) = \text{#revs now at } \nu$. $C(\nu) = \text{children of } \nu$. $s(\nu) = \text{#spies now at } \nu$. $D(\nu) = \nu$ plus descendants.

\[
w(\nu) = \sum_{u \in D(\nu)} r(u).
\]

Spy Rule:
\[
s(\nu) = \left\lfloor \frac{w(\nu)}{m} \right\rfloor - \sum_{x \in C(\nu)} \left\lfloor \frac{w(x)}{m} \right\rfloor \geq \left\lfloor \frac{w(\nu)}{m} \right\rfloor - \left\lfloor \frac{w(\nu)-r(\nu)}{m} \right\rfloor.
\]

Rule \Rightarrow every meeting is guarded.

Since $\sum_{u \in D(\nu)} s(u) = \left\lfloor \frac{w(\nu)}{m} \right\rfloor$, **Rule** works in first round.
Theorem. G is a webbed tree $\implies \sigma(G, m, r) = \lfloor r/m \rfloor$.

Proof. $r(\nu) = \#\text{revs now at } \nu$. $C(\nu) = \text{children of } \nu$. $s(\nu) = \#\text{spies now at } \nu$. $D(\nu) = \nu$ plus descendants.

$$w(\nu) = \sum_{u \in D(\nu)} r(u).$$

Spy Rule:

$$s(\nu) = \left\lfloor \frac{w(\nu)}{m} \right\rfloor - \sum_{x \in C(\nu)} \left\lfloor \frac{w(x)}{m} \right\rfloor \geq \left\lfloor \frac{w(\nu)}{m} \right\rfloor - \left\lfloor \frac{w(\nu) - r(\nu)}{m} \right\rfloor.$$

Rule \implies every meeting is guarded.

Since $\sum_{u \in D(\nu)} s(u) = \left\lfloor \frac{w(\nu)}{m} \right\rfloor$, Rule works in first round.

Idea: ν dominates the subgraph $G(\nu)$ induced by $\{\nu\} \cup C(\nu)$. Spies play on these subgraphs independently to reestablish the Rule.
Split into Subgames (sketch)
The $s(\nu)$ spies at ν split into $\hat{s}(\nu)$ playing in $G(\nu)$ and $\hat{\hat{s}}(\nu)$ playing in the parent’s graph. Let

$$\hat{s}(\nu) = \left[\frac{w^*(\nu)}{m} \right] - \sum_{x \in C(\nu)} \left[\frac{w(x)}{m} \right]$$

and

$$\hat{\hat{s}}(\nu) = \left[\frac{w(\nu)}{m} \right] - \left[\frac{w^*(\nu)}{m} \right].$$

Here $w^*(\nu) = w(\nu) - \#\text{revs counted by } w(\nu)$ that are in the parent’s graph after the revs next move.
Split into Subgames (sketch)

\[\hat{s}(v) = \left\lfloor \frac{w^*(v)}{m} \right\rfloor - \sum_{x \in C(v)} \left\lfloor \frac{w(x)}{m} \right\rfloor \quad \text{and} \quad \hat{s}(v) = \left\lfloor \frac{w(v)}{m} \right\rfloor - \left\lfloor \frac{w^*(v)}{m} \right\rfloor. \]

With an imagined split of revs into the subgames, \(\hat{s}(v) \) and \(\hat{s}(v) \) yield stable positions in the subgames.
Split into Subgames (sketch)

\[\hat{s}(v) = \left\lfloor \frac{w^*(v)}{m} \right\rfloor - \sum_{x \in C(v)} \left\lfloor \frac{w(x)}{m} \right\rfloor \text{ and } \hat{s}(v) = \left\lfloor \frac{w(v)}{m} \right\rfloor - \left\lfloor \frac{w^*(v)}{m} \right\rfloor. \]

With an imagined split of revs into the subgames, \(\hat{s}(v) \) and \(\hat{s}(v) \) yield stable positions in the subgames.

The actual moves by revs can be performed by the imagined distribution of revs.
Split into Subgames (sketch)

\[\hat{s}(v) = \left\lfloor \frac{w^*(v)}{m} \right\rfloor - \sum_{x \in C(v)} \left\lfloor \frac{w(x)}{m} \right\rfloor \] and \[\hat{s}(v) = \left\lfloor \frac{w(v)}{m} \right\rfloor - \left\lfloor \frac{w^*(v)}{m} \right\rfloor. \]

With an imagined split of revs into the subgames, \(\hat{s}(v) \) and \(\hat{s}(v) \) yield stable positions in the subgames.

The actual moves by revs can be performed by the imagined distribution of revs.

The spies can respond to those moves in each subgame to restore stability.
Split into Subgames (sketch)

\[\hat{s}(\nu) = \left[\frac{w^*(\nu)}{m} \right] - \sum_{x \in C(\nu)} \left[\frac{w(x)}{m} \right] \quad \text{and} \quad \hat{\hat{s}}(\nu) = \left[\frac{w(\nu)}{m} \right] - \left[\frac{w^*(\nu)}{m} \right]. \]

With an imagined split of revs into the subgames, \(\hat{s}(\nu) \) and \(\hat{\hat{s}}(\nu) \) yield stable positions in the subgames.

The actual moves by revs can be performed by the imagined distribution of revs.

The spies can respond to those moves in each subgame to restore stability.

The resulting new spy distributions restore the Rule:

\[s'(\nu) = \hat{s}'(\nu) + \hat{\hat{s}}'(\nu) = \left[\frac{w'(\nu)}{m} \right] - \sum_{x \in C(\nu)} \left[\frac{w'(x)}{m} \right]. \]
Lem. If G is a cycle, then $\sigma(G, m, r) \leq \lceil r/m \rceil$.
Cycles and Unicyclic Graphs

Lem. If G is a cycle, then $\sigma(G, m, r) \leq \lceil r/m \rceil$.

Pf. Extra revs can’t help spies: may assume $r = sm$.
Cycles and Unicyclic Graphs

Lem. If G is a cycle, then $\sigma(G, m, r) \leq \lceil r/m \rceil$.

Pf. Extra revs can’t help spies: may assume $r = sm$. Spies follow every mth rev (here $m = 4$).
Lem. If G is a cycle, then $\sigma(G, m, r) \leq \lceil r/m \rceil$.

Pf. Extra revs can’t help spies: may assume $r = sm$. Spies follow every mth rev (here $m = 4$).

Positions of mth revs don’t move by more than one vertex; spies can follow to maintain the condition.
Cycles and Unicyclic Graphs

Lem. If G is a cycle, then $\sigma(G, m, r) \leq \lceil r/m \rceil$.

Thm. If G is unicyclic, then $\sigma(G, m, r) \leq \lceil r/m \rceil$.
Cycles and Unicyclic Graphs

Lem. If G is a cycle, then $\sigma(G, m, r) \leq \lceil r/m \rceil$.

Thm. If G is unicyclic, then $\sigma(G, m, r) \leq \lceil r/m \rceil$.

Pf. Idea: Adding **one** spy and m revs at any vertex of C (or removing them) preserves the "cycle condition".
Lem. If G is a cycle, then $\sigma(G, m, r) \leq \lceil r/m \rceil$.

Thm. If G is unicyclic, then $\sigma(G, m, r) \leq \lceil r/m \rceil$.

Pf. Idea: Adding one spy and m revs at any vertex of C (or removing them) preserves the "cycle condition". May assume $r = sm$ and all revs start on the cycle.
Cycles and Unicyclic Graphs

Lem. If G is a cycle, then $\sigma(G, m, r) \leq \lceil r/m \rceil$.

Thm. If G is unicyclic, then $\sigma(G, m, r) \leq \lceil r/m \rceil$.

Pf. Idea: Adding one spy and m revs at any vertex of C (or removing them) preserves the "cycle condition". May assume $r = sm$ and all revs start on the cycle. Maintain the cycle condition by keeping "fake" revs at a cycle vertex until an attached tree has enough revs to demand a spy according to the tree strategy.
Spy-Bad Graphs

Def. Given r, m, graph G is spy-bad if $r - m$ spies lose.
Spy-Bad Graphs

Def. Given r, m, graph G is spy-bad if $r - m$ spies lose.

Prop. For $r, m \in \mathbb{N}$, some chordal graph is spy-bad.
Spy-Bad Graphs

Def. Given r, m, graph G is spy-bad if $r - m$ spies lose.

Prop. For $r, m \in \mathbb{N}$, some chordal graph is spy-bad.

Revs initially occupy the vertices of the clique.
Spy-Bad Graphs

Def. Given r, m, graph G is spy-bad if $r - m$ spies lose.

Prop. For $r, m \in \mathbb{N}$, some chordal graph is spy-bad.

Revs initially occupy the vertices of the clique.
Spies occupy at most $r - m$ vertices of the clique.
Spy-Bad Graphs

Def. Given r, m, graph G is spy-bad if $r - m$ spies lose.

Prop. For $r, m \in \mathbb{N}$, some chordal graph is spy-bad.

Revs initially occupy the vertices of the clique.
Spies occupy at most $r - m$ vertices of the clique.
Some m uncovered revs can meet on the first round, unreachable by spies.
Domination Number

Cor. \(\sigma(G, m, r) \leq \gamma(G) \lfloor r/m \rfloor. \)
Domination Number

Cor. \(\sigma(G, m, r) \leq \gamma(G) \lfloor r/m \rfloor \).

Pf. With each vertex of a dominating set \(T \), associate \(\lfloor r/m \rfloor \) spies to play the "stabilization strategy" against any revs appearing in its neighborhood.
Cor. \(\sigma(G, m, r) \leq \gamma(G) \lceil r/m \rceil. \)

Pf. With each vertex of a dominating set \(T \), associate \(\lfloor r/m \rfloor \) spies to play the "stabilization strategy" against any revs appearing in its neighborhood.

Thm. Given \(t, m, r \in \mathbb{N} \) such that \(t \leq m \leq r - m \), there is a graph \(G \) with \(\gamma(G) = t \) and \(\sigma(G, m, r) > t(r/m - 1) \).
Domination Number

Cor. \(\sigma(G, m, r) \leq \gamma(G) \lfloor r/m \rfloor \).

Pf. With each vertex of a dominating set \(T \), associate \(\lfloor r/m \rfloor \) spies to play the "stabilization strategy" against any revs appearing in its neighborhood.

Thm. Given \(t, m, r \in \mathbb{N} \) such that \(t \leq m \leq r - m \), there is a graph \(G \) with \(\gamma(G) = t \) and \(\sigma(G, m, r) > t(r/m - 1) \).
Thm. For $m = 2$, the hypercube Q_d is spy-bad if $d \geq r$.
Thm. For \(m = 2 \), the hypercube \(Q_d \) is spy-bad if \(d \geq r \).

Pf. Claim \(r - 2 \) spies lose.
Thm. For $m = 2$, the hypercube Q_d is spy-bad if $d \geq r$.

Pf. Claim $r - 2$ spies lose.

Revs start at r singles, threatening $\binom{r}{2}$ doubles and \emptyset.
Thm. For $m = 2$, the hypercube Q_d is spy-bad if $d \geq r$.

Pf. Claim $r - 2$ spies lose.

Revs start at r singles, threatening $\binom{r}{2}$ doubles and \emptyset.

Let $t = \# \text{revs left uncovered by spies initially}$.
For $m = 2$, the hypercube Q_d is spy-bad if $d \geq r$.

Claim $r - 2$ spies lose.

Revs start at r singles, threatening $\binom{r}{2}$ doubles and \emptyset.

Let $t = \#\text{revs left uncovered by spies initially}$.

$\binom{t}{2}$ threats to watch. Spies at weight 2 can watch one; spies at weight 3 can watch three.
Thm. For $m = 2$, the hypercube Q_d is spy-bad if $d \geq r$.

Pf. Claim $r - 2$ spies lose.

Revs start at r singles, threatening $\binom{r}{2}$ doubles and \emptyset.

Let $t = \# \text{revs left uncovered by spies initially}.$

$\binom{t}{2}$ threats to watch. Spies at weight 2 can watch one; spies at weight 3 can watch three.

$\therefore s \geq (r - t) + \frac{1}{3} \binom{t}{2}$. If $s \leq r - 2$, then $t \in \{3, 4\}$.

![Diagram of hypercube with marked vertices and edges]
Thm. For \(m = 2 \), the hypercube \(Q_d \) is spy-bad if \(d \geq r \).

Pf. Claim \(r - 2 \) spies lose.

Revs start at \(r \) singles, threatening \(\binom{r}{2} \) doubles and \(\emptyset \).

Let \(t = \# \) revs left uncovered by spies initially.

\(\binom{t}{2} \) threats to watch. Spies at weight 2 can watch one; spies at weight 3 can watch three.

\[s \geq (r - t) + \frac{1}{3} \binom{t}{2}. \]

If \(s \leq r - 2 \), then \(t \in \{3, 4\} \).

\(t = 4 \) leaves six threats at doubles, not reachable by two triples (two triangles don’t cover \(E(K_4) \)).
The case $t = 3$

∴ $r - 3$ spies occupy singles, plus one at a triple.
By symmetry, spy is at 123, with the others at $4, \ldots, r$.
The case $t = 3$

∴ $r - 3$ spies occupy singles, plus one at a triple. By symmetry, spy is at 123, with the others at $4, \ldots, r$.

Revs at 1 and 2 move to \emptyset. For $3 \leq i \leq r$, the rev at i waits.
The case $t = 3$

∴ $r - 3$ spies occupy singles, plus one at a triple. By symmetry, spy is at 123, with the others at 4, ..., r.

Revs at 1 and 2 move to \emptyset. For $3 \leq i \leq r$, the rev at i waits.

A spy from some j with $4 \leq j \leq r$ must move to guard \emptyset.
The case $t = 3$

∴ $r - 3$ spies occupy singles, plus one at a triple.
By symmetry, spy is at 123, with the others at 4, ..., r.

Revs at 1 and 2 move to \emptyset.
For $3 \leq i \leq r$, the rev at i waits.

A spy from some j with $4 \leq j \leq r$ must move to guard \emptyset.
No spy can now reach a neighbor of $\{3, j\}$.
Next, revs at 3 and j will move to $\{3, j\}$ and win.
Smaller dimensions

When $d \geq r$, revs beat $r - 2$ spies on Q_d when $m = 2$. On smaller hypercubes, revs do almost as well.
Smaller dimensions

When $d \geq r$, revs beat $r - 2$ spies on Q_d when $m = 2$. On smaller hypercubes, revs do almost as well.

Thm. If $d < r < 2^{d/d^7}$, then $\sigma(Q_d, 2, r) \geq (d - 1) \lfloor r/d \rfloor$.
Smaller dimensions

When $d \geq r$, revs beat $r - 2$ spies on Q_d when $m = 2$. On smaller hypercubes, revs do almost as well.

Thm. If $d < r < 2^d/d^7$, then $\sigma(Q_d, 2, r) \geq (d - 1)\lfloor r/d \rfloor$.

Pf. Let X be a code with distance 9 and $|X| \geq 2^d/d^8$. Allocate d revolutionaries to each of $\lfloor r/d \rfloor$ points in X.
Smaller dimensions

When \(d \geq r \), revs beat \(r - 2 \) spies on \(Q_d \) when \(m = 2 \). On smaller hypercubes, revs do almost as well.

Thm. If \(d < r < 2^d/d^7 \), then \(\sigma(Q_d, 2, r) \geq (d - 1) \lfloor r/d \rfloor \).

Pf. Let \(X \) be a code with distance 9 and \(|X| \geq 2^d/d^8 \). Allocate \(d \) revolutionaries to each of \(\lfloor r/d \rfloor \) points in \(X \). Each group plays the earlier strategy at its point \(x \).
When \(d \geq r \), revs beat \(r - 2 \) spies on \(Q_d \) when \(m = 2 \). On smaller hypercubes, revs do almost as well.

Thm. If \(d < r < 2^d/d^7 \), then \(\sigma(Q_d, 2, r) \geq (d - 1)[r/d] \).

Pf. Let \(X \) be a code with distance 9 and \(|X| \geq 2^d/d^8 \). Allocate \(d \) revolutionaries to each of \([r/d] \) points in \(X \). Each group plays the earlier strategy at its point \(x \). At least \(d - 1 \) spies are needed to avoid losing near \(x \).
When $d \geq r$, revs beat $r - 2$ spies on Q_d when $m = 2$. On smaller hypercubes, revs do almost as well.

Thm. If $d < r < 2^d/d^7$, then $\sigma(Q_d, 2, r) \geq (d - 1) \lfloor r/d \rfloor$.

Pf. Let X be a code with distance 9 and $|X| \geq 2^d/d^8$. Allocate d revolutionaries to each of $\lfloor r/d \rfloor$ points in X. Each group plays the earlier strategy at its point x. At least $d - 1$ spies are needed to avoid losing near x. Distance 9 is far enough to prevent spies working at x' from helping at x fast enough.
Smaller dimensions

When \(d \geq r \), revs beat \(r - 2 \) spies on \(Q_d \) when \(m = 2 \). On smaller hypercubes, revs do almost as well.

Thm. If \(d < r < 2^d/d^7 \), then \(\sigma(Q_d, 2, r) \geq (d - 1)\lfloor r/d \rfloor \).

Pf. Let \(X \) be a code with distance 9 and \(|X| \geq 2^d/d^8 \). Allocate \(d \) revolutionaries to each of \(\lfloor r/d \rfloor \) points in \(X \). Each group plays the earlier strategy at its point \(x \). At least \(d - 1 \) spies are needed to avoid losing near \(x \). Distance 9 is far enough to prevent spies working at \(x' \) from helping at \(x \) fast enough.

\(\therefore \) revs win against fewer than \((d - 1)\lfloor r/d \rfloor \) spies.
Smaller dimensions

When $d \geq r$, revs beat $r - 2$ spies on Q_d when $m = 2$. On smaller hypercubes, revs do almost as well.

Thm. If $d < r < 2^d/d^7$, then $\sigma(Q_d, 2, r) \geq (d - 1)\lfloor r/d \rfloor$.

Pf. Let X be a code with distance 9 and $|X| \geq 2^d/d^8$. Allocate d revolutionaries to each of $\lfloor r/d \rfloor$ points in X. Each group plays the earlier strategy at its point x. At least $d - 1$ spies are needed to avoid losing near x. Distance 9 is far enough to prevent spies working at x' from helping at x fast enough.

∴ revs win against fewer than $(d - 1)\lfloor r/d \rfloor$ spies.

Upper bounds on $\sigma(Q_d, 2, r)$ are unknown for $r > d$.
Smaller dimensions

When $d \geq r$, revs beat $r - 2$ spies on Q_d when $m = 2$. On smaller hypercubes, revs do almost as well.

Thm. If $d < r < 2^d/d^7$, then $\sigma(Q_d, 2, r) \geq (d - 1)[r/d]$.

Pf. Let X be a code with distance 9 and $|X| \geq 2^d/d^8$. Allocate d revolutionaries to each of $[r/d]$ points in X. Each group plays the earlier strategy at its point x. At least $d - 1$ spies are needed to avoid losing near x. Distance 9 is far enough to prevent spies working at x' from helping at x fast enough.

\therefore revs win against fewer than $(d - 1)[r/d]$ spies.

Upper bounds on $\sigma(Q_d, 2, r)$ are unknown for $r > d$. (We think two spies beat four revs on Q_3.)
Larger Meeting Size on Q_d

Idea: Revs start at r vertices of weight 1, threatening meetings at $\binom{r}{m}$ vertices of weight m after $m - 1$ steps. How many spies are needed to cover the threats?
Larger Meeting Size on Q_d

Idea: Revs start at r vertices of weight 1, threatening meetings at $\binom{r}{m}$ vertices of weight m after $m - 1$ steps. How many spies are needed to cover the threats?

A Tool: A retract of G is an induced subgraph H with a map $f : V(G) \rightarrow V(H)$ such that (1) $\nu \in V(H) \Rightarrow f(\nu) = \nu$ and (2) $uv \in E(G) \Rightarrow d_H(f(u), f(\nu)) \leq 1$.
Larger Meeting Size on Q_d

Idea: Revs start at r vertices of weight 1, threatening meetings at $\binom{r^2}{m}$ vertices of weight m after $m - 1$ steps. How many spies are needed to cover the threats?

A Tool: A retract of G is an induced subgraph H with a map $f: V(G) \rightarrow V(H)$ such that (1) $v \in V(H) \Rightarrow f(v) = v$ and (2) $uv \in E(G) \Rightarrow d_H(f(u), f(v)) \leq 1$.

• Nowakowski-Winkler [1983] used retracts in the classical cop-and-robber game.
Larger Meeting Size on Q_d

Idea: Revs start at r vertices of weight 1, threatening meetings at $\binom{r}{m}$ vertices of weight m after $m - 1$ steps. How many spies are needed to cover the threats?

A Tool: A retract of G is an induced subgraph H with a map $f: V(G) \rightarrow V(H)$ such that (1) $\nu \in V(H) \Rightarrow f(\nu) = \nu$ and (2) $uv \in E(G) \Rightarrow d_H(f(u), f(\nu)) \leq 1$.

Thm. If H is a retract of G, then $\sigma(G,m,r) \geq \sigma(H,m,r)$.
Larger Meeting Size on Q_d

Idea: Revs start at r vertices of weight 1, threatening meetings at $\binom{r}{m}$ vertices of weight m after $m - 1$ steps. How many spies are needed to cover the threats?

A Tool: A retract of G is an induced subgraph H with a map $f : V(G) \rightarrow V(H)$ such that (1) $v \in V(H) \Rightarrow f(v) = v$ and (2) $uv \in E(G) \Rightarrow d_H(f(u), f(v)) \leq 1$.

Thm. If H is a retract of G, then $\sigma(G,m,r) \geq \sigma(H,m,r)$.

Pf. The revs play $RS(G, m, r, s)$ by playing in H, using f to simulate spy moves for an imagined game in H.

Larger Meeting Size on Q_d

Idea: Revs start at r vertices of weight 1, threatening meetings at $\binom{r}{m}$ vertices of weight m after $m-1$ steps. How many spies are needed to cover the threats?

A Tool: A retract of G is an induced subgraph H with a map $f: V(G) \to V(H)$ such that (1) $v \in V(H) \Rightarrow f(v) = v$ and (2) $uv \in E(G) \Rightarrow d_H(f(u), f(v)) \leq 1$.

Thm. If H is a retract of G, then $\sigma(G,m,r) \geq \sigma(H,m,r)$.

Pf. The revs play $RS(G, m, r, s)$ by playing in H, using f to simulate spy moves for an imagined game in H. For a spy move $u \rightarrow v$ in G, revs imagine $f(u) \rightarrow f(v)$ in H.

Larger Meeting Size on Q_d

Idea: Revs start at r vertices of weight 1, threatening meetings at $\binom{r}{m}$ vertices of weight m after $m-1$ steps. How many spies are needed to cover the threats?

A Tool: A retract of G is an induced subgraph H with a map $f : V(G) \rightarrow V(H)$ such that (1) $v \in V(H) \Rightarrow f(v) = v$ and (2) $uv \in E(G) \Rightarrow d_H(f(u), f(v)) \leq 1$.

Thm. If H is a retract of G, then $\sigma(G,m,r) \geq \sigma(H,m,r)$.

Pf. The revs play $RS(G, m, r, s)$ by playing in H, using f to simulate spy moves for an imagined game in H.

For a spy move $u \rightarrow v$ in G, revs imagine $f(u) \rightarrow f(v)$ in H.

When revs win at w in H, since no simulated spy is at w and $f(w) = w$, the revs also win the real game then. ■
An Uncoverable Threat

Lem. If $u \in V(Q_d)$ has weight m, then a spy at v is within distance $m - 1$ of u if and only if $|u \cap v| \geq \frac{|v|+1}{2}$.
An Uncoverable Threat

Lem. If \(u \in V(Q_d) \) has weight \(m \), then a spy at \(v \) is within distance \(m - 1 \) of \(u \) if and only if \(|u \cap v| \geq \frac{|v|+1}{2} \).

Lem. If \(S \subseteq V(Q_t) \) with \(|S| \leq t \) and \(t \geq 38.73m \), then \(d(w, S) \geq m \) for some vertex \(w \) of weight \(m \) in \(Q_t \).
An Uncoverable Threat

Lem. If $u \in V(Q_d)$ has weight m, then a spy at v is within distance $m - 1$ of u if and only if $|u \cap v| \geq \frac{|v| + 1}{2}$.

Lem. If $S \subseteq V(Q_t)$ with $|S| \leq t$ and $t \geq 38.73m$, then $d(w, S) \geq m$ for some vertex w of weight m in Q_t.

Pf. Idea: Generate a random set $I \subseteq [t]$, including each element with suitable probability p (chosen later).
An Uncoverable Threat

Lem. If \(u \in V(Q_d) \) has weight \(m \), then a spy at \(v \) is within distance \(m - 1 \) of \(u \) if and only if \(|u \cap v| \geq \frac{|v|+1}{2} \).

Lem. If \(S \subseteq V(Q_t) \) with \(|S| \leq t \) and \(t \geq 38.73m \), then \(d(w, S) \geq m \) for some vertex \(w \) of weight \(m \) in \(Q_t \).

Pf. Idea: Generate a random set \(I \subseteq [t] \), including each element with suitable probability \(p \) (chosen later). Show \(\mathbb{P}(|I| \geq m \text{ and } |I \cap v| < \frac{|v|+1}{2} \text{ for all } v \in S) > 0 \).
An Uncoverable Threat

Lem. If \(u \in V(Q_d) \) has weight \(m \), then a spy at \(v \) is within distance \(m - 1 \) of \(u \) if and only if \(|u \cap v| \geq \frac{|v|+1}{2} \).

Lem. If \(S \subseteq V(Q_t) \) with \(|S| \leq t \) and \(t \geq 38.73m \), then \(d(w, S) \geq m \) for some vertex \(w \) of weight \(m \) in \(Q_t \).

Pf. Idea: Generate a random set \(I \subseteq [t] \), including each element with suitable probability \(p \) (chosen later).

Show \(\mathbb{P}(|I| \geq m \text{ and } |I \cap v| < \frac{|v|+1}{2} \text{ for all } v \in S) > 0 \).

Given such \(I \), choose \(w \subseteq I \) with \(|w| = m \).
An Uncoverable Threat

Lem. If $u \in V(Q_d)$ has weight m, then a spy at v is within distance $m - 1$ of u if and only if $|u \cap v| \geq \frac{|v|+1}{2}$.

Lem. If $S \subseteq V(Q_t)$ with $|S| \leq t$ and $t \geq 38.73m$, then $d(w, S) \geq m$ for some vertex w of weight m in Q_t.

Pf. Idea: Generate a random set $I \subseteq [t]$, including each element with suitable probability p (chosen later). Show $\mathbb{P}(|I| \geq m \text{ and } |I \cap v| < \frac{|v|+1}{2} \text{ for all } v \in S) > 0$. Given such I, choose $w \subseteq I$ with $|w| = m$.

$$\mathbb{P}[|I \cap v| < \frac{|v|+1}{2}] = \mathbb{P}[\text{Bin}(|v|, p) < \frac{|v|+1}{2}]$$
An Uncoverable Threat

Lem. If \(u \in V(Q_d) \) has weight \(m \), then a spy at \(v \) is within distance \(m - 1 \) of \(u \) if and only if \(|u \cap v| \geq \frac{|v|+1}{2} \).

Lem. If \(S \subseteq V(Q_t) \) with \(|S| \leq t \) and \(t \geq 38.73m \), then \(d(w, S) \geq m \) for some vertex \(w \) of weight \(m \) in \(Q_t \).

Pf. Idea: Generate a random set \(I \subseteq [t] \), including each element with suitable probability \(p \) (chosen later). Show \(\mathbb{P}(|I| \geq m \text{ and } |I \cap v| < \frac{|v|+1}{2} \text{ for all } v \in S) > 0 \). Given such \(I \), choose \(w \subseteq I \) with \(|w| = m \).

\[
\mathbb{P}[|I \cap v| < \frac{|v|+1}{2}] = \mathbb{P}[\text{Bin}(|v|, p) < \frac{|v|+1}{2}] \\
(\text{when } p < \frac{1}{2}) \geq \mathbb{P}[\text{Bin}(3, p) < 2]
\]
An Uncoverable Threat

Lem. If \(u \in V(Q_d) \) has weight \(m \), then a spy at \(v \) is within distance \(m - 1 \) of \(u \) if and only if \(|u \cap v| \geq \frac{|v|+1}{2} \).

Lem. If \(S \subseteq V(Q_t) \) with \(|S| \leq t \) and \(t \geq 38.73m \), then \(d(w, S) \geq m \) for some vertex \(w \) of weight \(m \) in \(Q_t \).

Pf. Idea: Generate a random set \(I \subseteq [t] \), including each element with suitable probability \(p \) (chosen later).

Show \(\mathbb{P}(|I| \geq m \text{ and } |I \cap v| < \frac{|v|+1}{2} \text{ for all } v \in S) > 0 \).

Given such \(I \), choose \(w \subseteq I \) with \(|w| = m \).

\[
\mathbb{P}[|I \cap v| < \frac{|v|+1}{2}] = \mathbb{P}[\text{Bin}(|v|, p) < \frac{|v|+1}{2}]
\]

(when \(p < \frac{1}{2} \)) \(\geq \mathbb{P}[\text{Bin}(3,p) < 2] = (1-p)^2(1+2p) = q \).
An Uncoverable Threat

Lem. If $u \in V(Q_d)$ has weight m, then a spy at v is within distance $m - 1$ of u if and only if $|u \cap v| \geq \frac{|v|+1}{2}$.

Lem. If $S \subseteq V(Q_t)$ with $|S| \leq t$ and $t \geq 38.73m$, then $d(w, S) \geq m$ for some vertex w of weight m in Q_t.

Pf. Idea: Generate a random set $I \subseteq [t]$, including each element with suitable probability p (chosen later). Show $\mathbb{P}(|I| \geq m$ and $|I \cap v| < \frac{|v|+1}{2}$ for all $v \in S) > 0$.

$\mathbb{P}[|I \cap v| < \frac{|v|+1}{2}] \geq (1 - p)^2(1 + 2p) = q.$
An Uncoverable Threat

Lem. If $S \subseteq V(Q_t)$ with $|S| \leq t$ and $t \geq 38.73m$, then $d(w, S) \geq m$ for some vertex w of weight m in Q_t.

Pf. Idea: Generate a random set $I \subseteq [t]$, including each element with suitable probability p (chosen later).

Show $\mathbb{P}(|I| \geq m$ and $|I \cap v| < \frac{|v|+1}{2}$ for all $v \in S) > 0$.

$\mathbb{P}[|I \cap v| < \frac{|v|+1}{2}] \geq (1 - p)^2(1 + 2p) = q$.

By FKG Inequality, $\mathbb{P}[\text{all } v \in S \text{ fail}] \geq q^t = e^{t \ln q}$.
An Uncoverable Threat

Lem. If $S \subseteq V(Q_t)$ with $|S| \leq t$ and $t \geq 38.73m$, then $d(w, S) \geq m$ for some vertex w of weight m in Q_t.

Pf. Idea: Generate a random set $I \subseteq [t]$, including each element with suitable probability p (chosen later). Show $\mathbb{P}(|I| \geq m$ and $|I \cap \nu| < \frac{|\nu|+1}{2}$ for all $\nu \in S) > 0$.

$\mathbb{P}[|I \cap \nu| < \frac{|\nu|+1}{2}] \geq (1 - p)^2(1 + 2p) = q$.

By FKG Inequality, $\mathbb{P}[\text{all } \nu \in S \text{ fail}] \geq q^t = e^{t \ln q}$.

For $m \leq \alpha tp$ with $\alpha < 1$, Chernoff Bound yields $\mathbb{P}[|I| < m] = \mathbb{P}[|I| - tp < m - tp] \leq e^{-(1-\alpha)^2tp/2}$.

An Uncoverable Threat

Lem. If $S \subseteq V(Q_t)$ with $|S| \leq t$ and $t \geq 38.73m$, then $d(w, S) \geq m$ for some vertex w of weight m in Q_t.

Pf. Idea: Generate a random set $I \subseteq [t]$, including each element with suitable probability p (chosen later).

Show $\mathbb{P}(|I| \geq m$ and $|I \cap v| < \frac{|v|+1}{2}$ for all $v \in S) > 0$.

$\mathbb{P}[|I \cap v| < \frac{|v|+1}{2}] \geq (1-p)^2(1+2p) = q$.

By FKG Inequality, $\mathbb{P}[\text{all } v \in S \text{ fail}] \geq q^t = e^{t \ln q}$.

For $m \leq \alpha tp$ with $\alpha < 1$, Chernoff Bound yields $\mathbb{P}[|I| < m] = \mathbb{P}[|I| - tp < m - tp] \leq e^{-(1-\alpha)^2tp/2}$.

The desired property $\mathbb{P}[\text{all } v \text{ fail}] > \mathbb{P}[|I| < m]$ holds when $\ln[(1-p)^2(1+2p)] > -(1-\alpha)^2p/2$.
An Uncoverable Threat

Lem. If $S \subseteq V(Q_t)$ with $|S| \leq t$ and $t \geq 38.73m$, then $d(w, S) \geq m$ for some vertex w of weight m in Q_t.

Pf. Idea: Generate a random set $I \subseteq [t]$, including each element with suitable probability p (chosen later).

Show $\mathbb{P}(|I| \geq m$ and $|I \cap v| < \frac{|v|+1}{2}$ for all $v \in S) > 0$.

$\mathbb{P}[|I \cap v| < \frac{|v|+1}{2}] \geq (1 - p)^2(1 + 2p) = q$.

By FKG Inequality, $\mathbb{P}[\text{all } v \in S \text{ fail}] \geq q^t = e^{t \ln q}$.

For $m \leq \alpha tp$ with $\alpha < 1$, Chernoff Bound yields

$\mathbb{P}[|I| < m] = \mathbb{P}[|I| - tp < m - tp] \leq e^{-(1-\alpha)^2 tp/2}$.

The desired property $\mathbb{P}[\text{all } v \text{ fail}] > \mathbb{P}[|I| < m]$ holds when $\ln[((1 - p)^2(1 + 2p))] > -(1 - \alpha)^2 p/2$.

True for $\alpha = .3247$ and $p = .0795$.
An Uncoverable Threat

Lem. If \(S \subseteq V(Q_t) \) with \(|S| \leq t \) and \(t \geq 38.73m \), then \(d(w, S) \geq m \) for some vertex \(w \) of weight \(m \) in \(Q_t \).

Pf. Idea: Generate a random set \(I \subseteq [t] \), including each element with suitable probability \(p \) (chosen later).

Show \(P(|I| \geq m \text{ and } |I \cap v| < \frac{|v|+1}{2} \text{ for all } v \in S) > 0 \).

\[
P[|I \cap v| < \frac{|v|+1}{2}] \geq (1 - p)^2(1 + 2p) = q.
\]

By FKG Inequality, \(P[\text{all } v \in S \text{ fail}] \geq q^t = e^{t \ln q} \).

For \(m \leq \alpha tp \) with \(\alpha < 1 \), Chernoff Bound yields

\[
P[|I| < m] = P[|I| - tp < m - tp] \leq e^{-(1-\alpha)^2 tp/2}.
\]

The desired property \(P[\text{all } v \text{ fail}] > P[|I| < m] \) holds when \(\ln[(1 - p)^2(1 + 2p)] > -(1 - \alpha)^2 p/2 \).

True for \(\alpha = .3247 \) and \(p = .0795 \).

Now \(t \geq \frac{m}{\alpha p} \geq 38.73m \) yields the conclusion. \(\blacksquare \)
Hypercube Conclusions
Hypercube Conclusions

Thm. If \(d \geq r \geq m \geq 3 \), then \(\sigma(Q_d, m, r) > r - 38.73m \).
Hypercube Conclusions

Thm. If $d \geq r \geq m \geq 3$, then $\sigma(Q_d, m, r) > r - 38.73m$.

Pf. Suppose $r - 38.73m$ spies win. Revs start at singletons. Spies leave t uncovered revs.
Hypercube Conclusions

Thm. If $d \geq r \geq m \geq 3$, then $\sigma(Q_d, m, r) > r - 38.73m$.

Pf. Suppose $r - 38.73m$ spies win. Revs start at singletons. Spies leave t uncovered revs. Let $S =$ set of spies not covering singletons.
Hypercube Conclusions

Thm. If $d \geq r \geq m \geq 3$, then $\sigma(Q_d, m, r) > r - 38.73m$.

Pf. Suppose $r - 38.73m$ spies win. Revs start at singletons. Spies leave t uncovered revs.

Let $S =$ set of spies not covering singletons. Retract Lemma \Rightarrow we may assume they are in Q_t.
Hypercube Conclusions

Thm. If $d \geq r \geq m \geq 3$, then $\sigma(Q_d, m, r) > r - 38.73m$.

Pf. Suppose $r - 38.73m$ spies win. Revs start at singletons. Spies leave t uncovered revs. Let $S =$ set of spies not covering singletons. Retract Lemma \Rightarrow we may assume they are in Q_t. Since $0 \leq |S| = s - (r - t) \leq t - 38.73$, the lemma applies:
Thm. If $d \geq r \geq m \geq 3$, then $\sigma(Q_d, m, r) > r - 38.73m$.

Pf. Suppose $r - 38.73m$ spies win. Revs start at singletons. Spies leave t uncovered revs.

Let $S =$ set of spies not covering singletons. Retract Lemma \Rightarrow we may assume they are in Q_t.

Since $0 \leq |S| = s - (r - t) \leq t - 38.73$, the lemma applies: The spies in S cannot guard all the threats in Q_t. \blacksquare
Hypercube Conclusions

Thm. If $d \geq r \geq m \geq 3$, then $\sigma(Q_d, m, r) > r - 38.73m$.

Pf. Suppose $r - 38.73m$ spies win. Revs start at singletons. Spies leave t uncovered revs.
Let $S =$ set of spies not covering singletons. Retract Lemma \Rightarrow we may assume they are in Q_t.
Since $0 \leq |S| = s - (r - t) \leq t - 38.73$, the lemma applies:
The spies in S cannot guard all the threats in Q_t.

Cor. If G is a cartesian product of d nontrivial graphs, and revs win $RS(Q_d, m, r, s)$, then revs win $RS(G, m, r, s)$.
Hypercube Conclusions

Thm. If \(d \geq r \geq m \geq 3 \), then \(\sigma(Q_d, m, r) > r - 38.73m \).

Pf. Suppose \(r - 38.73m \) spies win. Revs start at singletons. Spies leave \(t \) uncovered revs.

Let \(S = \) set of spies not covering singletons. Retract Lemma \(\Rightarrow \) we may assume they are in \(Q_t \).

Since \(0 \leq |S| = s - (r - t) \leq t - 38.73 \), the lemma applies: The spies in \(S \) cannot guard all the threats in \(Q_t \). \(\blacksquare \)

Cor. If \(G \) is a cartesian product of \(d \) nontrivial graphs, and revs win \(RS(Q_d, m, r, s) \), then revs win \(RS(G, m, r, s) \).

- Earlier: If \(d \geq r \geq m \geq 3 \), then \(\sigma(Q_d, m, r) > r - \frac{3}{4}m^2 \).
Thm. If \(d \geq r \geq m \geq 3 \), then \(\sigma(Q_d, m, r) > r - 38.73m \).

Pf. Suppose \(r - 38.73m \) spies win. Revs start at singletons. Spies leave \(t \) uncovered revs.

Let \(S = \) set of spies not covering singletons. Retract Lemma \(\Rightarrow \) we may assume they are in \(Q_t \).

Since \(0 \leq |S| = s - (r - t) \leq t - 38.73 \), the lemma applies:

The spies in \(S \) cannot guard all the threats in \(Q_t \).

Cor. If \(G \) is a cartesian product of \(d \) nontrivial graphs, and revs win \(RS(Q_d,m,r,s) \), then revs win \(RS(G,m,r,s) \).

• Earlier: If \(d \geq r \geq m \geq 3 \), then \(\sigma(Q_d, m, r) > r - \frac{3}{4}m^2 \).

Better for \(m \leq 52 \). Perhaps \(\sigma(Q_d, m, r) \approx r - 2m \).
King’s-move Grid (Howard–Smyth)
King’s-move Grid (Howard–Smyth)

$RS(K_4, 2, 3, 1)$

spy wins
King’s-move Grid (Howard–Smyth)

Thm. One spy beats $2m - 1$ revs on \mathbb{Z}^2.
Thm. One spy beats $2m - 1$ revs on \mathbb{Z}^2.

Pf. The spy stays at the median position of the revs in each coordinate.

$RS(K_4, 2, 3, 1)$
King’s-move Grid (Howard–Smyth)

Thm. One spy beats $2m - 1$ revs on \mathbb{Z}^2.

Pf. The spy stays at the median position of the revs in each coordinate.

Thm. $\sigma(\mathbb{Z}^2, m, r) \leq r - 2m + 2$.
King’s-move Grid (Howard–Smyth)

\[
\begin{array}{cccc}
\bullet & \bullet & \bullet & \bullet \\
\end{array}
\]

\[RS(K_4, 2, 3, 1)\]

\[\text{spy wins}\]

Thm. One spy beats \(2m - 1\) revs on \(\mathbb{Z}^2\).

Pf. The spy stays at the median position of the revs in each coordinate.

Thm. \(\sigma(\mathbb{Z}^2, m, r) \leq r - 2m + 2\).

Pf. \(r - 2m + 1\) spies follow revs; one guards \(2m - 1\) revs.
King’s-move Grid (Howard–Smyth)

\[RS(K_4, 2, 3, 1) \]

Thm. One spy beats \(2m - 1\) revs on \(\mathbb{Z}^2\).

Pf. The spy stays at the median position of the revs in each coordinate.

Thm. \(\sigma(\mathbb{Z}^2, m, r) \leq r - 2m + 2\).

Pf. \(r - 2m + 1\) spies follow revs; one guards \(2m - 1\) revs.

Thm. If \(m = 2\), then \(6 \lfloor r/8 \rfloor \leq \sigma(\mathbb{Z}^2, m, r) \leq r - 2\).
King’s-move Grid (Howard–Smyth)

Thm. One spy beats $2m - 1$ revs on \mathbb{Z}^2.

Pf. The spy stays at the median position of the revs in each coordinate.

Thm. $\sigma(\mathbb{Z}^2, m, r) \leq r - 2m + 2$.

Pf. $r - 2m + 1$ spies follow revs; one guards $2m - 1$ revs.

Thm. If $m = 2$, then $6 \lfloor r/8 \rfloor \leq \sigma(\mathbb{Z}^2, m, r) \leq r - 2$.

Pf. A group of 8 revs can beat 5 spies (clever!).
Random Graphs are Spy-Bad

Generate a random n-vertex graph G with edge probability p, where p depends on n and $p \leq 1/2$.
Random Graphs are Spy-Bad

Generate a random n-vertex graph G with edge probability p, where p depends on n and $p \leq 1/2$.

Thm. If $r \in o\left(\frac{np^r}{\ln n}\right)$ and $np^r \to \infty$, then G is almost surely spy-bad for all m and such r.
Random Graphs are Spy-Bad

Generate a random n-vertex graph G with edge probability p, where p depends on n and $p \leq 1/2$.

Thm. If $r \in o\left(\frac{np^r}{\ln n}\right)$ and $np^r \to \infty$, then G is almost surely spy-bad for all m and such r.

Pf. Almost surely G has the r-extension property: for any disjoint $T, U \subset V(G)$ with $|T| + |U| \leq r$, some vertex $x \in V(G)$ is adjacent to all of T and none of U.
Random Graphs are Spy-Bad

Generate a random n-vertex graph G with edge probability p, where p depends on n and $p \leq 1/2$.

Thm. If $r \in o\left(\frac{np^r}{\ln n}\right)$ and $np^r \to \infty$, then G is almost surely spy-bad for all m and such r.

Pf. Almost surely G has the r-extension property: for any disjoint $T, U \subset V(G)$ with $|T| + |U| \leq r$, some vertex $x \in V(G)$ is adjacent to all of T and none of U.

If it holds, then the revs start at any r vertices.
Random Graphs are Spy-Bad

Generate a random n-vertex graph G with edge probability p, where p depends on n and $p \leq 1/2$.

Thm. If $r \in o\left(\frac{np^r}{\ln n}\right)$ and $np^r \to \infty$, then G is almost surely spy-bad for all m and such r.

Pf. Almost surely G has the r-extension property: for any disjoint $T, U \subset V(G)$ with $|T| + |U| \leq r$, some vertex $x \in V(G)$ is adjacent to all of T and none of U. If it holds, then the revs start at any r vertices. Let U be the set of vertices occupied by the $r - m$ spies.
Random Graphs are Spy-Bad

Generate a random \(n \)-vertex graph \(G \) with edge probability \(p \), where \(p \) depends on \(n \) and \(p \leq 1/2 \).

Thm. If \(r \in o\left(\frac{np^r}{\ln n}\right) \) and \(np^r \to \infty \), then \(G \) is almost surely spy-bad for all \(m \) and such \(r \).

Pf. Almost surely \(G \) has the \(r \)-extension property: for any disjoint \(T, U \subset V(G) \) with \(|T| + |U| \leq r \), some vertex \(x \in V(G) \) is adjacent to all of \(T \) and none of \(U \).

If it holds, then the revs start at any \(r \) vertices.

Let \(U \) be the set of vertices occupied by the \(r-m \) spies.

Let \(T \) be the set of vertices occupied by the uncovered revs; note that \(|T| \geq m \).
Random Graphs are Spy-Bad

Generate a random n-vertex graph G with edge probability p, where p depends on n and $p \leq 1/2$.

Thm. If $r \in o(\frac{np^r}{\ln n})$ and $np^r \to \infty$, then G is almost surely spy-bad for all m and such r.

Pf. Almost surely G has the r-extension property: for any disjoint $T, U \subset V(G)$ with $|T| + |U| \leq r$, some vertex $x \in V(G)$ is adjacent to all of T and none of U.

If it holds, then the revs start at any r vertices.

Let U be the set of vertices occupied by the $r - m$ spies.

Let T be the set of vertices occupied by the uncovered revs; note that $|T| \geq m$.

On the first round, the revs from T meet at the special vertex x and win.
Random Graphs are Spy-Not-Too-Bad

For constant p, standard properties of the random graph enable the spies to do well.
Random Graphs are Spy-Not-Too-Bad

For constant p, standard properties of the random graph enable the spies to do well.

Lem. For $0 < \gamma < p < 1$, almost surely
Random Graphs are Spy-Not-Too-Bad

For constant p, standard properties of the random graph enable the spies to do well.

Lem. For $0 < \gamma < p < 1$, almost surely

(1) $(p - \gamma)n < d(v) < (p + \gamma)n$ for all $v \in V(G)$.
Random Graphs are Spy-Not-Too-Bad

For constant p, standard properties of the random graph enable the spies to do well.

Lem. For $0 < \gamma < p < 1$, almost surely

1. $(p - \gamma)n < d(v) < (p + \gamma)n$ for all $v \in V(G)$.
2. $(p^2 - \gamma^2)n < |N(v) \cap N(w)| < (p^2 + \gamma^2)n$ for $v, w \in V(G)$.
Random Graphs are Spy-Not-Too-Bad

For constant p, standard properties of the random graph enable the spies to do well.

Lem. For $0 < \gamma < p < 1$, almost surely

1. $(p - \gamma)n < d(\nu) < (p + \gamma)n$ for all $\nu \in V(G)$.
2. $(p^2 - \gamma^2)n < |N(\nu) \cap N(\omega)| < (p^2 + \gamma^2)n$ for $\nu, \omega \in V(G)$.
3. G is $(p - \gamma)$-common,
Random Graphs are Spy-Not-Too-Bad

For constant p, standard properties of the random graph enable the spies to do well.

Lem. For $0 < \gamma < p < 1$, almost surely

1. $(p - \gamma)n < d(v) < (p + \gamma)n$ for all $v \in V(G)$.
2. $(p^2 - \gamma^2)n < |N(v) \cap N(w)| < (p^2 + \gamma^2)n$ for $v, w \in V(G)$.
3. G is $(p - \gamma)$-common, where G is q-common if
 $$\frac{|N(v) \cap N(w)|}{|N(v)|} \geq q$$
 for all $v, w \in V(G)$.

Random Graphs are Spy-Not-Too-Bad

For constant p, standard properties of the random graph enable the spies to do well.

Lem. For $0 < \gamma < p < 1$, almost surely

1. $(p - \gamma)n < d(v) < (p + \gamma)n$ for all $v \in V(G)$.
2. $(p^2 - \gamma^2)n < |N(v) \cap N(w)| < (p^2 + \gamma^2)n$ for $v, w \in V(G)$.
3. G is $(p - \gamma)$-common, where G is q-common if $\frac{|N(v) \cap N(w)|}{|N(v)|} \geq q$ for all $v, w \in V(G)$.

We want a winning spy strategy on q-common graphs.
Random Graphs are Spy-Not-Too-Bad

For constant p, standard properties of the random graph enable the spies to do well.

Lem. For $0 < \gamma < p < 1$, almost surely

1. $(p - \gamma)n < d(v) < (p + \gamma)n$ for all $v \in V(G)$.
2. $(p^2 - \gamma^2)n < |N(v) \cap N(w)| < (p^2 + \gamma^2)n$ for $v, w \in V(G)$.
3. G is $(p - \gamma)$-common, where G is q-common if $\frac{|N(v) \cap N(w)|}{|N(v)|} \geq q$ for all $v, w \in V(G)$.

We want a winning spy strategy on q-common graphs.

Def. m revs at a vertex v and one spy covering them (and no others at v) are bound. Other players are free.
Random Graphs are Spy-Not-Too-Bad

For constant p, standard properties of the random graph enable the spies to do well.

Lem. For $0 < \gamma < p < 1$, almost surely

1. $(p - \gamma)n < d(v) < (p + \gamma)n$ for all $v \in V(G)$.
2. $(p^2 - \gamma^2)n < |N(v) \cap N(w)| < (p^2 + \gamma^2)n$ for $v, w \in V(G)$.
3. G is $(p - \gamma)$-common, where G is q-common if $\frac{|N(v) \cap N(w)|}{|N(v)|} \geq q$ for all $v, w \in V(G)$.

We want a winning spy strategy on q-common graphs.

Def. m revs at a vertex v and one spy covering them (and no others at v) are **bound**. Other players are **free**.

For $U \subseteq V(G)$, let $r_U, \hat{r}_U, s_U, \hat{s}_U$ denote $\#\text{revs}$, $\#\text{free revs}$, $\#\text{spies}$, $\#\text{free spies}$ on U.
Random Graphs are Spy-Not-Too-Bad

For constant p, standard properties of the random graph enable the spies to do well.

Lem. For $0 < \gamma < p < 1$, almost surely

1. $(p - \gamma)n < d(v) < (p + \gamma)n$ for all $v \in V(G)$.
2. $(p^2 - \gamma^2)n < |N(v) \cap N(w)| < (p^2 + \gamma^2)n$ for $v, w \in V(G)$.
3. G is $(p - \gamma)$-common, where G is q-common if $\frac{|N(v) \cap N(w)|}{|N(v)|} \geq q$ for all $v, w \in V(G)$.

We want a winning spy strategy on q-common graphs.

Def. m revs at a vertex v and one spy covering them (and no others at v) are **bound**. Other players are **free**.

For $U \subseteq V(G)$, let $r_U, \hat{r}_U, s_U, \hat{s}_U$ denote #revs, #free revs, #spies, #free spies on U (and $\hat{r} = \hat{r}_{V(G)}, \hat{s} = \hat{s}_{V(G)}$).
The Usefulness of Stable Positions

Def. A position is **stable** if (1) all meetings are covered, and (2) $\hat{s}_{N[\nu]} \geq \hat{r}/m$ for all $\nu \in V(G)$.
The Usefulness of Stable Positions

Def. A position is **stable** if (1) all meetings are covered, and (2) $\hat{s}_{N[v]} \geq \hat{r}/m$ for all $v \in V(G)$.

Lem. If a round starts with a stable position, then the spies can cover all meetings at the end of the round.
The Usefulness of Stable Positions

Def. A position is **stable** if (1) all meetings are covered, and (2) \(\hat{s}_{N[v]} \geq \hat{r}/m \) for all \(v \in V(G) \).

Lem. If a round starts with a stable position, then the spies can cover all meetings at the end of the round.

Pf. Define \(X, Y \)-bigraph \(H \), where \(Y = \{ \text{vertices hosting meetings after revs move} \} \), \(X = \{ \text{spies} \} \), and \(xy \in E(H) \) if spy \(x \) can reach vertex \(y \) at the end of the round.
The Usefulness of Stable Positions

Def. A position is **stable** if (1) all meetings are covered, and (2) \(\hat{s}_{N[v]} \geq \hat{r}/m \) for all \(v \in V(G) \).

Lem. If a round starts with a stable position, then the spies can cover all meetings at the end of the round.

Pf. Define \(X, Y \)-bigraph \(H \), where \(Y = \{ \text{vertices hosting meetings after revs move} \} \), \(X = \{ \text{spies} \} \), and \(xy \in E(H) \) if spy \(x \) can reach vertex \(y \) at the end of the round.

We seek a matching in \(H \) to cover \(Y \).
The Usefulness of Stable Positions

Def. A position is stable if (1) all meetings are covered, and (2) \(\hat{s}_{N[v]} \geq \hat{r}/m \) for all \(v \in V(G) \).

Lem. If a round starts with a stable position, then the spies can cover all meetings at the end of the round.

Pf. Define \(X, Y \)-bigraph \(H \), where \(Y = \{ \text{vertices hosting meetings after revs move} \} \), \(X = \{ \text{spies} \} \), and \(xy \in E(H) \) if spy \(x \) can reach vertex \(y \) at the end of the round.

We seek a matching in \(H \) to cover \(Y \).

If \(T \subseteq Y \), then \(|T| \leq b + \frac{\hat{r}}{m} \), where \(b = \# \text{vertices in } N_G[T] \) hosting meetings before the round.
The Usefulness of Stable Positions

Def. A position is stable if (1) all meetings are covered, and (2) $\hat{s}_{N[v]} \geq \hat{r}/m$ for all $v \in V(G)$.

Lem. If a round starts with a stable position, then the spies can cover all meetings at the end of the round.

Pf. Define X, Y-bigraph H, where $Y = \{\text{vertices hosting meetings after revs move}\}$, $X = \{\text{spies}\}$, and $xy \in E(H)$ if spy x can reach vertex y at the end of the round.

We seek a matching in H to cover Y.

If $T \subseteq Y$, then $|T| \leq b + \frac{\hat{r}}{m}$, where $b = \#\text{vertices in } N_G[T]$ hosting meetings before the round.

Spies bound to meetings in $N_G[T]$ and free spies in $N_G[T]$ can reach T in one move.
The Usefulness of Stable Positions

Def. A position is **stable** if (1) all meetings are covered, and (2) $\hat{s}_{N[v]} \geq \hat{r}/m$ for all $v \in V(G)$.

Lem. If a round starts with a stable position, then the spies can cover all meetings at the end of the round.

Pf. Define X, Y-bigraph H, where $Y = \{\text{vertices hosting meetings after revs move}\}$, $X = \{\text{spies}\}$, and $xy \in E(H)$ if spy x can reach vertex y at the end of the round.

We seek a matching in H to cover Y.

If $T \subseteq Y$, then $|T| \leq b + \frac{\hat{r}}{m}$, where $b = \#\text{vertices in } N_G[T] \text{ hosting meetings before the round}$.

Spies bound to meetings in $N_G[T]$ and free spies in $N_G[T]$ can reach T in one move.

For any $y \in T$, we get $|N_H(T)| \geq b + \hat{s}_{N[y]} \geq b + \frac{\hat{r}}{m} \geq |T|$.
Restoring Stability

Lem. If G is q-common with n vertices, $\varepsilon > 0$, and a position in $RS(G, m, r, s)$ has (1) all meetings covered, (2) $\hat{s} \geq \frac{1+\varepsilon}{q} \frac{\hat{r}}{m}$, and (3) $\hat{s} \geq \frac{\ln n}{2[1-(1+\varepsilon)^{-1}]^2 q^2}$, then the free spies can move to create a stable position.
Restoring Stability

Lem. If G is q-common with n vertices, $\epsilon > 0$, and a position in $RS(G, m, r, s)$ has (1) all meetings covered, (2) $\hat{s} \geq \frac{1+\epsilon}{q} \frac{\hat{r}}{m}$, and (3) $\hat{s} \geq \frac{\ln n}{2[1-(1+\epsilon)^{-1}]^2 q^2}$, then the free spies can move to create a stable position.

Pf. Each free spy moves to a uniformly random nbr.
Restoring Stability

Lem. If G is q-common with n vertices, $\epsilon > 0$, and a position in $RS(G, m, r, s)$ has (1) all meetings covered, (2) $\hat{s} \geq \frac{1+\epsilon}{q} \frac{\hat{r}}{m}$, and (3) $\hat{s} \geq \frac{\ln n}{2[1-(1+\epsilon)^{-1}]^2 q^2}$, then the free spies can move to create a stable position.

Pf. Each free spy moves to a uniformly random nbr. With positive probability, the resulting position is stable.
Restoring Stability

Lem. If G is q-common with n vertices, $\varepsilon > 0$, and a position in $RS(G, m, r, s)$ has (1) all meetings covered, (2) $\hat{s} \geq \frac{1+\varepsilon}{q} \hat{r} m$, and (3) $\hat{s} \geq \frac{\ln n}{2[1-(1+\varepsilon)^{-1}]^2 q^2}$, then the free spies can move to create a stable position.

Pf. Each free spy moves to a uniformly random nbr. With positive probability, the resulting position is stable. Let X_ν be the resulting number of free spies in $N[\nu]$.
Restoring Stability

Lem. If G is q-common with n vertices, $\epsilon > 0$, and a position in $RS(G, m, r, s)$ has (1) all meetings covered, (2) $\hat{s} \geq \frac{1+\epsilon}{q} \frac{\hat{r}}{m}$, and (3) $\hat{s} \geq \frac{\ln n}{2[1-(1+\epsilon)^{-1}]^2q^2}$, then the free spies can move to create a stable position.

Pf. Each free spy moves to a uniformly random nbr. With positive probability, the resulting position is stable. Let X_ν be the resulting number of free spies in $N[\nu]$.

G is q-common \Rightarrow X_ν is sum of \hat{s} trials $\mathbb{P}[\text{success}] \geq q$.
Restoring Stability

Lem. If G is q-common with n vertices, $\epsilon > 0$, and a position in $RS(G, m, r, s)$ has (1) all meetings covered, (2) $\hat{s} \geq \frac{1+\epsilon}{q} \hat{r} \hat{m}$, and (3) $\hat{s} \geq \frac{\ln n}{2[1-(1+\epsilon)^{-1}]^2q^2}$, then the free spies can move to create a stable position.

Pf. Each free spy moves to a uniformly random nbr. With positive probability, the resulting position is stable. Let X_ν be the resulting number of free spies in $N[\nu]$. G is q-common \Rightarrow X_ν is sum of \hat{s} trials $P[\text{success}] \geq q$. Chernoff Bound $\Rightarrow P[X_\nu - E[X_\nu] < -\alpha] < e^{-2\alpha^2/\hat{s}}$.
Restoring Stability

Lem. If G is q-common with n vertices, $\epsilon > 0$, and a position in $RS(G, m, r, s)$ has (1) all meetings covered, (2) $\hat{s} \geq \frac{1+\epsilon}{q} \frac{\hat{r}}{m}$, and (3) $\hat{s} \geq \frac{\ln n}{2[1-(1+\epsilon)^{-1}]^2 q^2}$, then the free spies can move to create a stable position.

Pf. Each free spy moves to a uniformly random nbr. With positive probability, the resulting position is stable. Let X_ν be the resulting number of free spies in $N[\nu]$. G is q-common \Rightarrow X_ν is sum of \hat{s} trials $\mathbb{P}[\text{success}] \geq q$. Chernoff Bound \Rightarrow $\mathbb{P}[X_\nu - \mathbb{E}[X_\nu] < -a] < e^{-2a^2/\hat{s}}$. With $\mathbb{E}[X_\nu] \geq q \hat{s}$ and $a = (1 - \frac{1}{1+\epsilon})q \hat{s}$, we obtain $\mathbb{P}[X_\nu < \frac{1}{1+\epsilon} q \hat{s}] < e^{-2(1-\frac{1}{1+\epsilon})^2 q^2 \hat{s}} \leq e^{-\ln n} = \frac{1}{n}$.
Restoring Stability

Lem. If G is q-common with n vertices, $\epsilon > 0$, and a position in $RS(G, m, r, s)$ has (1) all meetings covered, (2) $\hat{s} \geq \frac{1+\epsilon}{q} \hat{r} \frac{\hat{r}}{m}$, and (3) $\hat{s} \geq \frac{\ln n}{2[1-(1+\epsilon)^{-1}]^2 q^2}$, then the free spies can move to create a stable position.

Pf. Each free spy moves to a uniformly random nbr. With positive probability, the resulting position is stable. Let X_ν be the resulting number of free spies in $N[\nu]$. G is q-common \Rightarrow X_ν is sum of \hat{s} trials $P[\text{success}] \geq q$. Chernoff Bound \Rightarrow $P[X_\nu - E[X_\nu] < -a] < e^{-2a^2/\hat{s}}$. With $E[X_\nu] \geq q\hat{s}$ and $a = (1 - \frac{1}{1+\epsilon})q\hat{s}$, we obtain $P[X_\nu < \frac{1}{1+\epsilon} q\hat{s}] < e^{-2(1-\frac{1}{1+\epsilon})^2 q^2 \hat{s}} \leq e^{-\ln n} = \frac{1}{n}$.

\therefore, with positive prob. each $N[\nu]$ receives at least $\frac{1}{1+\epsilon} q\hat{s}$ free spies, which by (2) is at least \hat{r}/m.

\blacksquare
Random Conclusions

Thm. If G is q-common with n vertices, $\epsilon > 0$, (1) $\hat{s} \geq \frac{1+\epsilon}{q} \frac{\hat{r}}{m}$, and (2) $\hat{s} \geq \frac{r}{m} + \frac{\ln n}{2[1-(1+\epsilon)^{-1}]^2 q^2}$, then the spies win $RS(G, m, r, s)$.
Random Conclusions

Thm. If G is q-common with n vertices, $\epsilon > 0$, (1) $\hat{s} \geq \frac{1+\epsilon}{q} \hat{r}$, and (2) $\hat{s} \geq \frac{r}{m} + \frac{\ln n}{2[1-(1+\epsilon)^{-1}]^2q^2}$, then the spies win $RS(G, m, r, s)$.

Pf. In each round, the spies first cover all meetings using the first lemma, then restore stability using the second (also applied to the first round).
Random Conclusions

Thm. If G is q-common with n vertices, $\epsilon > 0$, (1) $\hat{s} \geq \frac{1+\epsilon}{q} \frac{\hat{r}}{m}$, and (2) $\hat{s} \geq \frac{r}{m} + \frac{\ln n}{2[1-(1+\epsilon)^{-1}]^2 q^2}$, then the spies win $RS(G, m, r, s)$.

Pf. In each round, the spies first cover all meetings using the first lemma, then restore stability using the second (also applied to the first round). These hypotheses imply those of the lemma on \hat{s}. ■
Random Conclusions

Thm. If G is q-common with n vertices, $\epsilon > 0$, (1) $\hat{s} \geq \frac{1+\epsilon}{q} \hat{r} m$, and (2) $\hat{s} \geq \frac{r}{m} + \frac{\ln n}{2[1-(1+\epsilon)^{-1}]^2 q^2}$, then the spies win $RS(G, m, r, s)$.

Pf. In each round, the spies first cover all meetings using the first lemma, then restore stability using the second (also applied to the first round).
These hypotheses imply those of the lemma on \hat{s}. ■

Thm. Almost always the spies win $RS(G, m, r, s)$ when $0 < q < p < 1$, $s \geq \frac{1+\epsilon}{q} \frac{r}{m}$, and $s \geq \frac{r}{m} + \frac{\ln n}{2[1-(1+\epsilon)^{-1}]^2 q^2}$,
Thm. If G is q-common with n vertices, $\epsilon > 0$, (1) $\hat{s} \geq \frac{1+\epsilon}{q} \hat{r}$, and (2) $\hat{s} \geq \frac{r}{m} + \frac{\ln n}{2[1-(1+\epsilon)^{-1}]^2q^2}$, then the spies win $RS(G, m, r, s)$.

Pf. In each round, the spies first cover all meetings using the first lemma, then restore stability using the second (also applied to the first round). These hypotheses imply those of the lemma on \hat{s}. ■

Thm. Almost always the spies win $RS(G, m, r, s)$ when $0 < q < p < 1$, $s \geq \frac{1+\epsilon}{q} \frac{r}{m}$, and $s \geq \frac{r}{m} + \frac{\ln n}{2[1-(1+\epsilon)^{-1}]^2q^2}$.

Cor. For $p = \frac{1}{2}$, $m \in \mathbb{N}$, and $c > 4$, almost always the spies win $RS(G, m, r, s)$ when $s \geq c \frac{r}{m}$ and $r \geq cm \ln n$.
Random Conclusions

Thm. If G is q-common with n vertices, $\epsilon > 0$, (1) $\hat{s} \geq \frac{1+\epsilon}{q} \frac{r}{m}$, and (2) $\hat{s} \geq \frac{r}{m} + \frac{\ln n}{2[1-(1+\epsilon)^{-1}]^2 q^2}$, then the spies win $RS(G, m, r, s)$.

Pf. In each round, the spies first cover all meetings using the first lemma, then restore stability using the second (also applied to the first round). These hypotheses imply those of the lemma on \hat{s}.

Thm. Almost always the spies win $RS(G, m, r, s)$ when $0 < q < p < 1$, $s \geq \frac{1+\epsilon}{q} \frac{r}{m}$, and $s \geq \frac{r}{m} + \frac{\ln n}{2[1-(1+\epsilon)^{-1}]^2 q^2}$.

Cor. For $p = \frac{1}{2}$, $m \in \mathbb{N}$, and $c > 4$, almost always the spies win $RS(G, m, r, s)$ when $s \geq c \frac{r}{m}$ and $r \geq cm \ln n$.

Mitsche–Prałat [2012+]: (Using more intricate structure of random graphs and more complicated spy strategy:) If $r \geq \Omega(\frac{\log n}{p})$, then $\sigma(G, m, r) \leq \frac{r}{m} + 7 \log_{1/(1-p)} n$.

Complete k-partite graphs

Let $G_k = K_{n,\ldots,n}$ with k parts and $n \geq r$.
Complete k-partite graphs

Let $G_k = K_{n,...,n}$ with k parts and $n \geq r$.

Upper Bound: Spies win on G_k if $s \geq \frac{k}{k-1} \frac{r}{m} + k$.
Complete k-partite graphs

Let $G_k = K_{n,\ldots,n}$ with k parts and $n \geq r$.

Upper Bound: Spies win on G_k if $s \geq \frac{k}{k-1} \frac{r}{m} + k$. Thus G_k is a "spy-not-too-bad" graph.
Complete k-partite graphs

Let $G_k = K_{n,...,n}$ with k parts and $n \geq r$.

Upper Bound: Spies win on G_k if $s \geq k \frac{r}{k-1} + k$.

Thus G_k is a "spy-not-too-bad" graph.

When $k \geq m$, revs win when s is "not much smaller".
Complete k-partite graphs

Let $G_k = K_{n,\ldots,n}$ with k parts and $n \geq r$.

Upper Bound: Spies win on G_k if $s \geq \frac{k}{k-1} \frac{r}{m} + k$. Thus G_k is a "spy-not-too-bad" graph.

When $k \geq m$, revs win when s is "not much smaller".

Def. In a game on G_k, an i-swarm sends all revs to part i, filling unguarded partial meetings to size m and then making additional meetings of size m.
Complete k-partite graphs

Let $G_k = K_{n,\ldots,n}$ with k parts and $n \geq r$.

Upper Bound: Spies win on G_k if $s \geq \frac{k}{k-1} \frac{r}{m} + k$.
Thus G_k is a "spy-not-too-bad" graph.

When $k \geq m$, revs win when s is "not much smaller".

Def. In a game on G_k, an i-swarm sends all revs to part i, filling unguarded partial meetings to size m and then making additional meetings of size m.

Thm. If $k \geq m$ and $k \mid r$, then at least $\frac{k}{k-1} \frac{r}{m+c} - k$ spies are needed to win on G_k, where $c = 1/(k-1)$.
Complete k-partite graphs

Let $G_k = K_{n,\ldots,n}$ with k parts and $n \geq r$.

Upper Bound: Spies win on G_k if $s \geq \frac{k}{k-1} \frac{r}{m} + k$.
Thus G_k is a "spy-not-too-bad" graph.

When $k \geq m$, revs win when s is "not much smaller".

Def. In a game on G_k, an i-swarm sends all revs to part i, filling unguarded partial meetings to size m and then making additional meetings of size m.

Thm. If $k \geq m$ and $k \mid r$, then at least $\frac{k}{k-1} \frac{r}{m+c} - k$ spies are needed to win on G_k, where $c = 1/(k-1)$.

Idea: Let $t = r/k$. Revs initially at t verts. in each part.
Complete \(k \)-partite graphs

Let \(G_k = K_{n, \ldots, n} \) with \(k \) parts and \(n \geq r \).

Upper Bound: Spies win on \(G_k \) if \(s \geq \frac{k}{k-1} \frac{r}{m} + k \).
Thus \(G_k \) is a "spy-not-too-bad" graph.

When \(k \geq m \), revs win when \(s \) is "not much smaller".

Def. In a game on \(G_k \), an \(i \)-swarm sends all revs to part \(i \), filling unguarded partial meetings to size \(m \) and then making additional meetings of size \(m \).

Thm. If \(k \geq m \) and \(k \mid r \), then at least \(\frac{k}{k-1} \frac{r}{m+c} - k \) spies are needed to win on \(G_k \), where \(c = 1/(k-1) \).

Idea: Let \(t = r/k \). Revs initially at \(t \) verts. in each part. Let \(s_i \) be the initial # spies in part \(i \) (they sit on revs.).
Complete k-partite graphs

Let $G_k = K_{n, \ldots, n}$ with k parts and $n \geq r$.

Upper Bound: Spies win on G_k if $s \geq \frac{k}{k-1} \frac{r}{m} + k$. Thus G_k is a "spy-not-too-bad" graph.

When $k \geq m$, revs win when s is "not much smaller".

Def. In a game on G_k, an i-swarm sends all revs to part i, filling unguarded partial meetings to size m and then making additional meetings of size m.

Thm. If $k \geq m$ and $k \mid r$, then at least $\frac{k}{k-1} \frac{r}{m+c} - k$ spies are needed to win on G_k, where $c = 1/(k-1)$.

Idea: Let $t = r/k$. Revs initially at t verts. in each part. Let s_i be the initial #spies in part i (they sit on revs.). How many spies are needed to avoid losing by swarm?
Lower Bound (Rev strategy)

Case 1: \(s_i > t \) for some \(i \); revs swarm to part \(i \). New meetings use \(m \) incoming revs, not guardable by spies from part \(i \). At least \(\lfloor (k - 1)t/m \rfloor \) additional spies must come from other parts, so

\[
s \geq s_i + \left\lfloor \frac{(k-1)t}{m} \right\rfloor \geq t \left[1 + \frac{k-1}{m} \right] = \frac{k-1+m}{k} \frac{r}{m}.
\]
Lower Bound (Rev strategy)

Case 1: $s_i > t$ for some i; revs swarm to part i. New meetings use m incoming revs, not guardable by spies from part i. At least $\lfloor (k - 1)t/m \rfloor$ additional spies must come from other parts, so

$$s \geq s_i + \left\lfloor \frac{(k-1)t}{m} \right\rfloor \geq t \left[1 + \frac{k-1}{m} \right] = \frac{k-1+m}{k} \frac{r}{m}.$$

Case 2: $s_i \leq t$ for all i. Part i has $t - s_i$ partial meetings; i-swarm can fill them (since $s_i \geq 0$) if $(k - 1)t \geq t(m - 1)$, implied by $k \geq m$.
Lower Bound (Rev strategy)

Case 1: $s_i > t$ for some i; revs swarm to part i. New meetings use m incoming revs, not guardable by spies from part i. At least $\left\lfloor \frac{(k-1)t}{m} \right\rfloor$ additional spies must come from other parts, so

$$s \geq s_i + \left\lfloor \frac{(k-1)t}{m} \right\rfloor \geq t \left[1 + \frac{k-1}{m} \right] = \frac{k-1+m}{k} \frac{r}{m}.$$

Case 2: $s_i \leq t$ for all i. Part i has $t - s_i$ partial meetings; i-swarm can fill them (since $s_i \geq 0$) if $(k-1)t \geq t(m-1)$, implied by $k \geq m$.

Hence spies from other parts must guard $\left\lfloor \frac{(r-s_i)/m}{m} \right\rfloor$ new meetings. Summing $s - s_i \geq \frac{r-s_i-m+1}{m}$ yields

$$(k-1 + \frac{1}{m})s > k \frac{r-m+1}{m}, \text{ so } s > \frac{k(r-m+1)}{m(k-1)+1} > \frac{k}{k-1} \frac{r}{m+c} - k.$$
Lower Bound (Rev strategy)

Case 1: \(s_i > t \) for some \(i \); revs swarm to part \(i \).
New meetings use \(m \) incoming revs, not guardable by spies from part \(i \). At least \(\lceil (k - 1)t/m \rceil \) additional spies must come from other parts, so

\[
s \geq s_i + \left\lfloor \frac{(k-1)t}{m} \right\rfloor \geq t \left[1 + \frac{k-1}{m} \right] = \frac{k-1+m}{k} \frac{r}{m}.
\]

Case 2: \(s_i \leq t \) for all \(i \).
Part \(i \) has \(t - s_i \) partial meetings; \(i \)-swarm can fill them (since \(s_i \geq 0 \)) if \((k - 1)t \geq t(m - 1) \), implied by \(k \geq m \).

Hence spies from other parts must guard \(\lceil (r - s_i)/m \rceil \) new meetings. Summing \(s - s_i \geq \frac{r-s_i-m+1}{m} \) yields

\[
(k-1+\frac{1}{m})s > k\frac{r-m+1}{m}, \text{ so } s > k\frac{(r-m+1)}{m(k-1)+1} > \frac{k}{k-1} \frac{r}{m+c} - k.
\]

The requirement from Case 2 is weaker (better for spies) than from Case 1.
Thm. For $k, m \in \mathbb{N}$, spies win on G_k if $s \geq \frac{k}{k-1} \frac{r}{m} + k.$
Upper Bound (Spy strategy)

Thm. For \(k, m \in \mathbb{N} \), spies win on \(G_k \) if \(s \geq \frac{k}{k-1} \frac{r}{m} + k \).

Idea: Give strategy for this many spies to last forever, by condition that prevents revs winning on next round.
Upper Bound (Spy strategy)

Thm. For \(k, m \in \mathbb{N} \), spies win on \(G_k \) if \(s \geq \frac{k}{k-1} \frac{r}{m} + k \).

Idea: Give strategy for this many spies to last forever, by condition that prevents revs winning on next round.

Def. The \(m \) revs in a meeting and one spy on them are **bound**; others are **free**. Currently in part \(i \), let \(r_i = \#\text{free revs}, \quad s_i = \#\text{free spies} \). Also \(\hat{r} = \text{total #free revs}, \quad \hat{s} = \text{total #free spies} \).
Upper Bound (Spy strategy)

Thm. For $k, m \in \mathbb{N}$, spies win on G_k if $s \geq \frac{k}{k-1} \frac{r}{m} + k$.

Idea: Give strategy for this many spies to last forever, by condition that prevents revs winning on next round.

Def. The m revs in a meeting and one spy on them are bound; others are free. Currently in part i, let $r_i = \#$ free revs, $s_i = \#$ free spies. Also $\hat{r} = \text{total } \#$ free revs, $\hat{s} = \text{total } \#$ free spies.

Def. A round ends stable if (1) all m-mtgs are guarded, and (2) $\hat{s} - s_i \geq \hat{r}/m$ for all i.
Upper Bound (Spy strategy)

Thm. For $k, m \in \mathbb{N}$, spies win on G_k if $s \geq \frac{k}{k-1} \frac{r}{m} + k$.

Idea: Give strategy for this many spies to last forever, by condition that prevents revs winning on next round.

Def. The m revs in a meeting and one spy on them are **bound**; others are **free**. Currently in part i, let $r_i = \# \text{free revs}$, $s_i = \# \text{free spies}$. Also $\hat{r} = \text{total } \# \text{free revs}$, $\hat{s} = \text{total } \# \text{free spies}$.

Def. A round ends **stable** if (1) all m-mtgs are guarded, and (2) $\hat{s} - s_i \geq \frac{\hat{r}}{m}$ for all i.

Lem. If a round ends stable, then the revs cannot win on the next round.
Upper Bound (Spy strategy)

Thm. For $k, m \in \mathbb{N}$, spies win on G_k if $s \geq \frac{k}{k-1} \frac{r}{m} + k$.

Idea: Give strategy for this many spies to last forever, by condition that prevents revs winning on next round.

Def. The m revs in a meeting and one spy on them are bound; others are free. Currently in part i, let $r_i = \#\text{free revs}$, $s_i = \#\text{free spies}$. Also, $\hat{r} = \text{total \#free revs}$, $\hat{s} = \text{total \#free spies}$.

Def. A round ends stable if (1) all m-mtgs are guarded, and (2) $\hat{s} - s_i \geq \hat{r}/m$ for all i.

Lem. If a round ends stable, then the revs cannot win on the next round.

Pf. Hall’s Theorem yields a matching that covers new meetings with free spies who can move there.
Upper Bound (Spy strategy)

Spy Strategy:
(1) After revs have moved, cover all newly created meetings, moving the fewest possible spies to do so.
Upper Bound (Spy strategy)

Spy Strategy:

1. After revs have moved, cover all newly created meetings, moving the fewest possible spies to do so.

2. Move the \hat{s} spies that are now free; distribute them equally among the k parts (so $|s_i - \hat{s}/k| < 1$ for all i).
Upper Bound (Spy strategy)

Spy Strategy:
(1) After revs have moved, cover all newly created meetings, moving the fewest possible spies to do so.

(2) Move the \hat{s} spies that are now free; distribute them equally among the k parts (so $|s_i - \hat{s}/k| < 1$ for all i).

Lem. Equal distribution in (2) guarantees that the round ends stable. (meaning $\hat{s} - s_i \geq \frac{\hat{r}}{m}$)
Upper Bound (Spy strategy)

Spy Strategy:
(1) After revs have moved, cover all newly created meetings, moving the fewest possible spies to do so.

(2) Move the \(\hat{s} \) spies that are now free; distribute them equally among the \(k \) parts (so \(|s_i - \hat{s}/k| < 1 \) for all \(i \)).

Lem. Equal distribution in (2) guarantees that the round ends stable. (meaning \(\hat{s} - s_i \geq \frac{\hat{r}}{m} \))

Pf. It suffices to have \(s_j \geq \frac{\hat{r}}{m(k-1)} \) for each \(j \),
Upper Bound (Spy strategy)

Spy Strategy:
(1) After revs have moved, cover all newly created meetings, moving the fewest possible spies to do so.

(2) Move the \hat{s} spies that are now free; distribute them equally among the k parts (so $|s_i - \hat{s}/k| < 1$ for all i).

Lem. Equal distribution in (2) guarantees that the round ends stable. (meaning $\hat{s} - s_i \geq \frac{\hat{r}}{m}$)

Pf. It suffices to have $s_j \geq \frac{\hat{r}}{m(k-1)}$ for each j, so make $\frac{\hat{s}}{k} \geq \frac{\hat{r}}{m(k-1)} + 1$;
Upper Bound (Spy strategy)

Spy Strategy:
(1) After revs have moved, cover all newly created meetings, moving the fewest possible spies to do so.

(2) Move the \(\hat{s} \) spies that are now free; distribute them equally among the \(k \) parts (so \(|s_i - \hat{s}/k| < 1 \) for all \(i \)).

Lem. Equal distribution in (2) guarantees that the round ends stable. (meaning \(\hat{s} - s_i \geq \frac{\hat{r}}{m} \))

Pf. It suffices to have \(s_j \geq \frac{\hat{r}}{m(k-1)} \) for each \(j \), so make \(\frac{\hat{s}}{k} \geq \frac{\hat{r}}{m(k-1)} + 1 \); that is, \(\hat{s} \geq \frac{k}{k-1} \frac{\hat{r}}{m} + k \).
Upper Bound (Spy strategy)

Spy Strategy:

(1) After revs have moved, cover all newly created meetings, moving the fewest possible spies to do so.

(2) Move the \(\hat{s} \) spies that are now free; distribute them equally among the \(k \) parts (so \(|s_i - \hat{s}/k| < 1 \) for all \(i \)).

Lem. Equal distribution in (2) guarantees that the round ends stable. (meaning \(\hat{s} - s_i \geq \frac{\hat{r}}{m} \))

Pf. It suffices to have \(s_j \geq \frac{\hat{r}}{m(k-1)} \) for each \(j \), so make \(\frac{\hat{s}}{k} \geq \frac{\hat{r}}{m(k-1)} + 1 \); that is, \(\hat{s} \geq \frac{k}{k-1} \frac{\hat{r}}{m} + k \).

Given: \(s \geq \frac{k}{k-1} \frac{r}{m} + k \).
Upper Bound (Spy strategy)

Spy Strategy:

(1) After revs have moved, cover all newly created meetings, moving the fewest possible spies to do so.

(2) Move the \hat{s} spies that are now free; distribute them equally among the k parts (so $|s_i - \hat{s}/k| < 1$ for all i).

Lem. Equal distribution in (2) guarantees that the round ends stable. (meaning $\hat{s} - s_i \geq \hat{r}$)

Pf. It suffices to have $s_j \geq \frac{\hat{r}}{m(k-1)}$ for each j, so make $\frac{\hat{s}}{k} \geq \frac{\hat{r}}{m(k-1)} + 1$; that is, $\hat{s} \geq \frac{k}{k-1} \frac{\hat{r}}{m} + k$.

Given: $s \geq \frac{k}{k-1} \frac{r}{m} + k$. Subtract $s - \hat{s} = (r - \hat{r})/m$
Spy Strategy:
(1) After revs have moved, cover all newly created meetings, moving the fewest possible spies to do so.

(2) Move the \(\hat{s} \) spies that are now free; distribute them equally among the \(k \) parts (so \(|s_i - \hat{s}/k| < 1 \) for all \(i \)).

Lem. Equal distribution in (2) guarantees that the round ends stable. (meaning \(\hat{s} - s_i \geq \frac{\hat{r}}{m} \))

Pf. It suffices to have \(s_j \geq \frac{\hat{s}}{m(k-1)} \) for each \(j \), so make \(\frac{\hat{s}}{k} \geq \frac{\hat{r}}{m(k-1)} + 1; \) that is, \(\hat{s} \geq \frac{k}{k-1} \frac{\hat{r}}{m} + k. \)

Given: \(s \geq \frac{k}{k-1} \frac{r}{m} + k. \) Subtract \(s - \hat{s} = (r - \hat{r})/m \) to get \(\hat{s} \geq \frac{1}{k-1} \frac{r}{m} + \frac{\hat{r}}{m} + k \).
Upper Bound (Spy strategy)

Spy Strategy:
(1) After revs have moved, cover all newly created meetings, moving the fewest possible spies to do so.
(2) Move the \hat{s} spies that are now free; distribute them equally among the k parts (so $|s_i - \hat{s}/k| < 1$ for all i).

Lem. Equal distribution in (2) guarantees that the round ends stable. (meaning $\hat{s} - s_i \geq \frac{\hat{r}}{m}$)

Pf. It suffices to have $s_j \geq \frac{\hat{r}}{m(k-1)}$ for each j, so make $\frac{s}{k} \geq \frac{\hat{r}}{m(k-1)} + 1$; that is, $\hat{s} \geq \frac{k}{k-1} \frac{\hat{r}}{m} + k$.

Given: $s \geq \frac{k}{k-1} \frac{r}{m} + k$. Subtract $s - \hat{s} = (r - \hat{r})/m$
to get $\hat{s} \geq \frac{1}{k-1} \frac{r}{m} + \frac{\hat{r}}{m} + k \geq \frac{k}{k-1} \frac{\hat{r}}{m} + k$. ■
Complete Bipartite Graphs

\[m \geq k = 2. \] Proofs more difficult, but same approach.
Complete Bipartite Graphs

$m \geq k = 2$. Proofs more difficult, but same approach.

Lower bd: Strategy for revs to win quickly (small s).
Complete Bipartite Graphs

\(m \geq k = 2 \). Proofs more difficult, but same approach.

Lower bd: Strategy for revs to win quickly (small \(s \)).

Upper bd: Strategy for spies to maintain invariants that prevent revs winning on next round (large \(s \)).
Complete Bipartite Graphs

\(m \geq k = 2 \). Proofs more difficult, but same approach.

Lower bd: Strategy for revs to win quickly (small \(s \)).

Upper bd: Strategy for spies to maintain invariants that prevent revs winning on next round (large \(s \)).

Thm. \((m = 2)\) Spies win if and only if \(s \geq \frac{7r}{10} \approx \frac{7}{5} \frac{r}{m} \).
Complete Bipartite Graphs

\(m \geq k = 2 \). Proofs more difficult, but same approach.

Lower bd: Strategy for revs to win quickly (small \(s \)).

Upper bd: Strategy for spies to maintain invariants that prevent revs winning on next round (large \(s \)).

Thm. \((m = 2)\) Spies win if and only if \(s \geq \frac{7r}{10} \approx \frac{7}{5} \frac{r}{m} \).

Thm. \((m = 3)\) Spies win if and only if \(s \geq \left\lfloor \frac{r}{2} \right\rfloor \approx \frac{3}{2} \frac{r}{m} \).
Complete Bipartite Graphs

$m \geq k = 2$. Proofs more difficult, but same approach.

Lower bd: Strategy for revs to win quickly (small s).

Upper bd: Strategy for spies to maintain invariants that prevent revs winning on next round (large s).

Thm. ($m = 2$) Spies win if and only if $s \geq \frac{7r}{10} \approx \frac{7}{5} \frac{r}{m}$.

Thm. ($m = 3$) Spies win if and only if $s \geq \left\lfloor \frac{r}{2} \right\rfloor \approx \frac{3}{2} \frac{r}{m}$.

Thm. ($m \geq 4$, fixed) Spies win only if $s > \frac{3-o(1)}{2} \frac{r}{m}$.
Complete Bipartite Graphs

$m \geq k = 2$. Proofs more difficult, but same approach.

Lower bd: Strategy for revs to win quickly (small s).

Upper bd: Strategy for spies to maintain invariants that prevent revs winning on next round (large s).

Thm. ($m = 2$) Spies win if and only if $s \geq \frac{7r}{10} \approx \frac{7}{5} r$.

Thm. ($m = 3$) Spies win if and only if $s \geq \left\lfloor \frac{r}{2} \right\rfloor \approx \frac{3}{2} r$.

Thm. ($m \geq 4$, fixed) Spies win only if $s > \frac{3 - o(1)}{2} \frac{r}{m}$.

Thm. For large fixed m, spies win if $s > \left(1 + \frac{1}{\sqrt{3}}\right) \frac{r}{m}$.
Complete Bipartite Graphs

\[m \geq k = 2. \] Proofs more difficult, but same approach.

Lower bd: Strategy for revs to win quickly (small \(s \)).

Upper bd: Strategy for spies to maintain invariants that prevent revs winning on next round (large \(s \)).

Thm. \((m = 2)\) Spies win if and only if \(s \geq \frac{7r}{10} \approx \frac{7}{5} \frac{r}{m} \).

Thm. \((m = 3)\) Spies win if and only if \(s \geq \left\lfloor \frac{r}{2} \right\rfloor \approx \frac{3}{2} \frac{r}{m} \).

Thm. \((m \geq 4, \text{ fixed})\) Spies win only if \(s > \frac{3-o(1)}{2} \frac{r}{m} \).

Thm. For large fixed \(m \), spies win if \(s \geq \left(1 + \frac{1}{\sqrt{3}}\right) \frac{r}{m} \).

- For large fixed \(m \), the threshold \(t \) for the number of spies needed to win satisfies \(1.5 \frac{r}{m} < t < 1.58 \frac{r}{m} \).
Complete Bipartite Graphs

$m \geq k = 2$. Proofs more difficult, but same approach.

Lower bd: Strategy for revs to win quickly (small s).

Upper bd: Strategy for spies to maintain invariants that prevent revs winning on next round (large s).

Thm. ($m = 2$) Spies win if and only if $s \geq \frac{7r}{10} \approx \frac{7}{5} \frac{r}{m}$.

Thm. ($m = 3$) Spies win if and only if $s \geq \left\lceil \frac{r}{2} \right\rceil \approx \frac{3}{2} \frac{r}{m}$.

Thm. ($m \geq 4$, fixed) Spies win only if $s > \frac{3-o(1)}{2} \frac{r}{m}$.

Thm. For large fixed m, spies win if $s > \left(1 + \frac{1}{\sqrt{3}}\right) \frac{r}{m}$.

- For large fixed m, the threshold t for the number of spies needed to win satisfies $1.5 \frac{r}{m} < t < 1.58 \frac{r}{m}$.

** Conj.** For fixed m, the threshold for the number of spies needed to win is asymptotic to $1.5 \frac{r}{m}$.
Rev Strategy for $m = 3$ when $4 \mid r$

- $\sigma(G_2, 3, r) = \lfloor r/2 \rfloor$
Rev Strategy for $m = 3$ when $4 \mid r$

- $\sigma(G_2, 3, r) = \lfloor r/2 \rfloor$

Ex. If $r = 4k$, then revs win against $2k - 1$ spies.
Rev Strategy for $m = 3$ when $4 | r$

- $\sigma(G_2, 3, r) = \lfloor r/2 \rfloor$

Ex. If $r = 4k$, then revs win against $2k - 1$ spies.

Start with $2k$ revs each on part X_1 and part X_2.
Rev Strategy for $m = 3$ when $4 \mid r$

- $\sigma(G_2, 3, r) = \lfloor r/2 \rfloor$

Ex. If $r = 4k$, then revs win against $2k - 1$ spies.

Start with $2k$ revs each on part X_1 and part X_2. Start with s_i spies in X_i; may assume $s_1 \leq k - 1 < s_2$.

\[
\begin{array}{c}
S & R & R & S \\
R & R & R & S \\
R & R & R & S \\
X_1 & X_2
\end{array}
\]
Rev Strategy for $m = 3$ when $4 \mid r$

- $\sigma(G_2, 3, r) = \lfloor r/2 \rfloor$

Ex. If $r = 4k$, then revs win against $2k - 1$ spies.

Start with $2k$ revs each on part X_1 and part X_2.
Start with s_i spies in X_i; may assume $s_1 \leq k - 1 < s_2$.
With only $2k - 1 - s_1$ spies, X_2 has $s_1 + 1$ uncovered revs.
Rev Strategy for $m = 3$ when $4 \mid r$

- $\sigma(G_2, 3, r) = \lfloor r/2 \rfloor$

Ex. If $r = 4k$, then revs win against $2k – 1$ spies.

Start with $2k$ revs each on part X_1 and part X_2.
Start with s_i spies in X_i; may assume $s_1 \leq k – 1 < s_2$.

With only $2k – 1 – s_1$ spies, X_2 has $s_1 + 1$ uncovered revs.
Move $2(s_1 + 1)$ revs from X_1; make $s_1 + 1$ meetings in X_2.
Not coverable by the s_1 spies from X_1; spies lose.

\[\begin{array}{c}
\text{S}
\end{array}\]

\[\begin{array}{c}
\text{R}
\end{array}\]

\[\begin{array}{c}
\text{R}
\end{array}\]

\[\begin{array}{c}
\text{R}
\end{array}\]

\[\begin{array}{c}
\text{X}_1
\end{array}\]

\[\begin{array}{c}
\text{S}
\end{array}\]

\[\begin{array}{c}
\text{R}
\end{array}\]

\[\begin{array}{c}
\text{R}
\end{array}\]

\[\begin{array}{c}
\text{R}
\end{array}\]

\[\begin{array}{c}
\text{S}
\end{array}\]

\[\begin{array}{c}
\text{X}_2
\end{array}\]
Rev Strategy for $m = 3$ when $4 \nmid r$

- $\sigma(G_2, 3, r) = \lfloor r/2 \rfloor$.

To finish lower bound, we may assume $r = 4k + 2$.
Rev Strategy for $m = 3$ when $4 \nmid r$

- $\sigma(G_2, 3, r) = \lfloor r/2 \rfloor$.

To finish lower bound, we may assume $r = 4k + 2$.

The symmetric strategy fails to defeat $2k$ spies!
Rev Strategy for $m = 3$ when $4 \nmid r$

- $\sigma(G_2, 3, r) = \lfloor r/2 \rfloor$.

To finish lower bound, we may assume $r = 4k + 2$.

The symmetric strategy fails to defeat $2k$ spies!

By starting all $4k + 2$ revs in X_1 (forcing $\geq \lfloor r/3 \rfloor$ spies to start in X_1), revs can defeat $2k$ spies in two rounds. (How many revs move to X_2 in round 1 depends on how many spies start in X_2.)
Larger m and Upper Bound

Cor. $\sigma(G_2, m, r) \geq \left\lfloor \frac{1}{2} \left\lfloor \frac{r}{\lceil m/3 \rceil} \right\rfloor \right\rfloor$.
Larger m and Upper Bound

Cor. $\sigma(G_2, m, r) \geq \left\lfloor \frac{1}{2} \left\lfloor \frac{r}{\left\lfloor m/3 \right\rfloor} \right\rfloor \right\rfloor$.

Pf. Let $m' = \left\lfloor m/3 \right\rfloor$. Group revs into cells of size m'.
Larger m and Upper Bound

Cor. $\sigma(G_2, m, r) \geq \left\lfloor \frac{1}{2} \left\lceil \frac{r}{\lfloor m/3 \rfloor} \right\rceil \right\rfloor$.

Pf. Let $m' = \lfloor m/3 \rfloor$. Group revs into cells of size m'.

A cell moves as one player in a game with meeting size 3 and $\lfloor r/m' \rfloor$ revs.
Larger m and Upper Bound

Cor. $\sigma(G_2, m, r) \geq \left\lfloor \frac{1}{2} \left\lfloor \frac{r}{\lfloor m/3 \rfloor} \right\rfloor \right\rfloor$.

Pf. Let $m' = \lfloor m/3 \rfloor$. Group revs into cells of size m'. A cell moves as one player in a game with meeting size 3 and $\lfloor r/m' \rfloor$ revs. $\therefore \sigma(G_2, m, r) \geq \left\lfloor \frac{1}{2} \lfloor r/m' \rfloor \right\rfloor$. ■
Larger m and Upper Bound

Cor. $\sigma(G_2, m, r) \geq \left\lfloor \frac{1}{2} \left\lceil \frac{r}{m/3} \right\rceil \right\rfloor$.

Pf. Let $m' = \left\lceil m/3 \right\rceil$. Group revs into cells of size m'.

A cell moves as one player in a game with meeting size 3 and $\left\lfloor r/m' \right\rfloor$ revs. $\therefore \sigma(G_2, m, r) \geq \left\lfloor \frac{1}{2} \right\rfloor \left\lceil r/m' \right\rceil \right\rfloor$.

Upper Bounds: $\sigma(G_2, 2, r) = \left\lfloor \frac{\left\lfloor 7r/2 \right\rfloor - 3}{5} \right\rfloor$, $\sigma(G_2, 3, r) = \left\lfloor r/2 \right\rfloor$, $\sigma(G_2, m, r) \leq (1 + 1/\sqrt{3}) \frac{r}{m} + 1$.
Larger m and Upper Bound

Cor. $\sigma(G_2, m, r) \geq \left\lfloor \frac{1}{2} \left\lfloor \frac{r}{m/3} \right\rfloor \right\rfloor$.

Pf. Let $m' = \lceil m/3 \rceil$. Group revs into cells of size m'. A cell moves as one player in a game with meeting size 3 and $\lfloor r/m' \rfloor$ revs. $\therefore \sigma(G_2, m, r) \geq \left\lfloor \frac{1}{2} \lfloor r/m' \rfloor \right\rfloor$.

Upper Bounds: $\sigma(G_2, 2, r) = \left\lfloor \frac{17r/2 - 3}{5} \right\rfloor$,
$\sigma(G_2, 3, r) = \lfloor r/2 \rfloor$, $\sigma(G_2, m, r) \leq (1 + 1/\sqrt{3}) \frac{r}{m} + 1$.

Spies play greedy migration strategy.
Larger \(m \) and Upper Bound

Cor. \(\sigma(G_2, m, r) \geq \left\lfloor \frac{1}{2} \left\lfloor \frac{r}{m/3} \right\rfloor \right\rfloor. \)

Pf. Let \(m' = \lfloor m/3 \rfloor \). Group revs into cells of size \(m' \).

A cell moves as one player in a game with meeting size 3 and \(\lfloor r/m' \rfloor \) revs. \(\therefore \sigma(G_2, m, r) \geq \left\lfloor \frac{1}{2} \lfloor r/m' \rfloor \right\rfloor. \)

Upper Bounds:

\(\sigma(G_2, 2, r) = \left\lfloor \frac{\lfloor 7r/2 \rfloor - 3}{5} \right\rfloor \),

\(\sigma(G_2, 3, r) = \lfloor r/2 \rfloor \),

\(\sigma(G_2, m, r) \leq (1 + 1/\sqrt{3}) \frac{r}{m} + 1. \)

Spies play greedy migration strategy.

In terms of \#revs and \#covered revs in each part, a desired number of spies in each part is computed.
Larger m and Upper Bound

Cor. $\sigma(G_2, m, r) \geq \left\lfloor \frac{1}{2} \left\lceil \frac{r}{m/3} \right\rceil \right\rfloor$.

Pf. Let $m' = \lceil m/3 \rceil$. Group revs into cells of size m'. A cell moves as one player in a game with meeting size 3 and $\lfloor r/m' \rfloor$ revs. $\therefore \sigma(G_2, m, r) \geq \left\lfloor \frac{1}{2} \lfloor r/m' \rfloor \right\rfloor$. ■

Upper Bounds: $\sigma(G_2, 2, r) = \left\lfloor \frac{\lfloor 7r/2 \rfloor - 3}{5} \right\rfloor$, $\sigma(G_2, 3, r) = \lfloor r/2 \rfloor$, $\sigma(G_2, m, r) \leq (1 + 1/\sqrt{3}) \frac{r}{m} + 1$.

Spies play greedy migration strategy. In terms of #revs and #covered revs in each part, a desired number of spies in each part is computed. Spies achieve that "greedily", leaving vertices with few revs and moving to vertices with many revs.
Larger m and Upper Bound

Cor. $\sigma(G_2, m, r) \geq \left\lfloor \frac{1}{2} \left\lfloor \frac{r}{\lceil m/3 \rceil} \right\rfloor \right\rfloor$.

Pf. Let $m' = \lceil m/3 \rceil$. Group revs into cells of size m'. A cell moves as one player in a game with meeting size 3 and $\lfloor r/m' \rfloor$ revs. $\therefore \sigma(G_2, m, r) \geq \left\lfloor \frac{1}{2} \lfloor r/m' \rfloor \right\rfloor$.

Upper Bounds: $\sigma(G_2, 2, r) = \left\lfloor \frac{\lfloor 7r/2 \rfloor - 3}{5} \right\rfloor$, $\sigma(G_2, 3, r) = \lfloor r/2 \rfloor$, $\sigma(G_2, m, r) \leq (1 + 1/\sqrt{3}) \frac{r}{m} + 1$.

Spies play greedy migration strategy. In terms of #revs and #covered revs in each part, a desired number of spies in each part is computed. Spies achieve that "greedily", leaving vertices with few revs and moving to vertices with many revs. The computed values prevent the revs from winning by swarming a part, and that is shown to be sufficient for a greedy migration strategy to be a winning strategy.
Open Problems

Ques. Is every interval graph spy-good?
Open Problems

Ques. Is every interval graph spy-good?

Ques. What are good upper bounds on $\sigma(Q_d, 2, r)$ for $r > d$?
Open Problems

Ques. Is every interval graph spy-good?

Ques. What are good upper bounds on $\sigma(Q_d, 2, r)$ for $r > d$?

Ques. What is the smallest c such that $\sigma(Q_d, m, r) > r - cm$ for $d \geq r$?
Open Problems

Ques. Is every interval graph spy-good?

Ques. What are good upper bounds on $\sigma(Q_d, 2, r)$ for $r > d$?

Ques. What is the smallest c such that $\sigma(Q_d, m, r) > r - cm$ for $d \geq r$?

Ques. For random graphs with constant p,

$r < \ln 2 \ln m \Rightarrow \sigma(G, m, r) = r - m + 1$, but

$r > (4 + \varepsilon)m \ln n \Rightarrow \sigma(G, m, r) < 4r/m$.

For various $p(n)$, how sharp is the threshold in r between spy-bad and spy-pretty-good?
Open Problems

Ques. Is every interval graph spy-good?

Ques. What are good upper bounds on $\sigma(Q_d, 2, r)$ for $r > d$?

Ques. What is the smallest c such that $\sigma(Q_d, m, r) > r - cm$ for $d \geq r$?

Ques. For random graphs with constant p,

\[
\begin{align*}
 r < \ln 2 \ln m & \Rightarrow \sigma(G, m, r) = r - m + 1, \text{ but} \\
 r > (4 + \epsilon)m \ln n & \Rightarrow \sigma(G, m, r) < 4r/m.
\end{align*}
\]

For various $p(n)$, how sharp is the threshold in r between spy-bad and spy-pretty-good?

Ques. For each m, what is $\lim_{r \to \infty} \frac{\sigma(G_2, m, r)}{r/m}$?
References

[middle two papers (and these slides) available at DBW preprint page (under homepage)]