Repetition Number of Graphs

Douglas B. West

Department of Mathematics
University of Illinois at Urbana-Champaign
west@math.uiuc.edu
http://www.math.uiuc.edu/~west/pubs/publink.html

Joint work with
Yair Caro
University of Haifa-Oranim
The problem

Graphs (n vertices, simple) have two vertices with equal degree ($n \geq 2$). [standard pigeonhole exercise]
The problem

Graphs (n vertices, simple) have two vertices with equal degree ($n \geq 2$). [standard pigeonhole exercise]

Def. repetition number $\text{rep}(G) = \text{maximum multiplicity in degree list.}$
The problem

Graphs (n vertices, simple) have two vertices with equal degree ($n \geq 2$). [standard pigeonhole exercise]

Def. repetition number $\text{rep}(G) = \text{maximum multiplicity in degree list.}$

Regular n-vertex graph has repetition number n.
The problem

Graphs \((n\ \text{vertices, simple})\) have two vertices with equal degree \((n \geq 2)\). [standard pigeonhole exercise]

Def. repetition number \(\text{rep}(G) = \text{maximum multiplicity in degree list.}\)

Regular \(n\)-vertex graph has repetition number \(n\).

Ques. How small can \(\text{rep}(G)\) be in various classes of \(n\)-vertex graphs?
The problem

Graphs \(n \) vertices, simple) have two vertices with equal degree \((n \geq 2) \). \([\text{standard pigeonhole exercise}]\)

Def. repetition number \(\text{rep}(G) = \) maximum multiplicity in degree list.

Regular \(n \)-vertex graph has repetition number \(n \).

Ques. How small can \(\text{rep}(G) \) be in various classes of \(n \)-vertex graphs?

Since \(\text{rep}(G) \geq n/\Delta(G) \) (excluding isolated vertices), \(\text{rep}(G) \leq k \implies \alpha(G) \geq \Delta(G) \geq n/k \) for triangle-free \(G \).
The problem

Graphs \(n \) vertices, simple) have two vertices with equal degree \((n \geq 2)\). [standard pigeonhole exercise]

Def. repetition number \(\text{rep}(G) = \) maximum multiplicity in degree list.

Regular \(n \)-vertex graph has repetition number \(n \).

Ques. How small can \(\text{rep}(G) \) be in various classes of \(n \)-vertex graphs?

Since \(\text{rep}(G) \geq n/\Delta(G) \) (excluding isolated vertices), \(\text{rep}(G) \leq k \implies \alpha(G) \geq \Delta(G) \geq n/k \) for triangle-free \(G \).

Bollobás–Scott [1997] - this is asymptotically sharp.
The problem

Graphs \(n \) vertices, simple) have two vertices with equal degree \(n \geq 2 \). [standard pigeonhole exercise]

Def. repetition number \(\text{rep}(G) = \) maximum multiplicity in degree list.

Regular \(n \)-vertex graph has repetition number \(n \).

Ques. How small can \(\text{rep}(G) \) be in various classes of \(n \)-vertex graphs?

Since \(\text{rep}(G) \geq n/\Delta(G) \) (excluding isolated vertices),
\[\text{rep}(G) \leq k \Rightarrow \alpha(G) \geq \Delta(G) \geq n/k \]
for triangle-free \(G \).

Bollobás–Scott [1997] - this is asymptotically sharp.

For bounded \(\text{rep}^# \), no sequence of triangle-free graphs
has \(\alpha(G) \in o(n) \), but \(\exists \) sequence of \(K_4 \)-free graphs with
\(\text{rep}(G) \leq 5 \) and \(\alpha(G) \in o(n) \) (Bollobás [1996]).
Thm. If G has n vertices, avg degree d, and min degree s, then $\text{rep}(G) \geq \left\lceil \frac{n}{2d-2s+1} \right\rceil$, and this is sharp.
Thm. If G has n vertices, avg degree d, and min degree s, then $\text{rep}(G) \geq \left\lceil \frac{n}{2d-2s+1} \right\rceil$, and this is sharp.

Thm. This is asymptotically sharp for trees ($n/3$), maximal outerplanar graphs ($n/5$), planar triangulations ($n/7$), triangulations with mindegree 4 ($n/5$), triangulations with mindegree 5 ($n/3$).
Results

Thm. If G has n vertices, avg degree d, and min degree s, then $\text{rep}(G) \geq \left\lceil \frac{n}{2d-2s+1} \right\rceil$, and this is sharp.

Thm. This is asymptotically sharp for trees ($n/3$), maximal outerplanar graphs ($n/5$), planar triangulations ($n/7$), triangulations with mindegree 4 ($n/5$), triangulations with mindegree 5 ($n/3$).

Thm. If G has m edges, then $\text{rep}(L(G)) \geq \frac{1}{4} m^{1/3}$.
Results

Thm. If G has n vertices, avg degree d, and min degree s, then $\text{rep}(G) \geq \left\lfloor \frac{n}{2d-2s+1} \right\rfloor$, and this is sharp.

Thm. This is asymptotically sharp for trees ($n/3$), maximal outerplanar graphs ($n/5$), planar triangulations ($n/7$), triangulations with mindegree 4 ($n/5$), triangulations with mindegree 5 ($n/3$).

Thm. If G has m edges, then $\text{rep}(L(G)) \geq \frac{1}{4}m^{1/3}$.

Thm. For infinitely many m, there exists G with m edges and $\text{rep}(L(G)) \leq 2(m/3)^{1/2}$.
Results

Thm. If G has n vertices, avg degree d, and min degree s, then $\text{rep}(G) \geq \left\lceil \frac{n}{2d-2s+1} \right\rceil$, and this is sharp.

Thm. This is asymptotically sharp for trees ($n/3$), maximal outerplanar graphs ($n/5$), planar triangulations ($n/7$), triangulations with mindegree 4 ($n/5$), triangulations with mindegree 5 ($n/3$).

Thm. If G has m edges, then $\text{rep}(L(G)) \geq \frac{1}{4}m^{1/3}$.

Thm. For infinitely many m, there exists G with m edges and $\text{rep}(L(G)) \leq 2(m/3)^{1/2}$.

Conj. $\min \text{rep}(L(G))$ over m-edge graphs is $\Theta(m^{1/2})$.
Results

Thm. If G has n vertices, avg degree d, and min degree s, then $\text{rep}(G) \geq \left\lceil \frac{n}{2d-2s+1} \right\rceil$, and this is sharp.

Thm. This is asymptotically sharp for trees ($n/3$), maximal outerplanar graphs ($n/5$), planar triangulations ($n/7$), triangulations with mindegree 4 ($n/5$), triangulations with mindegree 5 ($n/3$).

Thm. If G has m edges, then $\text{rep}(L(G)) \geq \frac{1}{4}m^{1/3}$.

Thm. For infinitely many m, there exists G with m edges and $\text{rep}(L(G)) \leq 2(m/3)^{1/2}$.

Conj. $\min \text{rep}(L(G))$ over m-edge graphs is $\Theta(m^{1/2})$.

Evidence: True for trees. For trees with perfect matchings, maximal outerplanar graphs, and triangulations with 2-factors, $\text{rep}(L(G)) = \Theta(m)$.
General lower bound

Lem. If G has n vertices, avg degree d, and min degree s, then $\text{rep}(G) \geq \left\lceil \frac{n}{2d-2s+1} \right\rceil$.
General lower bound

Lem. If G has n vertices, avg degree d, and min degree s, then $\text{rep}(G) \geq \left\lceil \frac{n}{2d-2s+1} \right\rceil$.

Pf. Let $r = \text{rep}(G)$, and $n = ra + b$ with $1 \leq b \leq r$.
General lower bound

Lem. If G has n vertices, avg degree d, and min degree s, then $\text{rep}(G) \geq \left\lceil \frac{n}{2d-2s+1} \right\rceil$.

Pf. Let $r = \text{rep}(G)$, and $n = ra + b$ with $1 \leq b \leq r$.

Degree sum: $dn \geq rs + r(s+1) + \ldots r(s+a-1) + b(s+a)$
General lower bound

Lem. If G has n vertices, avg degree d, and min degree s, then $\text{rep}(G) \geq \left\lceil \frac{n}{2d-2s+1} \right\rceil$.

Pf. Let $r = \text{rep}(G)$, and $n = ra + b$ with $1 \leq b \leq r$.

Degree sum: $dn \geq rs + r(s+1) + \ldots + r(s+a-1) + b(s+a)$

$$= ra\left(\frac{2s+a-1}{2}\right) + b(s+a) = ns + \frac{n}{2}\left(\frac{n}{r}-1\right) + \frac{b(r-b)}{2r}.$$
General lower bound

Lem. If G has n vertices, avg degree d, and min degree s, then $\text{rep}(G) \geq \left\lceil \frac{n}{2d-2s+1} \right\rceil$.

Pf. $dn \geq ns + \frac{n}{2} \left(\frac{n}{r} - 1 \right) + \frac{b(r-b)}{2r}$. \qed
General lower bound

Lem. If G has n vertices, avg degree d, and min degree s, then $\text{rep}(G) \geq \left\lceil \frac{n}{2d-2s+1} \right\rceil$.

Pf. $dn \geq ns + \frac{n}{2} \left(\frac{n}{r} - 1 \right) + \frac{b(r-b)}{2r}$.

Ex. Sharpness when $d = 2k$. (Here $k = 3$.)
Lem. If G has n vertices, avg degree d, and min degree s, then $\text{rep}(G) \geq \left\lceil \frac{n}{2d-2s+1} \right\rceil$.

Pf. $dn \geq ns + \frac{n}{2} \left(\frac{n}{r} - 1 \right) + \frac{b(r-b)}{2r}$. $lacksquare$

Ex. Sharpness when $d = 2k$. (Here $k = 3$.)
General lower bound

Lem. If G has n vertices, avg degree d, and min degree s, then $\text{rep}(G) \geq \left\lceil \frac{n}{2d-2s+1} \right\rceil$.

Pf. $dn \geq ns + \frac{n}{2} \left(\frac{n}{r} - 1 \right) + \frac{b(r-b)}{2r}$.

Ex. Sharpness when $d = 2k$. (Here $k = 3$.)
Lem. If G has n vertices, avg degree d, and min degree s, then $\text{rep}(G) \geq \left\lceil \frac{n}{2d-2s+1} \right\rceil$.

Pf. $dn \geq ns + \frac{n}{2}(\frac{n}{r} - 1) + \frac{b(r-b)}{2r}$.

Ex. Sharpness when $d = 2k$. (Here $k = 3$.)
Lem. If G has n vertices, avg degree d, and min degree s, then $\text{rep}(G) \geq \left\lceil \frac{n}{2d-2s+1} \right\rceil$.

Pf. $dn \geq ns + \frac{n}{2}(\frac{n}{r} - 1) + \frac{b(r-b)}{2r}$.

Ex. Sharpness when $d = 2k$. (Here $k = 3$.)
General sharpness argument

Given $n, s, r \in \mathbb{N}$ and d, seek graph whose degree-sum equals the counting bound: $dn = ns + \frac{n}{2} \left(\frac{n}{r} - 1 \right) + \frac{b(r-b)}{2r}$.
General sharpness argument

Given \(n, s, r \in \mathbb{N} \) and \(d \), seek graph whose degree-sum equals the counting bound: \(dn = ns + \frac{n}{2}(\frac{n}{r} - 1) + \frac{b(r-b)}{2r} \).

Def. packed list = \(ar + b \) integers from \(s \) to \(s + a \) having \(r \) copies of each \(s, \ldots, s + a - 1 \) and \(b \) copies of \(s + a \) (also \(1 \leq b \leq r \)).
General sharpness argument

Given $n, s, r \in \mathbb{N}$ and d, seek graph whose degree-sum equals the counting bound: $dn = ns + \frac{n}{2} \left(\frac{n}{r} - 1 \right) + \frac{b(r-b)}{2r}$.

Def. packed list $= ar + b$ integers from s to $s+a$ having r copies of each $s, \ldots, s+a-1$ and b copies of $s+a$ (also $1 \leq b \leq r$).

Thm. A packed list is graphic if and only if the sum is even and $ar + b > s + a$.
General sharpness argument

Given \(n, s, r \in \mathbb{N} \) and \(d \), seek graph whose degree-sum equals the counting bound:

\[
dn = ns + \frac{n}{2} \left(\frac{n}{r} - 1 \right) + \frac{b(r-b)}{2r}.
\]

Def. packed list = \(ar + b \) integers from \(s \) to \(s + a \) having \(r \) copies of each \(s, \ldots, s + a - 1 \) and \(b \) copies of \(s + a \) (also \(1 \leq b \leq r \)).

Thm. A packed list is graphic if and only if the sum is even and \(ar + b > s + a \).

Note: \(d_1 - d_n \leq 1 \) is a special case.
General sharpness argument

Given \(n, s, r \in \mathbb{N} \) and \(d \), seek graph whose degree-sum equals the counting bound: \(dn = ns + \frac{n}{2}(\frac{n}{r} - 1) + \frac{b(r-b)}{2r} \).

Def. packed list = \(ar + b \) integers from \(s \) to \(s + a \) having \(r \) copies of each \(s, \ldots, s + a - 1 \) and \(b \) copies of \(s + a \) (also \(1 \leq b \leq r \)).

Thm. A packed list is graphic if and only if the sum is even and \(ar + b > s + a \).

Note: \(d_1 - d_n \leq 1 \) is a special case.

Sufficiency uses Erdös–Gallai Conditions in this form:
\[
\sum_{i=1}^{k} (d_i + 1) \leq \sum_{k=1}^{k} d_i^* \text{ for } 1 \leq k \leq \ell(d).
\]
Sketch of sufficiency proof

E–G Conditions: \[\sum_{i=1}^{k} (d_i + 1) \leq \sum_{k=1}^{\ell} d_i^* \] for \(1 \leq k \leq \ell(d) \).
Sketch of sufficiency proof

E–G Conditions: \[\sum_{i=1}^{k} (d_i + 1) \leq \sum_{k=1}^{k} d_i^* \quad \text{for} \quad 1 \leq k \leq \ell(d). \]

Ex. \(r = 3, s = 3, a = 2, b = 1. \)
Sketch of sufficiency proof

E–G Conditions: $\sum_{i=1}^{k} (d_i + 1) \leq \sum_{k=1}^{\ell(d)} d_i^*$ for $1 \leq k \leq \ell(d)$.

Ex. $r = 3, s = 3, a = 2, b = 1$.

In most cases, $d_k + 1 \leq d_k^*$ for $k = \ell(d)$.
Sketch of sufficiency proof

E–G Conditions: \(\sum_{i=1}^{k} (d_i + 1) \leq \sum_{k=1}^{k} d_i^*\) for \(1 \leq k \leq \ell(d)\).

Ex. \(r = 3, \; s = 3, \; a = 2, \; b = 1\).

In most cases, \(d_k + 1 \leq d_k^*\) for \(k = \ell(d)\).

Key: As \(k\) decreases, \(d_k\) up by \(\leq 1\), while \(d_k^*\) up by \(r\).
Sketch of sufficiency proof

E–G Conditions: \[\sum_{i=1}^{k} (d_i + 1) \leq \sum_{k=1}^{l(d)} d_i^* \text{ for } 1 \leq k \leq l(d). \]

Ex. \(r = 3, s = 3, a = 2, b = 1. \)

\[\begin{array}{c}
d_1 & d_1^* \\
n & n \\
d_1^* \\
\end{array} \quad \begin{array}{c}
d_{1r} & d_{1r}^* \\
n & n \\
d_{1r}^* \\
\end{array} \quad \begin{array}{c}
d_{(d)} & d_{(d)}^* \\
n & n \\
d_{(d)}^* \\
\end{array} \quad \begin{array}{c}
d_{ar+b} & d_{ar+b}^* \\
n & n \\
d_{ar+b}^* \\
\end{array} \]

\[\leftarrow s + a \quad \leftarrow s \]

In most cases, \(d_k + 1 \leq d_k^* \) for \(k = l(d) \).

Key: As \(k \) decreases, \(d_k \) up by \(\leq 1 \), while \(d_k^* \) up by \(r \).

So, \(d_i + 1 \leq d_i^* \) in each term, and sum is okay.
Special Families — $\text{rep}(G) \geq \frac{n}{2d-2s+1}$

Trees: $d = \frac{2n-2}{n} < 2; \quad s = 1; \quad \text{rep}(G) \geq n/3$.
Special Families — \(\text{rep}(G) \geq \frac{n}{2d - 2s + 1} \)

Trees: \(d = \frac{2n - 2}{n} < 2; \ s = 1; \ \text{rep}(G) \geq n/3. \)
Special Families — $\text{rep}(G) \geq \frac{n}{2d-2s+1}$

Trees: $d = \frac{2n-2}{n} < 2; \ s = 1; \ \text{rep}(G) \geq n/3$.

Maximal Outerplanar: $d = \frac{4n-6}{n} < 4; \ s = 2; \ \text{rep}(G) \geq \frac{n}{5}$.
Special Families — rep(G) ≥ $\frac{n}{2d-2s+1}$

Trees: \(d = \frac{2n-2}{n} < 2; \ s = 1; \ rep(G) \geq \frac{n}{3}. \)

Maximal Outerplanar: \(d = \frac{4n-6}{n} < 4; \ s = 2; \ rep(G) \geq \frac{n}{5}. \)
Triangulations — $d < 6$

$s = 3 \Rightarrow \text{rep}(G) \geq n/7$
Triangulations — $d < 6$

$s = 3 \Rightarrow \text{rep}(G) \geq n/7$
Triangulations — $d < 6$

$s = 3 \implies \text{rep}(G) \geq n/7$

$s = 4 \implies \text{rep}(G) \geq n/5$
Triangulations

d < 6; s = 5 ⇒ \text{rep}(G) ≥ n/3
The Augmented Half-Graph

Ex. A claw-free graph with repetition number 2.
The Augmented Half-Graph

Ex. A claw-free graph with repetition number 2.

\[x_i y_j \in E(H_p) \iff i + j > p \quad d(x_i) = d(y_i) = i; \]
The Augmented Half-Graph

Ex. A claw-free graph with repetition number 2.

Form H'_p by completing X and Y to cliques.

$$d(x_i) = d(y_i) = i;$$

$x_i y_j \in E(H_p) \iff i + j > p$

H'_p is claw-free.
Line Graphs

Edge-degrees: $d_{L(G)}(xy) = d_G(x) + d_G(y) - 2$.
Line Graphs

Edge-degrees: $d_{L(G)}(xy) = d_G(x) + d_G(y) - 2$.

Thm. If G has m edges, then $\text{rep}(L(G)) \geq \frac{1}{4}m^{1/3}$.
Edge-degrees: \(d_{L(G)}(xy) = d_G(x) + d_G(y) - 2\).

Thm. If \(G\) has \(m\) edges, then \(\text{rep}(L(G)) \geq \frac{1}{4}m^{1/3}\).

Pf. Let \(D = \Delta(G)\) and \(a = m/D\).

\(\exists \leq 2D - 1\) distinct edge-degrees, so \(\text{rep}(L(G)) \geq \frac{m}{2D-1}\).
Line Graphs

Edge-degrees: \(d_{L(G)}(xy) = d_G(x) + d_G(y) - 2 \).

Thm. If \(G \) has \(m \) edges, then \(\text{rep}(L(G)) \geq \frac{1}{4} m^{1/3} \).

Pf. Let \(D = \Delta(G) \) and \(a = m/D \).

\(\exists \leq 2D - 1 \) distinct edge-degrees, so \(\text{rep}(L(G)) \geq \frac{m}{2D-1} \).

Case 1: \(a \geq m^{1/3} \). \(\text{rep}(L(G)) \geq \frac{m}{2D-1} > \frac{a}{2} \geq \frac{1}{2} m^{1/3} \).
Line Graphs

Edge-degrees: \(d_{L(G)}(xy) = d_G(x) + d_G(y) - 2 \).

Thm. If \(G \) has \(m \) edges, then \(\text{rep}(L(G)) \geq \frac{1}{4}m^{1/3} \).

Pf. Let \(D = \Delta(G) \) and \(a = m/D \).

\(\exists \leq 2D - 1 \) distinct edge-degrees, so \(\text{rep}(L(G)) \geq \frac{m}{2D-1} \).

Case 1: \(a \geq m^{1/3} \). \(\text{rep}(L(G)) \geq \frac{m}{2D-1} > \frac{a}{2} \geq \frac{1}{2}m^{1/3} \).

Case 2: \(a \leq m^{1/3} \). Now \(D = m/a \geq m^{2/3} \).
Line Graphs

Edge-degrees: \(d_{L(G)}(xy) = d_G(x) + d_G(y) - 2 \).

Thm. If \(G \) has \(m \) edges, then \(\text{rep}(L(G)) \geq \frac{1}{4} m^{1/3} \).

Pf. Let \(D = \Delta(G) \) and \(a = m/D \).

\(\exists \leq 2D - 1 \) distinct edge-degrees, so \(\text{rep}(L(G)) \geq \frac{m}{2D-1} \).

Case 1: \(a \geq m^{1/3} \). \(\text{rep}(L(G)) \geq \frac{m}{2D-1} > \frac{a}{2} \geq \frac{1}{2} m^{1/3} \).

Case 2: \(a \leq m^{1/3} \). Now \(D = m/a \geq m^{2/3} \).

Aim: Let \(v \) be a vertex of degree \(D \).

If some degree occurs more than \(\frac{1}{4} D^{1/2} \) times in \(N_G(v) \), then \(\text{rep}(G) \geq \frac{1}{4} D^{1/2} \geq \frac{1}{4} m^{1/3} \), since \(v \) contributes the same to all incident edges.
Since \(D = \frac{m}{\alpha} \geq m^{2/3} \geq \alpha^2 \), we have \(\alpha \leq D^{1/2} \).
Line Graphs - completion of lower bound

Since $D = m/a \geq m^{2/3} \geq a^2$, we have $a \leq D^{1/2}$.

Let b_1, \ldots, b_D be the degrees of vertices in $N_G(\mathcal{V})$:

$$\sum b_i < 2m = 2aD \leq 2D^{3/2}.$$
Line Graphs - completion of lower bound

Since $D = m/\alpha \geq m^{2/3} \geq \alpha^2$, we have $\alpha \leq D^{1/2}$.

Let b_1, \ldots, b_D be the degrees of vertices in $N_G(\nu)$:

$$\sum b_i < 2m = 2\alpha D \leq 2D^{3/2}.$$

Let $r = \frac{1}{4}D^{1/2}$. If each degree occurs $\leq r$ times in $N_G(\nu)$, then the sum is smallest when the list is packed.
Line Graphs - completion of lower bound

Since $D = \frac{m}{\alpha} \geq m^{2/3} \geq \alpha^2$, we have $\alpha \leq D^{1/2}$.

Let b_1, \ldots, b_D be the degrees of vertices in $N_G(\mathcal{V})$:

$$\sum b_i < 2m = 2aD \leq 2D^{3/2}.$$

Let $r = \frac{1}{4}D^{1/2}$. If each degree occurs $\leq r$ times in $N_G(\mathcal{V})$, then the sum is smallest when the list is packed.

From the original counting lemma (with $s \geq 1$, $n = D$),

$$\sum b_i > D \cdot 1 + \frac{D}{2} \left(\frac{D}{r} - 1 \right) > \frac{D^2}{2r} = 2D^{3/2}.$$
Line Graphs - completion of lower bound

Since \(D = \frac{m}{a} \geq \frac{m^{2/3}}{} \geq a^2 \), we have \(a \leq D^{1/2} \).

Let \(b_1, \ldots, b_D \) be the degrees of vertices in \(N_G(\nu) \):

\[
\sum b_i < 2m = 2aD \leq 2D^{3/2}.
\]

Let \(r = \frac{1}{4}D^{1/2} \). If each degree occurs \(\leq r \) times in \(N_G(\nu) \), then the sum is smallest when the list is packed.

From the original counting lemma (with \(s \geq 1, n = D \)),

\[
\sum b_i > D \cdot 1 + \frac{D}{2} \left(\frac{D}{r} - 1 \right) > \frac{D^2}{2r} = 2D^{3/2}
\]

The contradiction completes the proof.
Prop. For infinitely many m, there is a graph G with m edges and $\text{rep}(L(G)) \leq \sqrt{4m/3}$.
Prop. For infinitely many m, there is a graph G with m edges and $\text{rep}(L(G)) \leq \sqrt{4m/3}$.

Pf. Make G a disjoint union of stars. Fix r. For $1 \leq i \leq r$, include $\lfloor r/i \rfloor$ stars with i edges.
Prop. For infinitely many m, there is a graph G with m edges and $\text{rep}(L(G)) \leq \sqrt{4m/3}$.

Pf. Make G a disjoint union of stars. Fix r. For $1 \leq i \leq r$, include $\lfloor r/i \rfloor$ stars with i edges.

At most r edges have edge-degr. $i-1$, so $\text{rep}(L(G)) \leq r$.
Prop. For infinitely many m, there is a graph G with m edges and $\text{rep}(L(G)) \leq \sqrt{4m/3}$.

Pf. Make G a disjoint union of stars. Fix r. For $1 \leq i \leq r$, include $\lceil r/i \rceil$ stars with i edges.

At most r edges have edge-degr. $i - 1$, so $\text{rep}(L(G)) \leq r$. For $\frac{r}{j} \geq i > \frac{r}{j+1}$, #edges in i-edge stars is at least ji.
Prop. For infinitely many m, there is a graph G with m edges and $\text{rep}(L(G)) \leq \sqrt{4m/3}$.

Pf. Make G a disjoint union of stars. Fix r. For $1 \leq i \leq r$, include $\lceil r/i \rceil$ stars with i edges.

At most r edges have edge-degr. $i-1$, so $\text{rep}(L(G)) \leq r$. For $\frac{r}{j} \geq i > \frac{r}{j+1}$, #edges in i-edge stars is at least ji. Summing over $1 \leq i \leq r$ yields $m \geq \frac{3}{4}r^2$, so

$$\text{rep}(L(G)) \leq r \leq \sqrt{4m/3}.$$
Line graphs of sparse graphs

Conj. There is a constant α such that if G has m edges, then $\text{rep}(L(G)) \geq \alpha \sqrt{m}$.
Line graphs of sparse graphs

Conj. There is a constant α such that if G has m edges, then $\text{rep}(L(G)) \geq \alpha \sqrt{m}$.

True for sparse graphs.

Thm. If G has avg degree d, min degree s, and m edges, then $\text{rep}(L(G)) \geq \alpha \sqrt{m} - 1$, where $\alpha = s/\sqrt{cd(cd - s)}$ with $c = 2d - 2s + 1$.
Conj. There is a constant α such that if G has m edges, then $\text{rep}(L(G)) \geq \alpha \sqrt{m}$.

True for sparse graphs.

Thm. If G has avg degree d, min degree s, and m edges, then $\text{rep}(L(G)) \geq \alpha \sqrt{m} - 1$, where $\alpha = s/\sqrt{cd(cd - s)}$ with $c = 2d - 2s + 1$.

Cor. If G is a tree, $\text{rep}(L(G)) \geq \sqrt{m/30}$. If G is a triangulation, $\text{rep}(L(G)) \geq \sqrt{m/182}$.
Conj. There is a constant α such that if G has m edges, then $\text{rep}(L(G)) \geq \alpha \sqrt{m}$.

True for sparse graphs.

Thm. If G has avg degree d, min degree s, and m edges, then $\text{rep}(L(G)) \geq \alpha \sqrt{m} - 1$, where $\alpha = s/\sqrt{cd(c^2 - s)}$ with $c = 2d - 2s + 1$.

Cor. If G is a tree, $\text{rep}(L(G)) \geq \sqrt{m/30}$. If G is a triangulation, $\text{rep}(L(G)) \geq \sqrt{m/182}$.
Sparse graphs with special structure

Using another technical counting lower bound,

Cor. If G is a tree with 1-factor, $\text{rep}(L(G)) \geq m/6$.
If G is maximal outerplanar, $\text{rep}(L(G)) \geq m/14$.
If G is triangulation with 2-factor, $\text{rep}(L(G)) \geq m/33$.
Sparse graphs with special structure

Using another technical counting lower bound,

Cor. If G is a tree with 1-factor, $\text{rep}(L(G)) \geq m/6$.
If G is maximal outerplanar, $\text{rep}(L(G)) \geq m/14$.
If G is triangulation with 2-factor, $\text{rep}(L(G)) \geq m/33$.

These differ from sharpness by at most a factor of 2.

Prop. For $m \equiv 1 \mod 10$, there is a tree G with m edges having a 1-factor and $\text{rep}(L(G)) = (m - 1)/5$.
Sparse graphs with special structure

Using another technical counting lower bound,

Cor. If G is a tree with 1-factor, $\text{rep}(L(G)) \geq m/6$.
If G is maximal outerplanar, $\text{rep}(L(G)) \geq m/14$.
If G is triangulation with 2-factor, $\text{rep}(L(G)) \geq m/33$.

These differ from sharpness by at most a factor of 2.

Prop. For $m \equiv 1 \mod 10$, there is a tree G with m edges having a 1-factor and $\text{rep}(L(G)) = (m - 1)/5$.
Sparse graphs with special structure

Using another technical counting lower bound,

Cor. If G is a tree with 1-factor, $\text{rep}(L(G)) \geq m/6$.
If G is maximal outerplanar, $\text{rep}(L(G)) \geq m/14$.
If G is triangulation with 2-factor, $\text{rep}(L(G)) \geq m/33$.

These differ from sharpness by at most a factor of 2.

Prop. For $m \equiv 1 \mod 10$, there is a tree G with m edges having a 1-factor and $\text{rep}(L(G)) = (m - 1)/5$.
Sparse graphs with special structure

Using another technical counting lower bound,

Cor. If G is a tree with 1-factor, $\text{rep}(L(G)) \geq m/6$.
If G is maximal outerplanar, $\text{rep}(L(G)) \geq m/14$.
If G is triangulation with 2-factor, $\text{rep}(L(G)) \geq m/33$.

These differ from sharpness by at most a factor of 2.

Prop. For $m \equiv 1 \mod 10$, there is a tree G with m edges having a 1-factor and $\text{rep}(L(G)) = (m - 1)/5$.

** Conj.** There is a constant α such that if G has m edges, then $\text{rep}(L(G)) \geq \alpha \sqrt{m}$.