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Def. r-dynamic coloring - proper coloring where each
neighborhood N(v) has at least min{r, d(v)} colors.
r-dynamic chromatic number x,(G) -

min{k: G is r-dynamically k-colorable}.

e Always x(G) = x(G), and x1(G) = x(G).

Ex. x2(Cs)=5. (No two vertices can have same color.)
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Introduced by Montgomery [2001] (thesis).
X2(G) called dynamic chromatic number (15 papers).
Conj. (Montgomery [2001]) x2(G) < x(G)+2 for regular G.

True for bipartite G (Akbari-Ghanbari-Jahanbekam [2010])
and when x(G) = A(G) — 1 (Lai-Montgomery-Poon [2003]).

Def. List analogue: ch,(G) is the least k such that an
r-dynamic coloring of G can be chosen from any lists of
k colors at the vertices.

chy(G) £ A(G)+ 1 when A(G) = 3 and no Cs-component.
(Akbari-Ghanbari-Jahanbekam [2009])

chy(G) < 4 for planar graphs with girth at least 7, and
ch,(G) <5 for all planar graphs (Kim-Lee-Park [2011,13]).
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Motivation

Def. G? - obtained from G by adding uv when
de(u, v) = 2.

Properly coloring G2 = coloring G so that
f(u)=f(v) = dg(u, v) > 3.

Obs. X(G) =x1(G) <--- < xa) = X(G?).

Obs. X/ (G)=min{r, A(G)} + 1, with equality for trees
and for cycles with length divisible by 6.

Theme: How do upper bounds on x(G) need to be
relaxed to obtain bounds on x,(G) as r increases?
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With positive probability, the coloring is r-dynamic.
This fails at v only if N(v) is colored from r — 1 colors.
P[given (r — 1)-set bad] < (52)%(0) < e 8(@)7,

#(r —1)-sets = (A(GH”S) <n"1, since A(G)+r+s<n.

r+s

S+1rInn

Since G has n vertices and 5(G) >

—5(G)*t

[ 3 bad vertex] < n'e < n'n~"=1.
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Inr

Pf. The nbhd hypergraph is k-uniform and k-regular.
The last inequality on k yields the needed condition.
Applying the lemma implements the idea. [
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Since G is r-regular, x,(G) = |V(G)| = (3tt_1).

Also x(G) =t+1, since x(K(n,t))=n—-2t+2

(Lovész [1978], Barany [1978]).
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What bounds hold for larger diameter or x, with r > 27
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incidence [n], ([Z])-bigraph:jHA if j € A.
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The k-sets have degree k + 1 and common neighbor v.

Distance between a k-set and an element not in it is 3.
Elements of [n] lie in @a common k-set. ..diam(G) = 3.

If r> k> 2, then the k + 1 neighbors of a k-set have
distinct colors: x,(G) = n+ 1.

Making v adjacent also to all of [n] yields diam(G) = 2
and x(G) = 3; still x,(G)=2n+1whenr>k=> 2, [
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Thm. x2(G) <3x(G) when diam(G) =3, which is sharp.

Pf. Sharpness: Form G from Kz by subdividing each
edge in k disjoint triangles: x(G) = k and x2(G) = 3k.

Idea: Pair a proper coloring f with a 3-coloring that
puts two colors in each nbhd that does not

have two colors under f.

Let Vi={v: f(v) =i} and H; = {vertex nbhds in V;}.
If N(x) and N(y) all have color i, then N(x)nN(y) # @.

In an intersecting hypergraph, use two colors on a
minimal edge and a third color on the other vertices. =
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