On *r*-dynamic Coloring of Graphs

Douglas B. West

Department of Mathematics Zhejiang Normal University and University of Illinois at Urbana-Champaign west@math.uiuc.edu

slides available on DBW preprint page

Joint work with Sogol Jahanbekam, Jaehoon Kim, and Suil O

Def. proper coloring - neighbors have distinct colors. k-colorable - having a proper coloring with $\leq k$ colors. chromatic number $\chi(G)$ - min{k: G is k-colorable}.

Def. proper coloring - neighbors have distinct colors. k-colorable - having a proper coloring with $\leq k$ colors. chromatic number $\chi(G)$ - min{k: G is k-colorable}.

Def. r-dynamic coloring - proper coloring where each neighborhood N(v) has at least min $\{r, d(v)\}$ colors.

Def. proper coloring - neighbors have distinct colors. k-colorable - having a proper coloring with $\leq k$ colors. chromatic number $\chi(G)$ - min{k: G is k-colorable}.

Def. r-dynamic coloring - proper coloring where each neighborhood N(v) has at least min $\{r, d(v)\}$ colors. r-dynamic chromatic number $\chi_r(G)$ - min $\{k: G \text{ is } r\text{-dynamically } k\text{-colorable}\}$.

Def. proper coloring - neighbors have distinct colors. k-colorable - having a proper coloring with $\leq k$ colors. chromatic number $\chi(G)$ - min{k: G is k-colorable}.

Def. r-dynamic coloring - proper coloring where each neighborhood N(v) has at least min $\{r, d(v)\}$ colors. r-dynamic chromatic number $\chi_r(G)$ - min $\{k: G \text{ is } r\text{-dynamically } k\text{-colorable}\}$.

• Always $\chi_r(G) \ge \chi(G)$, and $\chi_1(G) = \chi(G)$.

Def. proper coloring - neighbors have distinct colors. k-colorable - having a proper coloring with $\leq k$ colors. chromatic number $\chi(G)$ - min{k: G is k-colorable}.

Def. r-dynamic coloring - proper coloring where each neighborhood N(v) has at least min $\{r, d(v)\}$ colors. r-dynamic chromatic number $\chi_r(G)$ - min $\{k: G \text{ is } r\text{-dynamically } k\text{-colorable}\}$.

• Always $\chi_r(G) \ge \chi(G)$, and $\chi_1(G) = \chi(G)$.

Ex. $\chi_2(C_5) = 5$. (No two vertices can have same color.)

Introduced by Montgomery [2001] (thesis).

 $\chi_2(G)$ called dynamic chromatic number (15 papers).

Introduced by Montgomery [2001] (thesis).

 $\chi_2(G)$ called dynamic chromatic number (15 papers).

Conj. (Montgomery [2001]) $\chi_2(G) \leq \chi(G) + 2$ for regular G.

Introduced by Montgomery [2001] (thesis).

 $\chi_2(G)$ called dynamic chromatic number (15 papers).

Conj. (Montgomery [2001]) $\chi_2(G) \le \chi(G) + 2$ for regular G.

True for bipartite G (Akbari–Ghanbari–Jahanbekam [2010]) and when $\chi(G) \geq \Delta(G) - 1$ (Lai–Montgomery–Poon [2003]).

Introduced by Montgomery [2001] (thesis).

 $\chi_2(G)$ called dynamic chromatic number (15 papers).

Conj. (Montgomery [2001]) $\chi_2(G) \leq \chi(G) + 2$ for regular G.

True for bipartite G (Akbari–Ghanbari–Jahanbekam [2010]) and when $\chi(G) \geq \Delta(G) - 1$ (Lai–Montgomery–Poon [2003]).

Def. List analogue: $ch_r(G)$ is the least k such that an r-dynamic coloring of G can be chosen from any lists of k colors at the vertices.

Introduced by Montgomery [2001] (thesis).

 $\chi_2(G)$ called dynamic chromatic number (15 papers).

Conj. (Montgomery [2001]) $\chi_2(G) \leq \chi(G) + 2$ for regular G.

True for bipartite G (Akbari–Ghanbari–Jahanbekam [2010]) and when $\chi(G) \geq \Delta(G) - 1$ (Lai–Montgomery–Poon [2003]).

Def. List analogue: $\operatorname{ch}_r(G)$ is the least k such that an r-dynamic coloring of G can be chosen from any lists of k colors at the vertices.

 $\operatorname{ch}_2(G) \leq \Delta(G) + 1$ when $\Delta(G) \geq 3$ and no C_5 -component. (Akbari–Ghanbari–Jahanbekam [2009])

Introduced by Montgomery [2001] (thesis).

 $\chi_2(G)$ called dynamic chromatic number (15 papers).

Conj. (Montgomery [2001]) $\chi_2(G) \le \chi(G) + 2$ for regular G.

True for bipartite G (Akbari–Ghanbari–Jahanbekam [2010]) and when $\chi(G) \geq \Delta(G) - 1$ (Lai–Montgomery–Poon [2003]).

Def. List analogue: $ch_r(G)$ is the least k such that an r-dynamic coloring of G can be chosen from any lists of k colors at the vertices.

 $\operatorname{ch}_2(G) \leq \Delta(G) + 1$ when $\Delta(G) \geq 3$ and no C_5 -component. (Akbari–Ghanbari–Jahanbekam [2009])

 $ch_2(G) \le 4$ for planar graphs with girth at least 7, and $ch_2(G) \le 5$ for all planar graphs (Kim-Lee-Park [2011,13]).

Def. G^2 - obtained from G by adding uv when $d_G(u,v)=2$.

Def. G^2 - obtained from G by adding uv when $d_G(u, v) = 2$.

Properly coloring $G^2 = \text{coloring } G$ so that $f(u) = f(v) \implies d_G(u, v) \ge 3$.

Def. G^2 - obtained from G by adding uv when $d_G(u, v) = 2$.

Properly coloring $G^2 = \text{coloring } G$ so that $f(u) = f(v) \implies d_G(u, v) \ge 3$.

Obs.
$$\chi(G) = \chi_1(G) \le \cdots \le \chi_{\Delta(G)} = \chi(G^2)$$
.

Def. G^2 - obtained from G by adding uv when $d_G(u, v) = 2$.

Properly coloring $G^2 = \text{coloring } G$ so that $f(u) = f(v) \implies d_G(u, v) \ge 3$.

Obs.
$$\chi(G) = \chi_1(G) \le \cdots \le \chi_{\Delta(G)} = \chi(G^2)$$
.

Obs. $\chi_r(G) \ge \min\{r, \Delta(G)\} + 1$, with equality for trees and for cycles with length divisible by 6.

Def. G^2 - obtained from G by adding uv when $d_G(u,v)=2$.

Properly coloring $G^2 = \text{coloring } G$ so that $f(u) = f(v) \implies d_G(u, v) \ge 3$.

Obs.
$$\chi(G) = \chi_1(G) \leq \cdots \leq \chi_{\Delta(G)} = \chi(G^2)$$
.

Obs. $\chi_r(G) \ge \min\{r, \Delta(G)\} + 1$, with equality for trees and for cycles with length divisible by 6.

Theme: How do upper bounds on $\chi(G)$ need to be relaxed to obtain bounds on $\chi_r(G)$ as r increases?

Thm. $\chi_r(G) \le r\Delta(G) + 1$ (greedy coloring algorithm)

Thm. $\chi_r(G) \le r\Delta(G) + 1$ (greedy coloring algorithm) with equality for $\Delta(G) > 2$ if and only if G is r-regular with diameter 2 and girth 5

Thm. $\chi_r(G) \le r\Delta(G) + 1$ (greedy coloring algorithm) with equality for $\Delta(G) > 2$ if and only if G is r-regular with diameter 2 and girth 5 (Moore gr: $r \in \{2,3,7,57\}$).

Thm. $\chi_r(G) \leq r\Delta(G) + 1$ (greedy coloring algorithm) with equality for $\Delta(G) > 2$ if and only if G is r-regular with diameter 2 and girth 5 (Moore gr: $r \in \{2,3,7,57\}$).

Thm. $\chi_r(G) \leq \Delta(G) + 2r - 2$ when $\delta(G) > 2r \ln n$.

Thm. $\chi_r(G) \leq r\Delta(G) + 1$ (greedy coloring algorithm) with equality for $\Delta(G) > 2$ if and only if G is r-regular with diameter 2 and girth 5 (Moore gr: $r \in \{2,3,7,57\}$).

Thm. $\chi_r(G) \le \Delta(G) + 2r - 2$ when $\delta(G) > 2r \ln n$. Also, $\chi_r(G) \le \Delta(G) + r$ when $\delta(G) > r^2 \ln n$.

Thm. $\chi_r(G) \leq r\Delta(G) + 1$ (greedy coloring algorithm) with equality for $\Delta(G) > 2$ if and only if G is r-regular with diameter 2 and girth 5 (Moore gr: $r \in \{2,3,7,57\}$).

Thm. $\chi_r(G) \le \Delta(G) + 2r - 2$ when $\delta(G) > 2r \ln n$. Also, $\chi_r(G) \le \Delta(G) + r$ when $\delta(G) > r^2 \ln n$.

Thm. $\chi_r(G) \le r\chi(G)$ for k-regular G with $k > 3r \ln r$.

Thm. $\chi_r(G) \le r\Delta(G) + 1$ (greedy coloring algorithm) with equality for $\Delta(G) > 2$ if and only if G is r-regular with diameter 2 and girth 5 (Moore gr: $r \in \{2,3,7,57\}$).

Thm.
$$\chi_r(G) \le \Delta(G) + 2r - 2$$
 when $\delta(G) > 2r \ln n$.
Also, $\chi_r(G) \le \Delta(G) + r$ when $\delta(G) > r^2 \ln n$.

Thm.
$$\chi_r(G) \le r\chi(G)$$
 for k -regular G with $k > 3r \ln r$.

Thm. $\chi_r(G) > r^{1.377}\chi(G)$ can occur for r-regular G.

Thm. $\chi_r(G) \le r\Delta(G) + 1$ (greedy coloring algorithm) with equality for $\Delta(G) > 2$ if and only if G is r-regular with diameter 2 and girth 5 (Moore gr: $r \in \{2,3,7,57\}$).

Thm.
$$\chi_r(G) \le \Delta(G) + 2r - 2$$
 when $\delta(G) > 2r \ln n$.
Also, $\chi_r(G) \le \Delta(G) + r$ when $\delta(G) > r^2 \ln n$.

Thm. $\chi_r(G) \le r\chi(G)$ for k-regular G with $k > 3r \ln r$.

Thm. $\chi_r(G) > r^{1.377}\chi(G)$ can occur for r-regular G.

Thm. $\chi_2(G) \le \chi(G) + 2$ when diam(G) = 2,

Thm. $\chi_r(G) \leq r\Delta(G) + 1$ (greedy coloring algorithm) with equality for $\Delta(G) > 2$ if and only if G is r-regular with diameter 2 and girth 5 (Moore gr: $r \in \{2,3,7,57\}$).

Thm.
$$\chi_r(G) \le \Delta(G) + 2r - 2$$
 when $\delta(G) > 2r \ln n$.
Also, $\chi_r(G) \le \Delta(G) + r$ when $\delta(G) > r^2 \ln n$.

Thm. $\chi_r(G) \le r\chi(G)$ for k-regular G with $k > 3r \ln r$.

Thm. $\chi_r(G) > r^{1.377}\chi(G)$ can occur for *r*-regular *G*.

Thm. $\chi_2(G) \le \chi(G) + 2$ when diam(G) = 2, with equality only for complete bipartite graphs and C_5 .

Thm. $\chi_r(G) \leq r\Delta(G) + 1$ (greedy coloring algorithm) with equality for $\Delta(G) > 2$ if and only if G is r-regular with diameter 2 and girth 5 (Moore gr: $r \in \{2,3,7,57\}$).

Thm.
$$\chi_r(G) \le \Delta(G) + 2r - 2$$
 when $\delta(G) > 2r \ln n$.
Also, $\chi_r(G) \le \Delta(G) + r$ when $\delta(G) > r^2 \ln n$.

Thm. $\chi_r(G) \le r\chi(G)$ for k-regular G with $k > 3r \ln r$.

Thm. $\chi_r(G) > r^{1.377}\chi(G)$ can occur for *r*-regular *G*.

Thm. $\chi_2(G) \le \chi(G) + 2$ when diam(G) = 2, with equality only for complete bipartite graphs and C_5 .

Thm. $\chi_2(G) \leq 3\chi(G)$ when diam(G) = 3, which is sharp.

Thm. $\chi_r(G) \le r\Delta(G) + 1$ (greedy coloring algorithm) with equality for $\Delta(G) > 2$ if and only if G is r-regular with diameter 2 and girth 5 (Moore gr: $r \in \{2,3,7,57\}$).

Thm.
$$\chi_r(G) \le \Delta(G) + 2r - 2$$
 when $\delta(G) > 2r \ln n$.
Also, $\chi_r(G) \le \Delta(G) + r$ when $\delta(G) > r^2 \ln n$.

Thm. $\chi_r(G) \le r\chi(G)$ for k-regular G with $k > 3r \ln r$.

Thm. $\chi_r(G) > r^{1.377}\chi(G)$ can occur for *r*-regular *G*.

Thm. $\chi_2(G) \le \chi(G) + 2$ when diam(G) = 2, with equality only for complete bipartite graphs and C_5 .

Thm. $\chi_2(G) \leq 3\chi(G)$ when diam(G) = 3, which is sharp.

Thm. χ_2 is unbounded when $\chi(G) = 2$ and diam(G) = 4.

Thm. $\chi_r(G) \le r\Delta(G) + 1$ (greedy coloring algorithm) with equality for $\Delta(G) > 2$ if and only if G is r-regular with diameter 2 and girth 5 (Moore gr: $r \in \{2,3,7,57\}$).

Thm.
$$\chi_r(G) \le \Delta(G) + 2r - 2$$
 when $\delta(G) > 2r \ln n$.
Also, $\chi_r(G) \le \Delta(G) + r$ when $\delta(G) > r^2 \ln n$.

Thm. $\chi_r(G) \le r\chi(G)$ for k-regular G with $k > 3r \ln r$.

Thm. $\chi_r(G) > r^{1.377}\chi(G)$ can occur for *r*-regular *G*.

Thm. $\chi_2(G) \le \chi(G) + 2$ when diam(G) = 2, with equality only for complete bipartite graphs and C_5 .

Thm. $\chi_2(G) \leq 3\chi(G)$ when diam(G) = 3, which is sharp.

Thm. χ_2 is unbounded when $\chi(G) = 2$ and diam(G) = 4. χ_3 is unbounded when $\chi(G) = 2$ and diam(G) = 3.

Thm. $\chi_r(G) \le r\Delta(G) + 1$ (greedy coloring algorithm) with equality for $\Delta(G) > 2$ if and only if G is r-regular with diameter 2 and girth 5 (Moore gr: $r \in \{2,3,7,57\}$).

Thm.
$$\chi_r(G) \leq \Delta(G) + 2r - 2$$
 when $\delta(G) > 2r \ln n$.
Also, $\chi_r(G) \leq \Delta(G) + r$ when $\delta(G) > r^2 \ln n$.

Thm.
$$\chi_r(G) \le r\chi(G)$$
 for k-regular G with $k > 3r \ln r$.

Thm.
$$\chi_r(G) > r^{1.377}\chi(G)$$
 can occur for *r*-regular *G*.

Thm.
$$\chi_2(G) \le \chi(G) + 2$$
 when diam $(G) = 2$, with equality only for complete bipartite graphs and C_5 .

Thm. $\chi_2(G) \leq 3\chi(G)$ when diam(G) = 3, which is sharp.

Thm.
$$\chi_2$$
 is unbounded when $\chi(G) = 2$ and $\operatorname{diam}(G) = 4$. χ_3 is unbounded when $\chi(G) = 2$ and $\operatorname{diam}(G) = 3$. χ_3 is unbounded when $\chi(G) = 3$ and $\operatorname{diam}(G) = 2$.

Thm. If |V(G)| = n, and $\delta(G) > \frac{r+s}{s+1}r \ln n$, then $\chi_r(G) \le \Delta(G) + r + s$.

Thm. If |V(G)| = n, and $\delta(G) > \frac{r+s}{s+1}r \ln n$, then $\chi_r(G) \le \Delta(G) + r + s$. (Note cases s = r - 2 and s = 0.)

Thm. If |V(G)| = n, and $\delta(G) > \frac{r+s}{s+1}r \ln n$, then $\chi_r(G) \le \Delta(G) + r + s$. (Note cases s = r - 2 and s = 0.)

Pf. Color v_1, \ldots, v_n in order using $\Delta(G) + r + s$ colors.

Thm. If
$$|V(G)| = n$$
, and $\delta(G) > \frac{r+s}{s+1}r \ln n$, then $\chi_r(G) \le \Delta(G) + r + s$. (Note cases $s = r - 2$ and $s = 0$.)

Pf. Color v_1, \ldots, v_n in order using $\Delta(G) + r + s$ colors. Give v_i a random color among those not yet used on neighbors of v_i ; at least r + s colors are available.

Thm. If |V(G)| = n, and $\delta(G) > \frac{r+s}{s+1}r \ln n$, then $\chi_r(G) \le \Delta(G) + r + s$. (Note cases s = r - 2 and s = 0.)

Pf. Color v_1, \ldots, v_n in order using $\Delta(G) + r + s$ colors.

Give v_i a random color among those not yet used on neighbors of v_i ; at least r+s colors are available.

This yields a proper $(\Delta(G) + r + s)$ -coloring.

Thm. If
$$|V(G)| = n$$
, and $\delta(G) > \frac{r+s}{s+1}r \ln n$, then $\chi_r(G) \le \Delta(G) + r + s$. (Note cases $s = r - 2$ and $s = 0$.)

Pf. Color v_1, \ldots, v_n in order using $\Delta(G) + r + s$ colors.

Give v_i a random color among those not yet used on neighbors of v_i ; at least r+s colors are available.

This yields a proper $(\Delta(G) + r + s)$ -coloring.

With positive probability, the coloring is r-dynamic.

Thm. If
$$|V(G)| = n$$
, and $\delta(G) > \frac{r+s}{s+1}r \ln n$, then $\chi_r(G) \le \Delta(G) + r + s$. (Note cases $s = r - 2$ and $s = 0$.)

Pf. Color v_1, \ldots, v_n in order using $\Delta(G) + r + s$ colors.

Give v_i a random color among those not yet used on neighbors of v_i ; at least r+s colors are available.

This yields a proper $(\Delta(G) + r + s)$ -coloring.

With positive probability, the coloring is r-dynamic.

This fails at v only if N(v) is colored from r-1 colors.

Thm. If
$$|V(G)| = n$$
, and $\delta(G) > \frac{r+s}{s+1}r \ln n$, then $\chi_r(G) \le \Delta(G) + r + s$. (Note cases $s = r - 2$ and $s = 0$.)

Pf. Color v_1, \ldots, v_n in order using $\Delta(G) + r + s$ colors.

Give v_i a random color among those not yet used on neighbors of v_i ; at least r+s colors are available.

This yields a proper $(\Delta(G) + r + s)$ -coloring.

With positive probability, the coloring is r-dynamic.

This fails at v only if N(v) is colored from r-1 colors.

$$\mathbb{P}[\text{given } (r-1)\text{-set bad}] \leq (\frac{r-1}{r+s})^{\delta(G)} \leq e^{-\delta(G)\frac{s+1}{r+s}}.$$

Thm. If
$$|V(G)| = n$$
, and $\delta(G) > \frac{r+s}{s+1}r \ln n$, then $\chi_r(G) \le \Delta(G) + r + s$. (Note cases $s = r - 2$ and $s = 0$.)

Pf. Color v_1, \ldots, v_n in order using $\Delta(G) + r + s$ colors.

Give v_i a random color among those not yet used on neighbors of v_i ; at least r + s colors are available.

This yields a proper $(\Delta(G) + r + s)$ -coloring.

With positive probability, the coloring is r-dynamic.

This fails at ν only if $N(\nu)$ is colored from r-1 colors.

$$\mathbb{P}[\text{given } (r-1)\text{-set bad}] \leq (\frac{r-1}{r+s})^{\delta(G)} \leq e^{-\delta(G)\frac{s+1}{r+s}}.$$

$$\#(r-1)\text{-sets} = \binom{\Delta(G)+r+s}{r-1} < n^{r-1}, \text{ since } \Delta(G)+r+s < n.$$

Thm. If
$$|V(G)| = n$$
, and $\delta(G) > \frac{r+s}{s+1}r \ln n$, then $\chi_r(G) \le \Delta(G) + r + s$. (Note cases $s = r - 2$ and $s = 0$.)

Pf. Color v_1, \ldots, v_n in order using $\Delta(G) + r + s$ colors.

Give v_i a random color among those not yet used on neighbors of v_i ; at least r + s colors are available.

This yields a proper $(\Delta(G) + r + s)$ -coloring.

With positive probability, the coloring is r-dynamic.

This fails at v only if N(v) is colored from r-1 colors.

$$\mathbb{P}[\text{given } (r-1)\text{-set bad}] \leq (\frac{r-1}{r+s})^{\delta(G)} \leq e^{-\delta(G)\frac{s+1}{r+s}}.$$

$$\#(r-1)\text{-sets} = (\frac{\Delta(G)+r+s}{r-1}) < n^{r-1}, \text{ since } \Delta(G)+r+s < n.$$

Since G has n vertices and $\delta(G) > \frac{r+s}{s+1}r \ln n$,

Thm. If
$$|V(G)| = n$$
, and $\delta(G) > \frac{r+s}{s+1}r \ln n$, then $\chi_r(G) \le \Delta(G) + r + s$. (Note cases $s = r - 2$ and $s = 0$.)

Pf. Color v_1, \ldots, v_n in order using $\Delta(G) + r + s$ colors.

Give v_i a random color among those not yet used on neighbors of v_i ; at least r + s colors are available.

This yields a proper $(\Delta(G) + r + s)$ -coloring.

With positive probability, the coloring is r-dynamic.

This fails at ν only if $N(\nu)$ is colored from r-1 colors.

$$\mathbb{P}[\text{given } (r-1)\text{-set bad}] \le (\frac{r-1}{r+s})^{\delta(G)} \le e^{-\delta(G)\frac{s+1}{r+s}}.$$

$$\#(r-1)\text{-sets} = \binom{\Delta(G)+r+s}{r-1} < n^{r-1}, \text{ since } \Delta(G)+r+s < n.$$

Since G has n vertices and $\delta(G) > \frac{r+s}{s+1}r \ln n$,

$$\mathbb{P}[\exists \text{ bad vertex}] < n^r e^{-\delta(G)\frac{s+1}{r+s}} < n^r n^{-r} = 1.$$

Idea: For $\chi_r(G) \le r\chi(G)$, pair an optimal proper coloring with a random coloring having r colors in each nbhd. (Taherkhani [2014] gave a similar result.)

Idea: For $\chi_r(G) \le r\chi(G)$, pair an optimal proper coloring with a random coloring having r colors in each nbhd. (Taherkhani [2014] gave a similar result.)

Lem. A k-uniform H with $\Delta(H) = D$ has an r-coloring with all colors on each edge if $re^{-k/r}(k(D-1)+1) \le e^{-1}$.

Idea: For $\chi_r(G) \le r\chi(G)$, pair an optimal proper coloring with a random coloring having r colors in each nbhd. (Taherkhani [2014] gave a similar result.)

Lem. A k-uniform H with $\Delta(H) = D$ has an r-coloring with all colors on each edge if $re^{-k/r}(k(D-1)+1) \le e^{-1}$.

Pf. Color the vertices at random from *r* colors.

Idea: For $\chi_r(G) \le r\chi(G)$, pair an optimal proper coloring with a random coloring having r colors in each nbhd. (Taherkhani [2014] gave a similar result.)

Lem. A k-uniform H with $\Delta(H) = D$ has an r-coloring with all colors on each edge if $re^{-k/r}(k(D-1)+1) \le e^{-1}$.

Pf. Color the vertices at random from r colors. Event A_e occurs if some color is missing from edge e.

Idea: For $\chi_r(G) \le r\chi(G)$, pair an optimal proper coloring with a random coloring having r colors in each nbhd. (Taherkhani [2014] gave a similar result.)

Lem. A k-uniform H with $\Delta(H) = D$ has an r-coloring with all colors on each edge if $re^{-k/r}(k(D-1)+1) \le e^{-1}$.

Pf. Color the vertices at random from r colors. Event A_e occurs if some color is missing from edge e. $\mathbb{P}[A_e] \leq r(1 - 1/r)^k \leq re^{-k/r}$.

Idea: For $\chi_r(G) \le r\chi(G)$, pair an optimal proper coloring with a random coloring having r colors in each nbhd. (Taherkhani [2014] gave a similar result.)

Lem. A k-uniform H with $\Delta(H) = D$ has an r-coloring with all colors on each edge if $re^{-k/r}(k(D-1)+1) \le e^{-1}$.

Pf. Color the vertices at random from r colors. Event A_e occurs if some color is missing from edge e. $\mathbb{P}[A_e] \le r(1 - 1/r)^k \le re^{-k/r}$. An edge intersects at most k(D-1) other edges.

Idea: For $\chi_r(G) \le r\chi(G)$, pair an optimal proper coloring with a random coloring having r colors in each nbhd. (Taherkhani [2014] gave a similar result.)

Lem. A k-uniform H with $\Delta(H) = D$ has an r-coloring with all colors on each edge if $re^{-k/r}(k(D-1)+1) \le e^{-1}$.

Pf. Color the vertices at random from r colors. Event A_e occurs if some color is missing from edge e. $\mathbb{P}[A_e] \leq r(1-1/r)^k \leq re^{-k/r}$.

An edge intersects at most k(D-1) other edges. By the Local Lemma, some coloring avoids all A_e .

Idea: For $\chi_r(G) \le r\chi(G)$, pair an optimal proper coloring with a random coloring having r colors in each nbhd. (Taherkhani [2014] gave a similar result.)

Lem. A k-uniform H with $\Delta(H) = D$ has an r-coloring with all colors on each edge if $re^{-k/r}(k(D-1)+1) \le e^{-1}$.

Pf. Color the vertices at random from r colors. Event A_e occurs if some color is missing from edge e. $\mathbb{P}[A_e] \leq r(1-1/r)^k \leq r e^{-k/r}$.

An edge intersects at most k(D-1) other edges. By the Local Lemma, some coloring avoids all A_e .

Thm. If G is k-regular and $re^{-k/r}(k(k-1)+1) \le e^{-1}$, then $\chi_r(G) \le r\chi(G)$. This holds if $k \ge (3 + \frac{2 \ln \ln r}{\ln r})r \ln r$.

Idea: For $\chi_r(G) \le r\chi(G)$, pair an optimal proper coloring with a random coloring having r colors in each nbhd. (Taherkhani [2014] gave a similar result.)

Lem. A k-uniform H with $\Delta(H) = D$ has an r-coloring with all colors on each edge if $re^{-k/r}(k(D-1)+1) \le e^{-1}$.

Pf. Color the vertices at random from r colors. Event A_e occurs if some color is missing from edge e. $\mathbb{P}[A_e] \leq r(1-1/r)^k \leq r e^{-k/r}$.

An edge intersects at most k(D-1) other edges. By the Local Lemma, some coloring avoids all A_e .

Thm. If G is k-regular and $re^{-k/r}(k(k-1)+1) \le e^{-1}$, then $\chi_r(G) \le r\chi(G)$. This holds if $k \ge (3 + \frac{2 \ln \ln r}{\ln r})r \ln r$.

Pf. The nbhd hypergraph is k-uniform and k-regular.

Idea: For $\chi_r(G) \le r\chi(G)$, pair an optimal proper coloring with a random coloring having r colors in each nbhd. (Taherkhani [2014] gave a similar result.)

Lem. A k-uniform H with $\Delta(H) = D$ has an r-coloring with all colors on each edge if $re^{-k/r}(k(D-1)+1) \le e^{-1}$.

Pf. Color the vertices at random from r colors. Event A_e occurs if some color is missing from edge e. $\mathbb{P}[A_e] \leq r(1-1/r)^k \leq r e^{-k/r}$.

An edge intersects at most k(D-1) other edges. By the Local Lemma, some coloring avoids all A_e .

Thm. If G is k-regular and $re^{-k/r}(k(k-1)+1) \le e^{-1}$, then $\chi_r(G) \le r\chi(G)$. This holds if $k \ge (3 + \frac{2 \ln \ln r}{\ln r})r \ln r$.

Pf. The nbhd hypergraph is k-uniform and k-regular. The last inequality on k yields the needed condition.

Idea: For $\chi_r(G) \le r\chi(G)$, pair an optimal proper coloring with a random coloring having r colors in each nbhd. (Taherkhani [2014] gave a similar result.)

Lem. A k-uniform H with $\Delta(H) = D$ has an r-coloring with all colors on each edge if $re^{-k/r}(k(D-1)+1) \le e^{-1}$.

Pf. Color the vertices at random from r colors. Event A_e occurs if some color is missing from edge e. $\mathbb{P}[A_e] \le r(1 - 1/r)^k \le re^{-k/r}$.

An edge intersects at most k(D-1) other edges. By the Local Lemma, some coloring avoids all A_e .

Thm. If *G* is *k*-regular and $re^{-k/r}(k(k-1)+1) \le e^{-1}$, then $\chi_r(G) \le r\chi(G)$. This holds if $k \ge (3 + \frac{2 \ln \ln r}{\ln r})r \ln r$.

Pf. The nbhd hypergraph is k-uniform and k-regular. The last inequality on k yields the needed condition. Applying the lemma implements the **idea**.

Def. Kneser graph K(n, t): vertex set $\binom{[n]}{t}$, with adjacency being disjointness. It is $\binom{n-t}{t}$ -regular.

Thm. For infinitely many r, there is an r-regular graph G such that $\chi_r(G) > r^{1.37744}\chi(G)$.

Pf. Let
$$G = K(3t - 1, t)$$
 and $r = \binom{n-t}{t}$.

Def. Kneser graph K(n, t): vertex set $\binom{[n]}{t}$, with adjacency being disjointness. It is $\binom{n-t}{t}$ -regular.

Thm. For infinitely many r, there is an r-regular graph G such that $\chi_r(G) > r^{1.37744}\chi(G)$.

Pf. Let G = K(3t - 1, t) and $r = \binom{n-t}{t}$. Intersecting t-sets omit at least t elts, so diam(G) = 2.

Def. Kneser graph K(n, t): vertex set $\binom{[n]}{t}$, with adjacency being disjointness. It is $\binom{n-t}{t}$ -regular.

Thm. For infinitely many r, there is an r-regular graph G such that $\chi_r(G) > r^{1.37744}\chi(G)$.

Pf. Let G = K(3t - 1, t) and $r = \binom{n-t}{t}$. Intersecting t-sets omit at least t elts, so diam(G) = 2. Since G is r-regular, $\chi_r(G) = |V(G)| = \binom{3t-1}{t}$.

Def. Kneser graph K(n, t): vertex set $\binom{[n]}{t}$, with adjacency being disjointness. It is $\binom{n-t}{t}$ -regular.

Thm. For infinitely many r, there is an r-regular graph G such that $\chi_r(G) > r^{1.37744}\chi(G)$.

Pf. Let G = K(3t-1,t) and $r = \binom{n-t}{t}$. Intersecting t-sets omit at least t elts, so diam(G) = 2. Since G is r-regular, $\chi_r(G) = |V(G)| = \binom{3t-1}{t}$. Also $\chi(G) = t+1$, since $\chi(K(n,t)) = n-2t+2$ (Lovász [1978], Bárany [1978]).

Def. Kneser graph K(n, t): vertex set $\binom{[n]}{t}$, with adjacency being disjointness. It is $\binom{n-t}{t}$ -regular.

Thm. For infinitely many r, there is an r-regular graph G such that $\chi_r(G) > r^{1.37744}\chi(G)$.

Pf. Let G = K(3t-1,t) and $r = \binom{n-t}{t}$. Intersecting t-sets omit at least t elts, so diam(G) = 2. Since G is r-regular, $\chi_r(G) = |V(G)| = \binom{3t-1}{t}$. Also $\chi(G) = t+1$, since $\chi(K(n,t)) = n-2t+2$ (Lovász [1978], Bárany [1978]).

It remains to express $\chi_r(G)/\chi(G)$ in terms of r.

Def. Kneser graph K(n, t): vertex set $\binom{[n]}{t}$, with adjacency being disjointness. It is $\binom{n-t}{t}$ -regular.

Thm. For infinitely many r, there is an r-regular graph G such that $\chi_r(G) > r^{1.37744}\chi(G)$.

Pf. Let G = K(3t-1,t) and $r = \binom{n-t}{t}$. Intersecting t-sets omit at least t elts, so diam(G) = 2. Since G is r-regular, $\chi_r(G) = |V(G)| = \binom{3t-1}{t}$. Also $\chi(G) = t+1$, since $\chi(K(n,t)) = n-2t+2$ (Lovász [1978], Bárany [1978]).

It remains to express $\chi_r(G)/\chi(G)$ in terms of r. We have $r = \binom{2t-1}{t} = \frac{1}{2} \binom{2t}{t}$ and $\chi_r(G) = \binom{3t-1}{t} = \frac{2}{3} \binom{3t}{t}$.

Def. Kneser graph K(n, t): vertex set $\binom{[n]}{t}$, with adjacency being disjointness. It is $\binom{n-t}{t}$ -regular.

Thm. For infinitely many r, there is an r-regular graph G such that $\chi_r(G) > r^{1.37744}\chi(G)$.

Pf. Let G = K(3t-1,t) and $r = \binom{n-t}{t}$. Intersecting t-sets omit at least t elts, so diam(G) = 2. Since G is r-regular, $\chi_r(G) = |V(G)| = \binom{3t-1}{t}$. Also $\chi(G) = t+1$, since $\chi(K(n,t)) = n-2t+2$ (Lovász [1978], Bárany [1978]).

It remains to express $\chi_r(G)/\chi(G)$ in terms of r. We have $r = \binom{2t-1}{t} = \frac{1}{2} \binom{2t}{t}$ and $\chi_r(G) = \binom{3t-1}{t} = \frac{2}{3} \binom{3t}{t}$. For $c \in \{\frac{1}{2}, \frac{1}{3}\}$, we use $\binom{m}{cm} \approx \frac{(c^c(1-c)^{1-c})^{-m}}{\sqrt{c(1-c)^22m}}$ (Stirling).

Def. Kneser graph K(n, t): vertex set $\binom{[n]}{t}$, with adjacency being disjointness. It is $\binom{n-t}{t}$ -regular.

Thm. For infinitely many r, there is an r-regular graph G such that $\chi_r(G) > r^{1.37744}\chi(G)$.

Pf. Let G = K(3t-1,t) and $r = \binom{n-t}{t}$. Intersecting t-sets omit at least t elts, so diam(G) = 2. Since G is r-regular, $\chi_r(G) = |V(G)| = \binom{3t-1}{t}$. Also $\chi(G) = t+1$, since $\chi(K(n,t)) = n-2t+2$ (Lovász [1978], Bárany [1978]).

It remains to express $\chi_r(G)/\chi(G)$ in terms of r. We have $r = \binom{2t-1}{t} = \frac{1}{2}\binom{2t}{t}$ and $\chi_r(G) = \binom{3t-1}{t} = \frac{2}{3}\binom{3t}{t}$. For $c \in \{\frac{1}{2}, \frac{1}{3}\}$, we use $\binom{m}{cm} \approx \frac{(c^c(1-c)^{1-c})^{-m}}{\sqrt{c(1-c)^22m}}$ (Stirling).

Now
$$\frac{\chi_r(G)}{r\chi(G)} \approx \frac{1}{t} \sqrt{\frac{4}{3}} \left(\frac{27}{16}\right)^t = r^{\chi}$$
, where $\chi = \frac{3 \lg 3}{2} - 2$.

Thm. If diam(G) = 2, then $\chi_2(G) \le \chi(G) + 2$.

Thm. If diam(G) = 2, then $\chi_2(G) \le \chi(G) + 2$.

Pf. If N(v) all get color a, then $N(v) = \{u : f(u) = a\}$ (a non-nbr of v with color a cannot reach v in two steps).

Thm. If diam(G) = 2, then $\chi_2(G) \le \chi(G) + 2$.

Pf. If N(v) all get color α , then $N(v) = \{u : f(u) = \alpha\}$ (a non-nbr of v with color α cannot reach v in two steps).

∴ nonadj. verts. with monochr. nbhds have same nbhd.

Thm. If diam(G) = 2, then $\chi_2(G) \le \chi(G) + 2$.

Pf. If N(v) all get color α , then $N(v) = \{u : f(u) = \alpha\}$ (a non-nbr of v with color α cannot reach v in two steps).

.. nonadj. verts. with monochr. nbhds have same nbhd.

Let f be a proper $\chi(G)$ -coloring of G.

Thm. If diam(G) = 2, then $\chi_2(G) \le \chi(G) + 2$.

Pf. If N(v) all get color a, then $N(v) = \{u : f(u) = a\}$ (a non-nbr of v with color a cannot reach v in two steps). \therefore nonadj. verts. with monochr. nbhds have same nbhd.

.. Holladj. Verts. With Hollochi. Hollds have same hollo

Let f be a proper $\chi(G)$ -coloring of G.

If $f(N(v)) = \{a\}$, then give a new color b to v and a new color c to some $x \in N(v)$ (we may assume $\delta(G) \ge 2$).

Thm. If diam(G) = 2, then $\chi_2(G) \le \chi(G) + 2$.

Pf. If N(v) all get color a, then $N(v) = \{u : f(u) = a\}$ (a non-nbr of v with color a cannot reach v in two steps).

: nonadj. verts. with monochr. nbhds have same nbhd.

Let f be a proper $\chi(G)$ -coloring of G.

If $f(N(v)) = \{a\}$, then give a new color b to v and a new color c to some $x \in N(v)$ (we may assume $\delta(G) \ge 2$).

If still N(z) is monochr., then z can't be v or in N(v).

Thm. If diam(G) = 2, then $\chi_2(G) \le \chi(G) + 2$.

Pf. If N(v) all get color a, then $N(v) = \{u : f(u) = a\}$ (a non-nbr of v with color a cannot reach v in two steps).

: nonadj. verts. with monochr. nbhds have same nbhd.

Let f be a proper $\chi(G)$ -coloring of G.

If $f(N(v)) = \{a\}$, then give a new color b to v and a new color c to some $x \in N(v)$ (we may assume $\delta(G) \ge 2$).

If still N(z) is monochr., then z can't be v or in N(v).

Now N(z) = N(v), and α , c both appear in N(z).

Thm. If diam(G) = 2, then $\chi_2(G) \le \chi(G) + 2$.

Pf. If N(v) all get color a, then $N(v) = \{u : f(u) = a\}$ (a non-nbr of v with color a cannot reach v in two steps).

: nonadj. verts. with monochr. nbhds have same nbhd.

Let f be a proper $\chi(G)$ -coloring of G.

If $f(N(v)) = \{a\}$, then give a new color b to v and a new color c to some $x \in N(v)$ (we may assume $\delta(G) \ge 2$).

If still N(z) is monochr., then z can't be v or in N(v).

Now N(z) = N(v), and α , c both appear in N(z).

Thm. Equality holds above only for $K_{m,n}$ and C_5 .

Thm. If diam(G) = 2, then $\chi_2(G) \le \chi(G) + 2$.

Pf. If N(v) all get color a, then $N(v) = \{u : f(u) = a\}$ (a non-nbr of v with color a cannot reach v in two steps).

:. nonadj. verts. with monochr. nbhds have same nbhd.

Let f be a proper $\chi(G)$ -coloring of G.

If $f(N(v)) = \{a\}$, then give a new color b to v and a new color c to some $x \in N(v)$ (we may assume $\delta(G) \ge 2$).

If still N(z) is monochr., then z can't be v or in N(v).

Now N(z) = N(v), and α , c both appear in N(z).

Thm. Equality holds above only for $K_{m,n}$ and C_5 .

What bounds hold for larger diameter or χ_r with r > 2?

Constructions

Thm. χ_2 is unbounded when $\chi(G) = 2$ and diam(G) = 4.

Constructions

Thm. χ_2 is unbounded when $\chi(G) = 2$ and diam(G) = 4. χ_3 is unbounded when $\chi(G) = 2$ and diam(G) = 3.

Constructions

Thm. χ_2 is unbounded when $\chi(G) = 2$ and $\operatorname{diam}(G) = 4$. χ_3 is unbounded when $\chi(G) = 2$ and $\operatorname{diam}(G) = 3$. χ_3 is unbounded when $\chi(G) = 3$ and $\operatorname{diam}(G) = 2$.

Thm. χ_2 is unbounded when $\chi(G) = 2$ and diam(G) = 4. χ_3 is unbounded when $\chi(G) = 2$ and diam(G) = 3. χ_3 is unbounded when $\chi(G) = 3$ and diam(G) = 2.

Pf. For χ_2 on bipartite with diameter 4, subdivide every edge of K_n . The n original vertices need distinct colors.

Thm. χ_2 is unbounded when $\chi(G) = 2$ and diam(G) = 4. χ_3 is unbounded when $\chi(G) = 2$ and diam(G) = 3. χ_3 is unbounded when $\chi(G) = 3$ and diam(G) = 2.

Pf. For χ_2 on bipartite with diameter 4, subdivide every edge of K_n . The n original vertices need distinct colors.

For χ_3 on bipartite with diameter 3, start with the incidence [n], $\binom{[n]}{k}$ -bigraph: $j \leftrightarrow A$ if $j \in A$.

Thm. χ_2 is unbounded when $\chi(G) = 2$ and diam(G) = 4. χ_3 is unbounded when $\chi(G) = 2$ and diam(G) = 3. χ_3 is unbounded when $\chi(G) = 3$ and diam(G) = 2.

Pf. For χ_2 on bipartite with diameter 4, subdivide every edge of K_n . The n original vertices need distinct colors.

For χ_3 on bipartite with diameter 3, start with the incidence [n], $\binom{[n]}{k}$ -bigraph: $j \leftrightarrow A$ if $j \in A$.

Add \mathbf{v} adjacent to $\binom{[n]}{k}$, still bipartite.

The k-sets have degree k+1 and common neighbor v. Distance between a k-set and an element not in it is 3. Elements of $\lceil n \rceil$ lie in a common k-set. \therefore digm(G) = 3.

Thm. χ_2 is unbounded when $\chi(G) = 2$ and diam(G) = 4. χ_3 is unbounded when $\chi(G) = 2$ and diam(G) = 3. χ_3 is unbounded when $\chi(G) = 3$ and diam(G) = 2.

Pf. For χ_2 on bipartite with diameter 4, subdivide every edge of K_n . The n original vertices need distinct colors.

For χ_3 on bipartite with diameter 3, start with the incidence [n], $\binom{[n]}{k}$ -bigraph: $j \leftrightarrow A$ if $j \in A$.

Add \mathbf{v} adjacent to $\binom{[n]}{k}$, still bipartite.

The k-sets have degree k+1 and common neighbor ν . Distance between a k-set and an element not in it is 3.

Elements of [n] lie in a common k-set. $\therefore diam(G) = 3$.

If $r > k \ge 2$, then the k+1 neighbors of a k-set have distinct colors: $\chi_r(G) \ge n+1$.

- **Thm.** χ_2 is unbounded when $\chi(G) = 2$ and diam(G) = 4. χ_3 is unbounded when $\chi(G) = 2$ and diam(G) = 3. χ_3 is unbounded when $\chi(G) = 3$ and diam(G) = 2.
- **Pf.** For χ_2 on bipartite with diameter 4, subdivide every edge of K_n . The n original vertices need distinct colors.

For χ_3 on bipartite with diameter 3, start with the incidence [n], $\binom{[n]}{k}$ -bigraph: $j \leftrightarrow A$ if $j \in A$.

Add \mathbf{v} adjacent to $\binom{[n]}{k}$, still bipartite.

The k-sets have degree k+1 and common neighbor ν . Distance between a k-set and an element not in it is 3.

Elements of [n] lie in a common k-set. $\therefore diam(G) = 3$.

If $r > k \ge 2$, then the k+1 neighbors of a k-set have distinct colors: $\chi_r(G) \ge n+1$.

Making v adjacent also to all of [n] yields $\operatorname{diam}(G) = 2$ and $\chi(G) = 3$; still $\chi_r(G) \ge n+1$ when $r > k \ge 2$.

Thm. $\chi_2(G) \leq 3\chi(G)$ when diam(G) = 3, which is sharp.

Thm. $\chi_2(G) \leq 3\chi(G)$ when diam(G) = 3, which is sharp.

Pf. Sharpness: Form G from K_{3k} by subdividing each edge in k disjoint triangles: $\chi(G) = k$ and $\chi_2(G) = 3k$.

Thm. $\chi_2(G) \leq 3\chi(G)$ when diam(G) = 3, which is sharp.

Pf. Sharpness: Form G from K_{3k} by subdividing each edge in k disjoint triangles: $\chi(G) = k$ and $\chi_2(G) = 3k$.

Idea: Pair a proper coloring f with a 3-coloring that puts two colors in each nbhd that does not already have two colors under f.

Thm. $\chi_2(G) \leq 3\chi(G)$ when diam(G) = 3, which is sharp.

Pf. Sharpness: Form G from K_{3k} by subdividing each edge in k disjoint triangles: $\chi(G) = k$ and $\chi_2(G) = 3k$.

Idea: Pair a proper coloring f with a 3-coloring that puts two colors in each nbhd that does not already have two colors under f.

Let $V_i = \{v : f(v) = i\}$ and $H_i = \{\text{vertex nbhds in } V_i\}$.

Thm. $\chi_2(G) \leq 3\chi(G)$ when diam(G) = 3, which is sharp.

Pf. Sharpness: Form G from K_{3k} by subdividing each edge in k disjoint triangles: $\chi(G) = k$ and $\chi_2(G) = 3k$.

Idea: Pair a proper coloring f with a 3-coloring that puts two colors in each nbhd that does not already have two colors under f.

Let $V_i = \{v : f(v) = i\}$ and $H_i = \{\text{vertex nbhds in } V_i\}$. If N(x) and N(y) all have color i, then $N(x) \cap N(y) \neq \emptyset$.

Thm. $\chi_2(G) \leq 3\chi(G)$ when diam(G) = 3, which is sharp.

Pf. Sharpness: Form G from K_{3k} by subdividing each edge in k disjoint triangles: $\chi(G) = k$ and $\chi_2(G) = 3k$.

Idea: Pair a proper coloring f with a 3-coloring that puts two colors in each nbhd that does not already have two colors under f.

Let $V_i = \{v : f(v) = i\}$ and $H_i = \{\text{vertex nbhds in } V_i\}$. If N(x) and N(y) all have color i, then $N(x) \cap N(y) \neq \emptyset$.

In an intersecting hypergraph, use two colors on a minimal edge and a third color on the other vertices.

Ques. For fixed r and k, what is the best bound on $\chi_r(G)$ when $\Delta(G) = k$ (with finitely many exceptions)?

Ques. For fixed r and k, what is the best bound on $\chi_r(G)$ when $\Delta(G) = k$ (with finitely many exceptions)?

Ques. In terms of r, what is the least k such that $\chi_r(G) \leq cr\chi(G)$ when G is k-regular?

Ques. For fixed r and k, what is the best bound on $\chi_r(G)$ when $\Delta(G) = k$ (with finitely many exceptions)?

Ques. In terms of r, what is the least k such that $\chi_r(G) \leq cr\chi(G)$ when G is k-regular? Least k such that $\chi_r(G) \leq r(\ln r)^c\chi(G)$ for some c?

Ques. For fixed r and k, what is the best bound on $\chi_r(G)$ when $\Delta(G) = k$ (with finitely many exceptions)?

Ques. In terms of r, what is the least k such that $\chi_r(G) \le cr\chi(G)$ when G is k-regular? Least k such that $\chi_r(G) \le r(\ln r)^c\chi(G)$ for some c?

Ques. We know $\chi_r(P_m \square P_n)$ in most cases, but . . .

Ques. For fixed r and k, what is the best bound on $\chi_r(G)$ when $\Delta(G) = k$ (with finitely many exceptions)?

Ques. In terms of r, what is the least k such that $\chi_r(G) \le cr\chi(G)$ when G is k-regular? Least k such that $\chi_r(G) \le r(\ln r)^c\chi(G)$ for some c?

Ques. We know $\chi_r(P_m \square P_n)$ in most cases, but . . .

Ques. For fixed r and k, what is the best bound on $\chi_r(G)$ when $\Delta(G) = k$ (with finitely many exceptions)?

Ques. In terms of r, what is the least k such that $\chi_r(G) \le cr\chi(G)$ when G is k-regular? Least k such that $\chi_r(G) \le r(\ln r)^c \chi(G)$ for some c?

Ques. We know $\chi_r(P_m \square P_n)$ in most cases, but . . .

Ques. For fixed r and k, what is the best bound on $\chi_r(G)$ when $\Delta(G) = k$ (with finitely many exceptions)?

Ques. In terms of r, what is the least k such that $\chi_r(G) \le cr\chi(G)$ when G is k-regular? Least k such that $\chi_r(G) \le r(\ln r)^c \chi(G)$ for some c?

Ques. We know $\chi_r(P_m \square P_n)$ in most cases, but . . .

а	b	C	d	а	b	C	d	а	b	C	d	а	b
С	d	а	b	С	d	а	b	С	d	а	b	С	d
b	а											b	а
d	С	d										d	C
а	b											а	b
С	d	b	а	С	d	b	а	С	d	b	а	С	d
b	а	С	d	b	а	С	d	b	а	С	d	b	а

Ques. For fixed r and k, what is the best bound on $\chi_r(G)$ when $\Delta(G) = k$ (with finitely many exceptions)?

Ques. In terms of r, what is the least k such that $\chi_r(G) \le cr\chi(G)$ when G is k-regular? Least k such that $\chi_r(G) \le r(\ln r)^c \chi(G)$ for some c?

Ques. We know $\chi_r(P_m \square P_n)$ in most cases, but . . .

а	b	C	d	а	b	C	d	а	b	C	d	а	b
C	d	а	b	С	d	а	b	С	d	а	b	С	d
b	а	b										b	а
d	С	d										d	С
а	b											а	b
C	d	b	а	С	d	b	а	С	d	b	а	С	d
b	а	С	d	b	а	С	d	b	а	С	d	b	а

Ques. For fixed r and k, what is the best bound on $\chi_r(G)$ when $\Delta(G) = k$ (with finitely many exceptions)?

Ques. In terms of r, what is the least k such that $\chi_r(G) \le cr\chi(G)$ when G is k-regular? Least k such that $\chi_r(G) \le r(\ln r)^c \chi(G)$ for some c?

Ques. We know $\chi_r(P_m \square P_n)$ in most cases, but . . .

а	b	C	d	а	b	C	d	а	b	C	d	а	b
C	d	а	b	С	d	а	b	С	d	а	b	С	d
b	а	b	С									b	а
d	C	d										d	C
а	b											а	b
C	d	b	а	С	d	b	а	С	d	b	а	С	d
b	а	С	d	b	а	С	d	b	а	С	d	b	а

Ques. For fixed r and k, what is the best bound on $\chi_r(G)$ when $\Delta(G) = k$ (with finitely many exceptions)?

Ques. In terms of r, what is the least k such that $\chi_r(G) \le cr\chi(G)$ when G is k-regular? Least k such that $\chi_r(G) \le r(\ln r)^c \chi(G)$ for some c?

Ques. We know $\chi_r(P_m \square P_n)$ in most cases, but . . .

а	b	C	d	а	b	С	d	а	b	С	d	а	b	
C	d	а	b	С	d	а	b	С	d	а	b	С	d	
b	а	b	С	d								b	а	
d	С	d										d	C	
а	b											а	b	
C	d	b	а	С	d	b	а	С	d	b	а	С	d	
b	а	C	d	b	а	С	d	b	а	С	d	b	а	

Ques. For fixed r and k, what is the best bound on $\chi_r(G)$ when $\Delta(G) = k$ (with finitely many exceptions)?

Ques. In terms of r, what is the least k such that $\chi_r(G) \le cr\chi(G)$ when G is k-regular? Least k such that $\chi_r(G) \le r(\ln r)^c \chi(G)$ for some c?

Ques. We know $\chi_r(P_m \square P_n)$ in most cases, but . . .

а	b	C	d	а	b	C	d	а	b	C	d	а	b
C	d	а	b	С	d	а	b	С	d	а	b	С	d
b	а	b	C	d								b	а
d	C	d										d	C
а	b											а	b
C	d	b	а	С	d	b	а	С	d	b	а	С	d
b	а	С	d	b	а	С	d	b	а	С	d	b	а

Ques. For fixed r and k, what is the best bound on $\chi_r(G)$ when $\Delta(G) = k$ (with finitely many exceptions)?

Ques. In terms of r, what is the least k such that $\chi_r(G) \le cr\chi(G)$ when G is k-regular? Least k such that $\chi_r(G) \le r(\ln r)^c \chi(G)$ for some c?

Ques. We know $\chi_r(P_m \square P_n)$ in most cases, but . . .