On r-dynamic Coloring of Graphs

Douglas B. West

Department of Mathematics
Zhejiang Normal University and
University of Illinois at Urbana-Champaign
west@math.uiuc.edu

slides available on DBW preprint page

Joint work with
Sogol Jahanbekam, Jaehoon Kim, and Suil O
The Problem

Def. proper coloring - neighbors have distinct colors.

k-colorable - having a proper coloring with $\leq k$ colors.

chromatic number $\chi(G)$ - $\min\{k: G \text{ is } k\text{-colorable}\}$.

The Problem

Def. proper coloring - neighbors have distinct colors.

Def. \(k \)-colorable - having a proper coloring with \(\leq k \) colors.

Def. chromatic number \(\chi(G) \) - \(\min\{k : G \text{ is } k\text{-colorable}\} \).

Def. \(r \)-dynamic coloring - proper coloring where each neighborhood \(N(v) \) has at least \(\min\{r, d(v)\} \) colors.
The Problem

Def. proper coloring - neighbors have distinct colors.

k-colorable - having a proper coloring with $\leq k$ colors.

chromatic number $\chi(G)$ - $\min\{k: G \text{ is } k\text{-colorable}\}$.

Def. r-dynamic coloring - proper coloring where each neighborhood $N(\nu)$ has at least $\min\{r, d(\nu)\}$ colors.

r-dynamic chromatic number $\chi_r(G)$ - $\min\{k: G \text{ is } r\text{-dynamically } k\text{-colorable}\}$.
The Problem

Def. proper coloring - neighbors have distinct colors.
k-colorable - having a proper coloring with \(\leq k \) colors.

chromatic number \(\chi(G) \) - \(\min\{k : G \text{ is } k\text{-colorable}\} \).

Def. \(r \)-dynamic coloring - proper coloring where each neighborhood \(N(\nu) \) has at least \(\min\{r, d(\nu)\} \) colors.

r-dynamic chromatic number \(\chi_r(G) \) -
\(\min\{k : G \text{ is } r\text{-dynamically } k\text{-colorable}\} \).

- Always \(\chi_r(G) \geq \chi(G) \), and \(\chi_1(G) = \chi(G) \).
The Problem

Def. proper coloring - neighbors have distinct colors.

k-colorable - having a proper coloring with \(\leq k \) colors.

chromatic number \(\chi(G) \) - \(\text{min}\{k: \text{G is k-colorable}\} \).

Def. \(r \)-dynamic coloring - proper coloring where each neighborhood \(N(\nu) \) has at least \(\text{min}\{r, d(\nu)\} \) colors.

r-dynamic chromatic number \(\chi_r(G) \) - \(\text{min}\{k: \text{G is r-dynamically k-colorable}\} \).

• Always \(\chi_r(G) \geq \chi(G) \), and \(\chi_1(G) = \chi(G) \).

Ex. \(\chi_2(C_5) = 5 \). (No two vertices can have same color.)
Background

$\chi_2(G)$ called dynamic chromatic number (15 papers).
Background

\(\chi_2 (G)\) called dynamic chromatic number (15 papers).

Conj. (Montgomery [2001]) \(\chi_2 (G) \leq \chi(G) + 2\) for regular \(G\).
Background

$\chi_2(G)$ called **dynamic chromatic number** (15 papers).

Conj. (Montgomery [2001]) $\chi_2(G) \leq \chi(G) + 2$ for regular G.

True for bipartite G (Akbari–Ghanbari–Jahanbekam [2010]) and when $\chi(G) \geq \Delta(G) - 1$ (Lai–Montgomery–Poon [2003]).
Background

\(\chi_2(G) \) called dynamic chromatic number (15 papers).

Conj. (Montgomery [2001]) \(\chi_2(G) \leq \chi(G) + 2 \) for regular \(G \).

True for bipartite \(G \) (Akbari–Ghanbari–Jahanbekam [2010]) and when \(\chi(G) \geq \Delta(G) - 1 \) (Lai–Montgomery–Poon [2003]).

Def. List analogue: \(\text{ch}_r(G) \) is the least \(k \) such that an \(r \)-dynamic coloring of \(G \) can be chosen from any lists of \(k \) colors at the vertices.
Background

$\chi_2(G)$ called **dynamic chromatic number** (15 papers).

Conj. (Montgomery [2001]) $\chi_2(G) \leq \chi(G) + 2$ for regular G.

True for bipartite G (Akbari–Ghanbari–Jahanbekam [2010]) and when $\chi(G) \geq \Delta(G) - 1$ (Lai–Montgomery–Poon [2003]).

Def. List analogue: $\text{ch}_r(G)$ is the least k such that an r-dynamic coloring of G can be chosen from any lists of k colors at the vertices.

$\text{ch}_2(G) \leq \Delta(G) + 1$ when $\Delta(G) \geq 3$ and no C_5-component. (Akbari–Ghanbari–Jahanbekam [2009])
Background

$\chi_2(G)$ called dynamic chromatic number (15 papers).

Conj. (Montgomery [2001]) $\chi_2(G) \leq \chi(G) + 2$ for regular G.

True for bipartite G (Akbari–Ghanbari–Jahanbekam [2010]) and when $\chi(G) \geq \Delta(G) - 1$ (Lai–Montgomery–Poon [2003]).

Def. List analogue: $\text{ch}_r(G)$ is the least k such that an r-dynamic coloring of G can be chosen from any lists of k colors at the vertices.

$\text{ch}_2(G) \leq \Delta(G) + 1$ when $\Delta(G) \geq 3$ and no C_5-component. (Akbari–Ghanbari–Jahanbekam [2009])

$\text{ch}_2(G) \leq 4$ for planar graphs with girth at least 7, and $\text{ch}_2(G) \leq 5$ for all planar graphs (Kim–Lee–Park [2011,13]).
Motivation

Def. G^2 - obtained from G by adding uv when $d_G(u, v) = 2$.
Motivation

Def. G^2 - obtained from G by adding uv when $d_G(u, v) = 2$.

Properly coloring $G^2 = $ coloring G so that $f(u) = f(v) \Rightarrow d_G(u, v) \geq 3$.
Motivation

Def. G^2 - obtained from G by adding uv when $d_G(u, v) = 2$.

Properly coloring $G^2 = $ coloring G so that $f(u) = f(v) \Rightarrow d_G(u, v) \geq 3$.

Obs. $\chi(G) = \chi_1(G) \leq \cdots \leq \chi_{\Delta(G)} = \chi(G^2)$.
Motivation

Def. G^2 - obtained from G by adding uv when $d_G(u, v) = 2$.

Properly coloring $G^2 = $ coloring G so that $f(u) = f(v) \Rightarrow d_G(u, v) \geq 3$.

Obs. $\chi(G) = \chi_1(G) \leq \cdots \leq \chi_{\Delta(G)} = \chi(G^2)$.

Obs. $\chi_r(G) \geq \min\{r, \Delta(G)\} + 1$, with equality for trees and for cycles with length divisible by 6.
Motivation

Def. G^2 - obtained from G by adding uv when $d_G(u, v) = 2$.

Properly coloring $G^2 = $ coloring G so that $f(u) = f(v) \Rightarrow d_G(u, v) \geq 3$.

Obs. $\chi(G) = \chi_1(G) \leq \cdots \leq \chi_{\Delta(G)} = \chi(G^2)$.

Obs. $\chi_r(G) \geq \min\{r, \Delta(G)\} + 1$, with equality for trees and for cycles with length divisible by 6.

Theme: How do upper bounds on $\chi(G)$ need to be relaxed to obtain bounds on $\chi_r(G)$ as r increases?
Our Results

Thm. \(\chi_r(G) \leq r\Delta(G) + 1 \) (greedy coloring algorithm)
Our Results

Thm. \(\chi_r(G) \leq r \Delta(G) + 1 \) (greedy coloring algorithm) with equality for \(\Delta(G) > 2 \) if and only if \(G \) is \(r \)-regular with diameter 2 and girth 5
Our Results

Thm. $\chi_r(G) \leq r\Delta(G) + 1$ (greedy coloring algorithm) with equality for $\Delta(G) > 2$ if and only if G is r-regular with diameter 2 and girth 5 (Moore gr: $r \in \{2,3,7,57\}$).
Our Results

Thm. $\chi_r(G) \leq r\Delta(G) + 1$ (greedy coloring algorithm) with equality for $\Delta(G) > 2$ if and only if G is r-regular with diameter 2 and girth 5 (Moore gr: $r \in \{2, 3, 7, 57\}$).

Thm. $\chi_r(G) \leq \Delta(G) + 2r - 2$ when $\delta(G) > 2r \ln n$.
Our Results

Thm. $\chi_r(G) \leq r\Delta(G) + 1$ (greedy coloring algorithm) with equality for $\Delta(G) > 2$ if and only if G is r-regular with diameter 2 and girth 5 (Moore gr: $r \in \{2,3,7,57\}$).

Thm. $\chi_r(G) \leq \Delta(G) + 2r - 2$ when $\delta(G) > 2r \ln n$. Also, $\chi_r(G) \leq \Delta(G) + r$ when $\delta(G) > r^2 \ln n$.
Our Results

Thm. $\chi_r(G) \leq r\Delta(G) + 1$ (greedy coloring algorithm) with equality for $\Delta(G) > 2$ if and only if G is r-regular with diameter 2 and girth 5 (Moore gr: $r \in \{2, 3, 7, 57\}$).

Thm. $\chi_r(G) \leq \Delta(G) + 2r - 2$ when $\delta(G) > 2r \ln n$. Also, $\chi_r(G) \leq \Delta(G) + r$ when $\delta(G) > r^2 \ln n$.

Thm. $\chi_r(G) \leq r\chi(G)$ for k-regular G with $k > 3r \ln r$.
Our Results

Thm. \(\chi_r(G) \leq r\Delta(G) + 1 \) (greedy coloring algorithm) with equality for \(\Delta(G) > 2 \) if and only if \(G \) is \(r \)-regular with diameter 2 and girth 5 (Moore gr: \(r \in \{2,3,7,57\} \)).

Thm. \(\chi_r(G) \leq \Delta(G) + 2r - 2 \) when \(\delta(G) > 2r \ln n \).
Also, \(\chi_r(G) \leq \Delta(G) + r \) when \(\delta(G) > r^2 \ln n \).

Thm. \(\chi_r(G) \leq r\chi(G) \) for \(k \)-regular \(G \) with \(k > 3r \ln r \).

Thm. \(\chi_r(G) > r^{1.377} \chi(G) \) can occur for \(r \)-regular \(G \).
Our Results

Thm. $\chi_r(G) \leq r\Delta(G) + 1$ (greedy coloring algorithm) with equality for $\Delta(G) > 2$ if and only if G is r-regular with diameter 2 and girth 5 (Moore gr: $r \in \{2, 3, 7, 57\}$).

Thm. $\chi_r(G) \leq \Delta(G) + 2r - 2$ when $\delta(G) > 2r \ln n$. Also, $\chi_r(G) \leq \Delta(G) + r$ when $\delta(G) > r^2 \ln n$.

Thm. $\chi_r(G) \leq r\chi(G)$ for k-regular G with $k > 3r \ln r$.

Thm. $\chi_r(G) > r^{1.377}\chi(G)$ can occur for r-regular G.

Thm. $\chi_2(G) \leq \chi(G) + 2$ when $\text{diam}(G) = 2$.
Our Results

Thm. $\chi_r(G) \leq r\Delta(G) + 1$ (greedy coloring algorithm) with equality for $\Delta(G) > 2$ if and only if G is r-regular with diameter 2 and girth 5 (Moore gr: $r \in \{2, 3, 7, 57\}$).

Thm. $\chi_r(G) \leq \Delta(G) + 2r - 2$ when $\delta(G) > 2r \ln n$. Also, $\chi_r(G) \leq \Delta(G) + r$ when $\delta(G) > r^2 \ln n$.

Thm. $\chi_r(G) \leq r\chi(G)$ for k-regular G with $k > 3r \ln r$.

Thm. $\chi_r(G) > r^{1.377}\chi(G)$ can occur for r-regular G.

Thm. $\chi_2(G) \leq \chi(G) + 2$ when $\text{diam}(G) = 2$, with equality only for complete bipartite graphs and C_5.
Our Results

Thm. \(\chi_r(G) \leq r\Delta(G) + 1 \) (greedy coloring algorithm) with equality for \(\Delta(G) > 2 \) if and only if \(G \) is \(r \)-regular with diameter 2 and girth 5 (Moore gr: \(r \in \{2, 3, 7, 57\} \)).

Thm. \(\chi_r(G) \leq \Delta(G) + 2r - 2 \) when \(\delta(G) > 2r \ln n \). Also, \(\chi_r(G) \leq \Delta(G) + r \) when \(\delta(G) > r^2 \ln n \).

Thm. \(\chi_r(G) \leq r\chi(G) \) for \(k \)-regular \(G \) with \(k > 3r \ln r \).

Thm. \(\chi_r(G) > r^{1.377} \chi(G) \) can occur for \(r \)-regular \(G \).

Thm. \(\chi_2(G) \leq \chi(G) + 2 \) when \(\text{diam}(G) = 2 \), with equality only for complete bipartite graphs and \(C_5 \).

Thm. \(\chi_2(G) \leq 3\chi(G) \) when \(\text{diam}(G) = 3 \), which is sharp.
Our Results

Thm. $\chi_r(G) \leq r \Delta(G) + 1$ (greedy coloring algorithm) with equality for $\Delta(G) > 2$ if and only if G is r-regular with diameter 2 and girth 5 (Moore gr: $r \in \{2,3,7,57\}$).

Thm. $\chi_r(G) \leq \Delta(G) + 2r - 2$ when $\delta(G) > 2r \ln n$.
Also, $\chi_r(G) \leq \Delta(G) + r$ when $\delta(G) > r^2 \ln n$.

Thm. $\chi_r(G) \leq r \chi(G)$ for k-regular G with $k > 3r \ln r$.

Thm. $\chi_r(G) > r^{1.377} \chi(G)$ can occur for r-regular G.

Thm. $\chi_2(G) \leq \chi(G) + 2$ when $\text{diam}(G) = 2$, with equality only for complete bipartite graphs and C_5.

Thm. $\chi_2(G) \leq 3 \chi(G)$ when $\text{diam}(G) = 3$, which is sharp.

Thm. χ_2 is unbounded when $\chi(G) = 2$ and $\text{diam}(G) = 4$.
Our Results

Thm. $\chi_r(G) \leq r\Delta(G) + 1$ (greedy coloring algorithm) with equality for $\Delta(G) > 2$ if and only if G is r-regular with diameter 2 and girth 5 (**Moore gr:** $r \in \{2,3,7,57\}$).

Thm. $\chi_r(G) \leq \Delta(G) + 2r - 2$ when $\delta(G) > 2r \ln n$.
Also, $\chi_r(G) \leq \Delta(G) + r$ when $\delta(G) > r^2 \ln n$.

Thm. $\chi_r(G) \leq r\chi(G)$ for k-regular G with $k > 3r \ln r$.

Thm. $\chi_r(G) > r^{1.377}\chi(G)$ can occur for r-regular G.

Thm. $\chi_2(G) \leq \chi(G) + 2$ when $\text{diam}(G) = 2$, with equality only for complete bipartite graphs and C_5.

Thm. $\chi_2(G) \leq 3\chi(G)$ when $\text{diam}(G) = 3$, which is sharp.

Thm. χ_2 is unbounded when $\chi(G) = 2$ and $\text{diam}(G) = 4$.
χ_3 is unbounded when $\chi(G) = 2$ and $\text{diam}(G) = 3$.
Our Results

Thm. \(\chi_r(G) \leq r\Delta(G) + 1 \) (greedy coloring algorithm) with equality for \(\Delta(G) > 2 \) if and only if \(G \) is \(r \)-regular with diameter 2 and girth 5 (Moore gr: \(r \in \{2,3,7,57\} \)).

Thm. \(\chi_r(G) \leq \Delta(G) + 2r - 2 \) when \(\delta(G) > 2r \ln n \).
Also, \(\chi_r(G) \leq \Delta(G) + r \) when \(\delta(G) > r^2 \ln n \).

Thm. \(\chi_r(G) \leq r\chi(G) \) for \(k \)-regular \(G \) with \(k > 3r \ln r \).

Thm. \(\chi_r(G) > r^{1.377} \chi(G) \) can occur for \(r \)-regular \(G \).

Thm. \(\chi_2(G) \leq \chi(G) + 2 \) when \(\text{diam}(G) = 2 \), with equality only for complete bipartite graphs and \(C_5 \).

Thm. \(\chi_2(G) \leq 3\chi(G) \) when \(\text{diam}(G) = 3 \), which is sharp.

Thm. \(\chi_2 \) is unbounded when \(\chi(G) = 2 \) and \(\text{diam}(G) = 4 \).
\(\chi_3 \) is unbounded when \(\chi(G) = 2 \) and \(\text{diam}(G) = 3 \).
\(\chi_3 \) is unbounded when \(\chi(G) = 3 \) and \(\text{diam}(G) = 2 \).
Additive Bound

Thm. If $|V(G)| = n$, and $\delta(G) > \frac{r+s}{s+1} r \ln n$, then $\chi_r(G) \leq \Delta(G) + r + s$.
Additive Bound

Thm. If $|V(G)| = n$, and $\delta(G) > \frac{r+s}{s+1} r \ln n$, then $\chi_r(G) \leq \Delta(G) + r + s$. (Note cases $s = r - 2$ and $s = 0$.)
Additive Bound

Thm. If $|V(G)| = n$, and $\delta(G) > \frac{r+s}{s+1} r \ln n$, then $\chi_r(G) \leq \Delta(G) + r + s$. (Note cases $s = r - 2$ and $s = 0$.)

Pf. Color v_1, \ldots, v_n in order using $\Delta(G) + r + s$ colors.
Additive Bound

Thm. If $|V(G)| = n$, and $\delta(G) > \frac{r+s}{s+1} r \ln n$, then $\chi_r(G) \leq \Delta(G) + r + s$. (Note cases $s = r - 2$ and $s = 0$.)

Pf. Color v_1, \ldots, v_n in order using $\Delta(G) + r + s$ colors. Give v_i a random color among those not yet used on neighbors of v_i; at least $r + s$ colors are available.
Additive Bound

Thm. If $|V(G)| = n$, and $\delta(G) > \frac{r+s}{s+1} r \ln n$, then $\chi_r(G) \leq \Delta(G) + r + s$. (Note cases $s = r - 2$ and $s = 0$.)

Pf. Color v_1, \ldots, v_n in order using $\Delta(G) + r + s$ colors. Give v_i a random color among those not yet used on neighbors of v_i; at least $r + s$ colors are available. This yields a proper $(\Delta(G) + r + s)$-coloring.
Additive Bound

Thm. If $|V(G)| = n$, and $\delta(G) > \frac{r+s}{s+1} r \ln n$, then $\chi_r(G) \leq \Delta(G) + r + s$. (Note cases $s = r - 2$ and $s = 0$.)

Pf. Color v_1, \ldots, v_n in order using $\Delta(G) + r + s$ colors. Give v_i a random color among those not yet used on neighbors of v_i; at least $r + s$ colors are available. This yields a proper $(\Delta(G) + r + s)$-coloring.

With positive probability, the coloring is r-dynamic.
Thm. If \(|V(G)| = n\), and \(\delta(G) > \frac{r+s}{s+1} r \ln n\), then
\(\chi_r(G) \leq \Delta(G) + r + s\). (Note cases \(s = r - 2\) and \(s = 0\).)

Pf. Color \(v_1, \ldots, v_n\) in order using \(\Delta(G) + r + s\) colors. Give \(v_i\) a random color among those not yet used on neighbors of \(v_i\); at least \(r + s\) colors are available. This yields a proper \((\Delta(G) + r + s)\)-coloring.

With positive probability, the coloring is \(r\)-dynamic. This fails at \(v\) only if \(N(v)\) is colored from \(r - 1\) colors.
Additive Bound

Thm. If $|V(G)| = n$, and $\delta(G) > \frac{r+s}{s+1} r \ln n$, then $\chi_r(G) \leq \Delta(G) + r + s$. (Note cases $s = r - 2$ and $s = 0$.)

Pf. Color v_1, \ldots, v_n in order using $\Delta(G) + r + s$ colors. Give v_i a random color among those not yet used on neighbors of v_i; at least $r + s$ colors are available. This yields a proper $(\Delta(G) + r + s)$-coloring.

With positive probability, the coloring is r-dynamic. This fails at v only if $N(v)$ is colored from $r - 1$ colors.

$$\mathbb{P}[\text{given } (r - 1)-\text{set bad}] \leq \left(\frac{r-1}{r+s}\right)^{\delta(G)} \leq e^{-\delta(G)\frac{s+1}{r+s}}.$$
Additive Bound

Thm. If $|V(G)| = n$, and $\delta(G) > \frac{r+s}{s+1}r \ln n$, then $\chi_r(G) \leq \Delta(G) + r + s$. (Note cases $s = r - 2$ and $s = 0$.)

Pf. Color v_1, \ldots, v_n in order using $\Delta(G) + r + s$ colors. Give v_i a random color among those not yet used on neighbors of v_i; at least $r + s$ colors are available. This yields a proper $(\Delta(G) + r + s)$-coloring.

With positive probability, the coloring is r-dynamic. This fails at v only if $N(v)$ is colored from $r - 1$ colors. $\mathbb{P}[\text{given (}r - 1\text{-set bad}] \leq \left(\frac{r-1}{r+s}\right)^{\delta(G)} \leq e^{-\delta(G)\frac{s+1}{r+s}}$.

$\#(r - 1)$-sets $= \left(\frac{\Delta(G)+r+s}{r-1}\right) < n^{r-1}$, since $\Delta(G) + r + s < n$.
Additive Bound

Thm. If $|V(G)| = n$, and $\delta(G) > \frac{r+s}{s+1}r \ln n$, then $\chi_r(G) \leq \Delta(G) + r + s$. (Note cases $s = r - 2$ and $s = 0$.)

Pf. Color v_1, \ldots, v_n in order using $\Delta(G) + r + s$ colors. Give v_i a random color among those not yet used on neighbors of v_i; at least $r + s$ colors are available. This yields a proper $(\Delta(G) + r + s)$-coloring.

With positive probability, the coloring is r-dynamic. This fails at v only if $N(v)$ is colored from $r - 1$ colors. $\mathbb{P}[\text{given } (r - 1)\text{-set bad}] \leq \left(\frac{r-1}{r+s}\right)\delta(G) \leq e^{-\delta(G)\frac{s+1}{r+s}}$.

$(r - 1)$-sets = $\binom{\Delta(G)+r+s}{r-1} < n^{r-1}$, since $\Delta(G) + r + s < n$.

Since G has n vertices and $\delta(G) > \frac{r+s}{s+1}r \ln n$,
Additive Bound

Thm. If $|V(G)| = n$, and $\delta(G) > \frac{r+s}{s+1} r \ln n$, then $\chi_r(G) \leq \Delta(G) + r + s$. (Note cases $s = r - 2$ and $s = 0$.)

Pf. Color v_1, \ldots, v_n in order using $\Delta(G) + r + s$ colors. Give v_i a random color among those not yet used on neighbors of v_i; at least $r + s$ colors are available. This yields a proper $(\Delta(G) + r + s)$-coloring.

With positive probability, the coloring is r-dynamic. This fails at v only if $N(v)$ is colored from $r - 1$ colors. $P[\text{given } (r - 1)-\text{set bad}] \leq \left(\frac{r-1}{r+s}\right)^{\delta(G)} \leq e^{-\delta(G)\frac{s+1}{r+s}}.$

#($r - 1$)-sets $= \binom{\Delta(G) + r + s}{r-1} < nr^{-1}$, since $\Delta(G) + r + s < n$.

Since G has n vertices and $\delta(G) > \frac{r+s}{s+1} r \ln n$,

$P[\exists \text{ bad vertex}] < n^{r} e^{-\delta(G)\frac{s+1}{r+s}} < n^{r} n^{-r} = 1.$
Bound in Terms of $\chi(G)$

Idea: For $\chi_r(G) \leq r\chi(G)$, pair an optimal proper coloring with a random coloring having r colors in each nbhd. (Taherkhani [2014] gave a similar result.)
Bound in Terms of $\chi(G)$

Idea: For $\chi_r(G) \leq r\chi(G)$, pair an optimal proper coloring with a random coloring having r colors in each nbhd. (Taherkhani [2014] gave a similar result.)

Lem. A k-uniform H with $\Delta(H) = D$ has an r-coloring with all colors on each edge if $re^{-k/r}(k(D-1)+1) \leq e^{-1}$.
Bound in Terms of $\chi(G)$

Idea: For $\chi_r(G) \leq r\chi(G)$, pair an optimal proper coloring with a random coloring having r colors in each nbhd. (Taherkhani [2014] gave a similar result.)

Lem. A k-uniform H with $\Delta(H) = D$ has an r-coloring with all colors on each edge if $re^{-k/r}(k(D-1)+1) \leq e^{-1}$.

Pf. Color the vertices at random from r colors.
Bound in Terms of $\chi(G)$

Idea: For $\chi_r(G) \leq r\chi(G)$, pair an optimal proper coloring with a random coloring having r colors in each nbhd. (Taherkhani [2014] gave a similar result.)

Lem. A k-uniform H with $\Delta(H) = D$ has an r-coloring with all colors on each edge if $re^{-k/r}(k(D-1)+1) \leq e^{-1}$.

Pf. Color the vertices at random from r colors. Event A_e occurs if some color is missing from edge e.
Bound in Terms of $\chi(G)$

Idea: For $\chi_r(G) \leq r\chi(G)$, pair an optimal proper coloring with a random coloring having r colors in each nbhd. (Taherkhani [2014] gave a similar result.)

Lem. A k-uniform H with $\Delta(H) = D$ has an r-coloring with all colors on each edge if $re^{-k/r}(k(D-1)+1) \leq e^{-1}$.

Pf. Color the vertices at random from r colors. Event A_e occurs if some color is missing from edge e. $\mathbb{P}[A_e] \leq r(1 - 1/r)^k \leq re^{-k/r}$.
Bound in Terms of $\chi(G)$

Idea: For $\chi_r(G) \leq r\chi(G)$, pair an optimal proper coloring with a random coloring having r colors in each nbhd. (Taherkhani [2014] gave a similar result.)

Lem. A k-uniform H with $\Delta(H) = D$ has an r-coloring with all colors on each edge if $re^{-k/r}(k(D-1)+1) \leq e^{-1}$.

Pf. Color the vertices at random from r colors. Event A_e occurs if some color is missing from edge e. $P[A_e] \leq r(1 - 1/r)^k \leq re^{-k/r}$. An edge intersects at most $k(D - 1)$ other edges.
Bound in Terms of $\chi(G)$

Idea: For $\chi_r(G) \leq r\chi(G)$, pair an optimal proper coloring with a random coloring having r colors in each nbhd. (Taherkhani [2014] gave a similar result.)

Lem. A k-uniform H with $\Delta(H) = D$ has an r-coloring with all colors on each edge if $re^{-k/r}(k(D-1)+1) \leq e^{-1}$.

Pf. Color the vertices at random from r colors. Event A_e occurs if some color is missing from edge e.

$P[A_e] \leq r(1 - 1/r)^k \leq re^{-k/r}$.

An edge intersects at most $k(D - 1)$ other edges. By the Local Lemma, some coloring avoids all A_e. ■
Bound in Terms of $\chi(G)$

Idea: For $\chi_r(G) \leq r\chi(G)$, pair an optimal proper coloring with a random coloring having r colors in each nbhd. (Taherkhani [2014] gave a similar result.)

Lem. A k-uniform H with $\Delta(H) = D$ has an r-coloring with all colors on each edge if $re^{-k/r}(k(D-1)+1) \leq e^{-1}$.

Pf. Color the vertices at random from r colors. Event A_e occurs if some color is missing from edge e. $\mathbb{P}[A_e] \leq r(1 - 1/r)^k \leq re^{-k/r}$. An edge intersects at most $k(D-1)$ other edges. By the Local Lemma, some coloring avoids all A_e.

Thm. If G is k-regular and $re^{-k/r}(k(k-1)+1) \leq e^{-1}$, then $\chi_r(G) \leq r\chi(G)$. This holds if $k \geq (3 + \frac{2\ln\ln r}{\ln r})r\ln r$.

Bound in Terms of $\chi(G)$

Idea: For $\chi_r(G) \leq r\chi(G)$, pair an optimal proper coloring with a random coloring having r colors in each nbhd. (Taherkhani [2014] gave a similar result.)

Lem. A k-uniform H with $\Delta(H) = D$ has an r-coloring with all colors on each edge if $re^{-k/r}(k(D-1)+1) \leq e^{-1}$.

Pf. Color the vertices at random from r colors. Event A_e occurs if some color is missing from edge e. $P[A_e] \leq r(1 - 1/r)^k \leq re^{-k/r}$.

An edge intersects at most $k(D-1)$ other edges. By the Local Lemma, some coloring avoids all A_e.

Thm. If G is k-regular and $re^{-k/r}(k(k-1)+1) \leq e^{-1}$, then $\chi_r(G) \leq r\chi(G)$. This holds if $k \geq (3 + \frac{2\ln \ln r}{\ln r})r \ln r$.

Pf. The nbhd hypergraph is k-uniform and k-regular.
Bound in Terms of $\chi(G)$

Idea: For $\chi_r(G) \leq r\chi(G)$, pair an optimal proper coloring with a random coloring having r colors in each nbhd. (Taherkhani [2014] gave a similar result.)

Lem. A k-uniform H with $\Delta(H) = D$ has an r-coloring with all colors on each edge if $re^{-k/r}(k(D-1)+1) \leq e^{-1}$.

Pf. Color the vertices at random from r colors. Event A_e occurs if some color is missing from edge e. $\Pr[A_e] \leq r(1 - 1/r)^k \leq re^{-k/r}$. An edge intersects at most $k(D - 1)$ other edges. By the Local Lemma, some coloring avoids all A_e.

Thm. If G is k-regular and $re^{-k/r}(k(k-1)+1) \leq e^{-1}$, then $\chi_r(G) \leq r\chi(G)$. This holds if $k \geq (3 + \frac{2\ln\ln r}{\ln r})r\ln r$.

Pf. The nbhd hypergraph is k-uniform and k-regular. The last inequality on k yields the needed condition.
Bound in Terms of $\chi(G)$

Idea: For $\chi_r(G) \leq r\chi(G)$, pair an optimal proper coloring with a random coloring having r colors in each nbhd. (Taherkhani [2014] gave a similar result.)

Lem. A k-uniform H with $\Delta(H) = D$ has an r-coloring with all colors on each edge if $re^{-k/r}(k(D-1)+1) \leq e^{-1}$.

Pf. Color the vertices at random from r colors. Event A_e occurs if some color is missing from edge e. $\Pr[A_e] \leq r(1 - 1/r)^k \leq re^{-k/r}$.

An edge intersects at most $k(D - 1)$ other edges. By the Local Lemma, some coloring avoids all A_e.

Thm. If G is k-regular and $re^{-k/r}(k(k-1)+1) \leq e^{-1}$, then $\chi_r(G) \leq r\chi(G)$. This holds if $k \geq (3 + \frac{2\ln\ln r}{\ln r})r\ln r$.

Pf. The nbhd hypergraph is k-uniform and k-regular. The last inequality on k yields the needed condition. Applying the lemma implements the idea.
Regular with Small Degree

Def. Kneser graph $K(n, t)$: vertex set $\binom{[n]}{t}$, with adjacency being disjointness. It is $\binom{n-t}{t}$-regular.

Thm. For infinitely many r, there is an r-regular graph G such that $\chi_r(G) > r^{1.37744}\chi(G)$.

Pf. Let $G = K(3t - 1, t)$ and $r = \binom{n-t}{t}$.
Regular with Small Degree

Def. Kneser graph $K(n, t)$: vertex set $\binom{[n]}{t}$, with adjacency being disjointness. It is $\binom{n-t}{t}$-regular.

Thm. For infinitely many r, there is an r-regular graph G such that $\chi_r(G) > r^{1.37744} \chi(G)$.

Pf. Let $G = K(3t - 1, t)$ and $r = \binom{n-t}{t}$. Intersecting t-sets omit at least t els, so $\text{diam}(G) = 2$.
Regular with Small Degree

Def. Kneser graph $K(n, t)$: vertex set $\binom{[n]}{t}$, with adjacency being disjointness. It is $\binom{n-t}{t}$-regular.

Thm. For infinitely many r, there is an r-regular graph G such that $\chi_r(G) > r^{1.37744} \chi(G)$.

Pf. Let $G = K(3t - 1, t)$ and $r = \binom{n-t}{t}$. Intersecting t-sets omit at least t elts, so $\text{diam}(G) = 2$. Since G is r-regular, $\chi_r(G) = |V(G)| = \binom{3t-1}{t}$.
Def. Kneser graph $K(n, t)$: vertex set $\binom{[n]}{t}$, with adjacency being disjointness. It is $\binom{n-t}{t}$-regular.

Thm. For infinitely many r, there is an r-regular graph G such that $\chi_r(G) > r^{1.37744} \chi(G)$.

Pf. Let $G = K(3t - 1, t)$ and $r = \binom{n-t}{t}$. Intersecting t-sets omit at least t elts, so $\text{diam}(G) = 2$. Since G is r-regular, $\chi_r(G) = |V(G)| = \binom{3t-1}{t}$. Also $\chi(G) = t + 1$, since $\chi(K(n, t)) = n - 2t + 2$ (Lovász [1978], Bárány [1978]).
Def. Kneser graph $K(n, t)$: vertex set $\binom{[n]}{t}$, with adjacency being disjointness. It is $\binom{n-t}{t}$-regular.

Thm. For infinitely many r, there is an r-regular graph G such that $\chi_r(G) > r^{1.37744} \chi(G)$.

Pf. Let $G = K(3t - 1, t)$ and $r = \binom{n-t}{t}$. Intersecting t-sets omit at least t els, so $\text{diam}(G) = 2$. Since G is r-regular, $\chi_r(G) = |V(G)| = \binom{3t-1}{t}$. Also $\chi(G) = t + 1$, since $\chi(K(n, t)) = n - 2t + 2$ (Lovász [1978], Bárany [1978]).

It remains to express $\chi_r(G)/\chi(G)$ in terms of r.
Regular with Small Degree

Def. Kneser graph $K(n, t)$: vertex set $\binom{[n]}{t}$, with adjacency being disjointness. It is $\binom{n-t}{t}$-regular.

Thm. For infinitely many r, there is an r-regular graph G such that $\chi_r(G) > r^{1.37744} \chi(G)$.

Pf. Let $G = K(3t - 1, t)$ and $r = \binom{n-t}{t}$.
Intersecting t-sets omit at least t elts, so $\text{diam}(G) = 2$.
Since G is r-regular, $\chi_r(G) = |V(G)| = \binom{3t-1}{t}$.
Also $\chi(G) = t + 1$, since $\chi(K(n, t)) = n - 2t + 2$ (Lovász [1978], Bárany [1978]).

It remains to express $\chi_r(G)/\chi(G)$ in terms of r.
We have $r = \binom{2t-1}{t} = \frac{1}{2} \binom{2t}{t}$ and $\chi_r(G) = \binom{3t-1}{t} = \frac{2}{3} \binom{3t}{t}$.
Regular with Small Degree

Def. Kneser graph $K(n, t)$: vertex set $\binom{[n]}{t}$, with adjacency being disjointness. It is $\binom{n-t}{t}$-regular.

Thm. For infinitely many r, there is an r-regular graph G such that $\chi_r(G) > r^{1.37744}\chi(G)$.

Pf. Let $G = K(3t - 1, t)$ and $r = \binom{n-t}{t}$. Intersecting t-sets omit at least t elts, so $\text{diam}(G) = 2$. Since G is r-regular, $\chi_r(G) = |V(G)| = \binom{3t-1}{t}$. Also $\chi(G) = t + 1$, since $\chi(K(n, t)) = n - 2t + 2$ (Lovász [1978], Bárany [1978]).

It remains to express $\frac{\chi_r(G)}{\chi(G)}$ in terms of r.

We have $r = \binom{2t-1}{t} = \frac{1}{2} \binom{2t}{t}$ and $\chi_r(G) = \binom{3t-1}{t} = \frac{2}{3} \binom{3t}{t}$.

For $c \in \{\frac{1}{2}, \frac{1}{3}\}$, we use $\binom{m}{cm} \approx \frac{(c^c(1-c)^{1-c})^{-m}}{\sqrt{c(1-c)2\pi m}}$ (Stirling).
Def. Kneser graph $K(n, t)$: vertex set $\binom{[n]}{t}$, with adjacency being disjointness. It is $\binom{n-t}{t}$-regular.

Thm. For infinitely many r, there is an r-regular graph G such that $\chi_r(G) > r^{1.37744} \chi(G)$.

Pf. Let $G = K(3t - 1, t)$ and $r = \binom{n-t}{t}$. Intersecting t-sets omit at least t elts, so $\text{diam}(G) = 2$. Since G is r-regular, $\chi_r(G) = |V(G)| = \binom{3t-1}{t}$. Also $\chi(G) = t + 1$, since $\chi(K(n, t)) = n - 2t + 2$ (Lovász [1978], Bárany [1978]).

It remains to express $\chi_r(G)/\chi(G)$ in terms of r. We have $r = \binom{2t-1}{t} = \frac{1}{2} \binom{2t}{t}$ and $\chi_r(G) = \binom{3t-1}{t} = \frac{2}{3} \binom{3t}{t}$. For $c \in \{\frac{1}{2}, \frac{1}{3}\}$, we use $\binom{m}{cm} \approx \frac{(c^c(1-c)^{1-c})^{-m}}{\sqrt{c(1-c)2\pi m}}$ (Stirling).

Now $\frac{\chi_r(G)}{r\chi(G)} \approx \frac{1}{t} \sqrt{\frac{4}{3}} \left(\frac{27}{16}\right)^t = r^x$, where $x = \frac{3\lg\frac{3}{2}}{2} - 2$. \blacksquare
Graphs with Small Diameter

Thm. If $\text{diam}(G) = 2$, then $\chi_2(G) \leq \chi(G) + 2$.
Graphs with Small Diameter

Thm. If $\text{diam}(G) = 2$, then $\chi_2(G) \leq \chi(G) + 2$.

Pf. If $N(\nu)$ all get color a, then $N(\nu) = \{u : f(u) = a\}$ (a non-nbr of ν with color a cannot reach ν in two steps).
Graphs with Small Diameter

Thm. If \(\text{diam}(G) = 2 \), then \(\chi_2(G) \leq \chi(G) + 2 \).

Pf. If \(N(\nu) \) all get color \(a \), then \(N(\nu) = \{ u : f(u) = a \} \) (a non-nbr of \(\nu \) with color \(a \) cannot reach \(\nu \) in two steps).

\[\therefore \] nonadj. verts. with monochr. nbhds have same nbhd.
Graphs with Small Diameter

Thm. If $\text{diam}(G) = 2$, then $\chi_2(G) \leq \chi(G) + 2$.

Pf. If $N(\nu)$ all get color a, then $N(\nu) = \{u : f(u) = a\}$ (a non-nbr of ν with color a cannot reach ν in two steps).

\therefore nonadj. verts. with monochr. nbhds have same nbhd.

Let f be a proper $\chi(G)$-coloring of G.
Graphs with Small Diameter

Thm. If $\text{diam}(G) = 2$, then $\chi_2(G) \leq \chi(G) + 2$.

Pf. If $N(v)$ all get color a, then $N(v) = \{u : f(u) = a\}$ (a non-nbr of v with color a cannot reach v in two steps).

∴ nonadj. verts. with monochr. nbhds have same nbhd.

Let f be a proper $\chi(G)$-coloring of G.

If $f(N(v)) = \{a\}$, then give a new color b to v and a new color c to some $x \in N(v)$ (we may assume $\delta(G) \geq 2$).
Graphs with Small Diameter

Thm. If $\text{diam}(G) = 2$, then $\chi_2(G) \leq \chi(G) + 2$.

Pf. If $N(\nu)$ all get color a, then $N(\nu) = \{u: f(u) = a\}$ (a non-nbr of ν with color a cannot reach ν in two steps).

∴ nonadj. verts. with monochr. nbhds have same nbhd.

Let f be a proper $\chi(G)$-coloring of G.
If $f(N(\nu)) = \{a\}$, then give a new color b to ν and a new color c to some $x \in N(\nu)$ (we may assume $\delta(G) \geq 2$).
If still $N(z)$ is monochr., then z can’t be ν or in $N(\nu)$.
Graphs with Small Diameter

Thm. If \(\text{diam}(G) = 2 \), then \(\chi_2(G) \leq \chi(G) + 2 \).

Pf. If \(N(\nu) \) all get color \(a \), then \(N(\nu) = \{ u : f(u) = a \} \) (a non-nbr of \(\nu \) with color \(a \) cannot reach \(\nu \) in two steps).

\[\therefore \] nonadj. verts. with monochr. nbhds have same nbhd.

Let \(f \) be a proper \(\chi(G) \)-coloring of \(G \).

If \(f(N(\nu)) = \{ a \} \), then give a new color \(b \) to \(\nu \) and a new color \(c \) to some \(x \in N(\nu) \) (we may assume \(\delta(G) \geq 2 \)).

If still \(N(z) \) is monochr., then \(z \) can’t be \(\nu \) or in \(N(\nu) \).

Now \(N(z) = N(\nu) \), and \(a, c \) both appear in \(N(z) \).

\[\blacksquare \]
Graphs with Small Diameter

Thm. If $\text{diam}(G) = 2$, then $\chi_2(G) \leq \chi(G) + 2$.

Pf. If $N(\nu)$ all get color a, then $N(\nu) = \{u : f(u) = a\}$ (a non-nbr of ν with color a cannot reach ν in two steps).

\therefore nonadj. verts. with monochr. nbhds have same nbhd.

Let f be a proper $\chi(G)$-coloring of G.

If $f(N(\nu)) = \{a\}$, then give a new color b to ν and a new color c to some $x \in N(\nu)$ (we may assume $\delta(G) \geq 2$).

If still $N(z)$ is monochr., then z can’t be ν or in $N(\nu)$.

Now $N(z) = N(\nu)$, and a, c both appear in $N(z)$.

Thm. Equality holds above only for $K_{m,n}$ and C_5.

Graphs with Small Diameter

Thm. If $\text{diam}(G) = 2$, then $\chi_2(G) \leq \chi(G) + 2$.

Pf. If $N(\nu)$ all get color a, then $N(\nu) = \{u : f(u) = a\}$ (a non-nbr of ν with color a cannot reach ν in two steps).

\therefore nonadj. verts. with monochr. nbhds have same nbhd.

Let f be a proper $\chi(G)$-coloring of G.

If $f(N(\nu)) = \{a\}$, then give a new color b to ν and a new color c to some $x \in N(\nu)$ (we may assume $\delta(G) \geq 2$).

If still $N(z)$ is monochr., then z can’t be ν or in $N(\nu)$.

Now $N(z) = N(\nu)$, and a, c both appear in $N(z)$.

Thm. Equality holds above only for $K_{m,n}$ and C_5.

What bounds hold for larger diameter or χ_r with $r > 2$?
Constructions

Thm. χ_2 is unbounded when $\chi(G) = 2$ and $\text{diam}(G) = 4$.
Constructions

Thm. χ_2 is unbounded when $\chi(G) = 2$ and $\text{diam}(G) = 4$.

χ_3 is unbounded when $\chi(G) = 2$ and $\text{diam}(G) = 3$.
Constructions

Thm. χ_2 is unbounded when $\chi(G) = 2$ and $\text{diam}(G) = 4$.
χ_3 is unbounded when $\chi(G) = 2$ and $\text{diam}(G) = 3$.
χ_3 is unbounded when $\chi(G) = 3$ and $\text{diam}(G) = 2$.
Constructions

Thm. χ_2 is unbounded when $\chi(G) = 2$ and $\text{diam}(G) = 4$.

χ_3 is unbounded when $\chi(G) = 2$ and $\text{diam}(G) = 3$.

χ_3 is unbounded when $\chi(G) = 3$ and $\text{diam}(G) = 2$.

Pf. For χ_2 on bipartite with diameter 4, subdivide every edge of K_n. The n original vertices need distinct colors.
Constructions

Thm. χ_2 is unbounded when $\chi(G) = 2$ and $\text{diam}(G) = 4$.
χ_3 is unbounded when $\chi(G) = 2$ and $\text{diam}(G) = 3$.
χ_3 is unbounded when $\chi(G) = 3$ and $\text{diam}(G) = 2$.

Pf.
For χ_2 on bipartite with diameter 4, subdivide every edge of K_n. The n original vertices need distinct colors.

For χ_3 on bipartite with diameter 3, start with the incidence $[n], (\binom{n}{k})$-bigraph: $j \leftrightarrow A$ if $j \in A$.
Constructions

Thm. \(\chi_2 \) is unbounded when \(\chi(G) = 2 \) and \(\text{diam}(G) = 4 \).

\(\chi_3 \) is unbounded when \(\chi(G) = 2 \) and \(\text{diam}(G) = 3 \).

\(\chi_3 \) is unbounded when \(\chi(G) = 3 \) and \(\text{diam}(G) = 2 \).

Pf. For \(\chi_2 \) on bipartite with diameter 4, subdivide every edge of \(K_n \). The \(n \) original vertices need distinct colors.

For \(\chi_3 \) on bipartite with diameter 3, start with the incidence \([n], \binom{n}{k}\)-bigraph: \(j \leftrightarrow A \) if \(j \in A \).

Add \(\nu \) adjacent to \(\binom{n}{k} \), still bipartite.

The \(k \)-sets have degree \(k + 1 \) and common neighbor \(\nu \).

Distance between a \(k \)-set and an element not in it is 3.

Elements of \([n]\) lie in a common \(k \)-set. \(\therefore \text{diam}(G) = 3 \).
Constructions

Thm. \(\chi_2\) is unbounded when \(\chi(G) = 2\) and \(\text{diam}(G) = 4\).
\(\chi_3\) is unbounded when \(\chi(G) = 2\) and \(\text{diam}(G) = 3\).
\(\chi_3\) is unbounded when \(\chi(G) = 3\) and \(\text{diam}(G) = 2\).

Pf. For \(\chi_2\) on bipartite with diameter 4, subdivide every edge of \(K_n\). The \(n\) original vertices need distinct colors.

For \(\chi_3\) on bipartite with diameter 3, start with the incidence \([n], \binom{n}{k}\)-bigraph: \(j \leftrightarrow A\) if \(j \in A\).

Add \(v\) adjacent to \(\binom{n}{k}\), still bipartite. The \(k\)-sets have degree \(k + 1\) and common neighbor \(v\). Distance between a \(k\)-set and an element not in it is 3. Elements of \([n]\) lie in a common \(k\)-set. \(\therefore \text{diam}(G) = 3\).

If \(r > k \geq 2\), then the \(k + 1\) neighbors of a \(k\)-set have distinct colors: \(\chi_r(G) \geq n + 1\).
Constructions

Thm. \(\chi_2 \) is unbounded when \(\chi(G) = 2 \) and \(\text{diam}(G) = 4 \).
\(\chi_3 \) is unbounded when \(\chi(G) = 2 \) and \(\text{diam}(G) = 3 \).
\(\chi_3 \) is unbounded when \(\chi(G) = 3 \) and \(\text{diam}(G) = 2 \).

Pf. For \(\chi_2 \) on bipartite with diameter 4, subdivide every edge of \(K_n \). The \(n \) original vertices need distinct colors.
For \(\chi_3 \) on bipartite with diameter 3, start with the incidence \([n], \binom{n}{k}\)-bigraph: \(j \leftrightarrow A \) if \(j \in A \).
Add \(v \) adjacent to \(\binom{n}{k} \), still bipartite.
The \(k \)-sets have degree \(k + 1 \) and common neighbor \(v \).
Distance between a \(k \)-set and an element not in it is 3.
Elements of \([n]\) lie in a common \(k \)-set. \(\therefore \text{diam}(G) = 3 \).
If \(r > k \geq 2 \), then the \(k + 1 \) neighbors of a \(k \)-set have distinct colors: \(\chi_r(G) \geq n + 1 \).

Making \(v \) adjacent also to all of \([n]\) yields \(\text{diam}(G) = 2 \) and \(\chi(G) = 3 \); still \(\chi_r(G) \geq n + 1 \) when \(r > k \geq 2 \).
Theorem. $\chi_2(G) \leq 3\chi(G)$ when $\text{diam}(G) = 3$, which is sharp.
χ₂ on Graphs with Diameter 3

Thm. $\chi_2(G) \leq 3\chi(G)$ when $\text{diam}(G) = 3$, which is sharp.

Pf. Sharpness: Form G from K_{3k} by subdividing each edge in k disjoint triangles: $\chi(G) = k$ and $\chi_2(G) = 3k$.
χ_2 on Graphs with Diameter 3

Thm. $\chi_2(G) \leq 3\chi(G)$ when $\text{diam}(G)=3$, which is sharp.

Pf. Sharpness: Form G from K_{3k} by subdividing each edge in k disjoint triangles: $\chi(G) = k$ and $\chi_2(G) = 3k$.

Idea: Pair a proper coloring f with a 3-coloring that puts two colors in each nbhd that does not already have two colors under f.
\(\chi_2 \) on Graphs with Diameter 3

Thm. \(\chi_2(G) \leq 3 \chi(G) \) when \(\text{diam}(G) = 3 \), which is sharp.

Pf. Sharpness: Form \(G \) from \(K_{3k} \) by subdividing each edge in \(k \) disjoint triangles: \(\chi(G) = k \) and \(\chi_2(G) = 3k \).

Idea: Pair a proper coloring \(f \) with a 3-coloring that puts two colors in each nbhd that does not already have two colors under \(f \).

Let \(V_i = \{ v : f(v) = i \} \) and \(H_i = \{ \text{vertex nbhds in } V_i \} \).
Theorem. \(\chi_2(G) \leq 3 \chi(G) \) when \(\text{diam}(G) = 3 \), which is sharp.

Proof. Sharpness: Form \(G \) from \(K_{3k} \) by subdividing each edge in \(k \) disjoint triangles: \(\chi(G) = k \) and \(\chi_2(G) = 3k \).

Idea: Pair a proper coloring \(f \) with a 3-coloring that puts two colors in each nbhd that does not already have two colors under \(f \).

Let \(V_i = \{ v : f(v) = i \} \) and \(H_i = \{ \text{vertex nbhds in } V_i \} \). If \(N(x) \) and \(N(y) \) all have color \(i \), then \(N(x) \cap N(y) \neq \emptyset \).
χ₂ on Graphs with Diameter 3

Thm. χ₂(G) ≤ 3χ(G) when diam(G) = 3, which is sharp.

Pf. Sharpness: Form G from K₃ₖ by subdividing each edge in k disjoint triangles: χ(G) = k and χ₂(G) = 3k.

Idea: Pair a proper coloring f with a 3-coloring that puts two colors in each nbhd that does not already have two colors under f.

Let Vᵢ = {v: f(v) = i} and Hᵢ = {vertex nbhds in Vᵢ}. If N(x) and N(y) all have color i, then N(x) ∩ N(y) ≠ ∅.

In an intersecting hypergraph, use two colors on a minimal edge and a third color on the other vertices.
Open Problems

Ques. For fixed r and k, what is the best bound on $\chi_r(G)$ when $\Delta(G) = k$ (with finitely many exceptions)?
Open Problems

Ques. For fixed r and k, what is the best bound on $\chi_r(G)$ when $\Delta(G) = k$ (with finitely many exceptions)?

Ques. In terms of r, what is the least k such that $\chi_r(G) \leq cr\chi(G)$ when G is k-regular?
Open Problems

Questions. For fixed r and k, what is the best bound on $\chi_r(G)$ when $\Delta(G) = k$ (with finitely many exceptions)?

Questions. In terms of r, what is the least k such that $\chi_r(G) \leq cr\chi(G)$ when G is k-regular? Least k such that $\chi_r(G) \leq r(\ln r)^c \chi(G)$ for some c?
Open Problems

Ques. For fixed r and k, what is the best bound on $\chi_r(G)$ when $\Delta(G) = k$ (with finitely many exceptions)?

Ques. In terms of r, what is the least k such that $\chi_r(G) \leq cr\chi(G)$ when G is k-regular?
Least k such that $\chi_r(G) \leq r(\ln r)^c \chi(G)$ for some c?

Ques. We know $\chi_r(P_m \square P_n)$ in most cases, but . . .
Open Problems

Ques. For fixed r and k, what is the best bound on $\chi_r(G)$ when $\Delta(G) = k$ (with finitely many exceptions)?

Ques. In terms of r, what is the least k such that $\chi_r(G) \leq cr\chi(G)$ when G is k-regular?

Least k such that $\chi_r(G) \leq r(\ln r)^c \chi(G)$ for some c?

Ques. We know $\chi_r(P_m \Box P_n)$ in most cases, but . . .

Conj. $\chi_3(P_m \Box P_n) = 5$ when $mn \equiv 2 \mod 4$.
Open Problems

Ques. For fixed r and k, what is the best bound on $\chi_r(G)$ when $\Delta(G) = k$ (with finitely many exceptions)?

Ques. In terms of r, what is the least k such that $\chi_r(G) \leq cr\chi(G)$ when G is k-regular?

Least k such that $\chi_r(G) \leq r(\ln r)^c \chi(G)$ for some c?

Ques. We know $\chi_r(P_m \Box P_n)$ in most cases, but . . .

Conj. $\chi_3(P_m \Box P_n) = 5$ when $mn \equiv 2 \pmod{4}$.
Open Problems

Ques. For fixed r and k, what is the best bound on $\chi_r(G)$ when $\Delta(G) = k$ (with finitely many exceptions)?

Ques. In terms of r, what is the least k such that $\chi_r(G) \leq cr\chi(G)$ when G is k-regular?

Least k such that $\chi_r(G) \leq r(\ln r)^c \chi(G)$ for some c?

Ques. We know $\chi_r(P_m \Box P_n)$ in most cases, but . . .

Conj. $\chi_3(P_m \Box P_n) = 5$ when $mn \equiv 2 \mod 4$.

\[
\begin{array}{cccccccccccccccc}
\text{a} & \text{b} & \text{c} & \text{d} & \text{a} & \text{b} & \text{c} & \text{d} & \text{a} & \text{b} & \text{c} & \text{d} & \text{a} & \text{b} \\
\text{c} & \text{d} & \text{a} & \text{b} & \text{c} & \text{d} & \text{a} & \text{b} & \text{c} & \text{d} & \text{a} & \text{b} & \text{c} & \text{d} \\
\text{b} & \text{a} & \text{b} & \text{a} \\
\text{d} & \text{c} & \text{d} \\
\text{a} & \text{b} & \text{a} \\
\text{c} & \text{d} & \text{b} & \text{a} & \text{c} & \text{d} & \text{b} & \text{a}
\end{array}
\]
Open Problems

Ques. For fixed r and k, what is the best bound on $\chi_r(G)$ when $\Delta(G) = k$ (with finitely many exceptions)?

Ques. In terms of r, what is the least k such that $\chi_r(G) \leq c r \chi(G)$ when G is k-regular?

Ques. We know $\chi_r(P_m \Box P_n)$ in most cases, but . . .

** Conj.** $\chi_3(P_m \Box P_n) = 5$ when $mn \equiv 2 \mod 4$.
Open Problems

Ques. For fixed r and k, what is the best bound on $\chi_r(G)$ when $\Delta(G) = k$ (with finitely many exceptions)?

Ques. In terms of r, what is the least k such that $\chi_r(G) \leq cr\chi(G)$ when G is k-regular?
Least k such that $\chi_r(G) \leq r(\ln r)^c \chi(G)$ for some c?

Ques. We know $\chi_r(P_m \Box P_n)$ in most cases, but . . .

Conj. $\chi_3(P_m \Box P_n) = 5$ when $mn \equiv 2 \mod 4$.
Open Problems

Ques. For fixed r and k, what is the best bound on $\chi_r(G)$ when $\Delta(G) = k$ (with finitely many exceptions)?

Ques. In terms of r, what is the least k such that $\chi_r(G) \leq cr\chi(G)$ when G is k-regular?

Least k such that $\chi_r(G) \leq r(\ln r)^c \chi(G)$ for some c?

Ques. We know $\chi_r(P_m \Box P_n)$ in most cases, but . . .

Conj. $\chi_3(P_m \Box P_n) = 5$ when $mn \equiv 2 \mod 4$.

```
  a b c d a b c d a b c d a b  
  c d a b c d a b c d a b c d  
  b a b c d                  b a  
  d c d                    d c  
  a b  a b  
  c d b a c d b a c d b a c d  
  b a c d b a c d b a c d b a  
```
Open Problems

Ques. For fixed r and k, what is the best bound on $\chi_r(G)$ when $\Delta(G) = k$ (with finitely many exceptions)?

Ques. In terms of r, what is the least k such that $\chi_r(G) \leq cr\chi(G)$ when G is k-regular?

Least k such that $\chi_r(G) \leq r(\ln r)^c \chi(G)$ for some c?

Ques. We know $\chi_r(P_m \square P_n)$ in most cases, but . . .

Conj. $\chi_3(P_m \square P_n) = 5$ when $mn \equiv 2 \pmod{4}$.
Open Problems

Ques. For fixed r and k, what is the best bound on $\chi_r(G)$ when $\Delta(G) = k$ (with finitely many exceptions)?

Ques. In terms of r, what is the least k such that $\chi_r(G) \leq cr\chi(G)$ when G is k-regular? Least k such that $\chi_r(G) \leq r(\ln r)^c \chi(G)$ for some c?

Ques. We know $\chi_r(P_m \Box P_n)$ in most cases, but . . .

Conj. $\chi_3(P_m \Box P_n) = 5$ when $mn \equiv 2 \mod 4$.

```
a b c d a b c d a b c d a b c d a b
c d a b c d a b c d a b c d a b c d
b a b c d a b c d a b c d a b c d
```

```
d c d a b c d a b c d a b c d
a b
```