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Background

Introduced by Montgomery [2001] (thesis).

χ2(G) called dynamic chromatic number (15 papers).

Conj. (Montgomery [2001]) χ2(G)≤χ(G)+2 for regular G.

True for bipartite G (Akbari–Ghanbari–Jahanbekam [2010])

and when χ(G) ≥ Δ(G) − 1 (Lai–Montgomery–Poon [2003]).

Def. List analogue: chr(G) is the least k such that an
r-dynamic coloring of G can be chosen from any lists of
k colors at the vertices.

ch2(G) ≤ Δ(G)+1 when Δ(G) ≥ 3 and no C5-component.
(Akbari–Ghanbari–Jahanbekam [2009])

ch2(G) ≤ 4 for planar graphs with girth at least 7, and
ch2(G) ≤ 5 for all planar graphs (Kim–Lee–Park [2011,13]).
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Motivation

Def. G2 - obtained from G by adding  when
dG(,) = 2.

Properly coloring G2 = coloring G so that
f () = f () ⇒ dG(,) ≥ 3.

Obs. χ(G) = χ1(G) ≤ · · · ≤ χΔ(G) = χ(G2).

Obs. χr(G) ≥min{r,Δ(G)} + 1, with equality for trees
and for cycles with length divisible by 6.

Theme: How do upper bounds on χ(G) need to be
relaxed to obtain bounds on χr(G) as r increases?
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Thm. If dim(G) = 2, then χ2(G) ≤ χ(G) + 2.

Pf. If N() all get color , then N() = { : f () = } (a
non-nbr of  with color  cannot reach  in two steps).

∴ nonadj. verts. with monochr. nbhds have same nbhd.

Let f be a proper χ(G)-coloring of G.

If f (N()) = {}, then give a new color b to  and a new
color c to some  ∈ N() (we may assume δ(G) ≥ 2).
If still N(z) is monochr., then z can’t be  or in N().

Now N(z) = N(), and , c both appear in N(z).

Thm. Equality holds above only for Km,n and C5.

What bounds hold for larger diameter or χr with r > 2?
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The k-sets have degree k + 1 and common neighbor .
Distance between a k-set and an element not in it is 3.
Elements of [n] lie in a common k-set. ∴ dim(G) = 3.

If r > k ≥ 2, then the k + 1 neighbors of a k-set have
distinct colors: χr(G) ≥ n+ 1.

Making  adjacent also to all of [n] yields dim(G) = 2

and χ(G) = 3; still χr(G) ≥ n+ 1 when r > k ≥ 2.
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In an intersecting hypergraph, use two colors on a
minimal edge and a third color on the other vertices.
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Ques. In terms of r, what is the least k such that
χr(G) ≤ crχ(G) when G is k-regular?
Least k such that χr(G) ≤ r(ln r)cχ(G) for some c?

Ques. We know χr(Pm�Pn) in most cases, but . . .

Conj. χ3(Pm�Pn) = 5 when mn ≡ 2 mod 4.
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