Rainbow Matching
in Edge-Colored Graphs

Douglas B. West

Department of Mathematics
University of Illinois at Urbana-Champaign
west@math.uiuc.edu

slides and preprint at
http://www.math.uiuc.edu/~west/pubs/publink.html

Joint work with
Timothy D. LeSaulnier
Christopher Stocker
Paul S. Wenger
Def. A transversal in a Latin square: positions with distinct entries, one in each row and column.
Def. A **transversal** in a Latin square: positions with distinct entries, one in each row and column.

Ryser’s Conjecture [1967] asserts that every Latin square of odd order contains a transversal.
Def. A transversal in a Latin square: positions with distinct entries, one in each row and column.

Ryser’s Conjecture [1967] asserts that every Latin square of odd order contains a transversal.
Def. A transversal in a Latin square: positions with distinct entries, one in each row and column.

Ryser’s Conjecture [1967] asserts that every Latin square of odd order contains a transversal.

![Latin square](image)

Latin square \iff Edge-colored $K_{n,n}$
Background

Def. A transversal in a Latin square: positions with distinct entries, one in each row and column.

Ryser’s Conjecture [1967] asserts that every Latin square of odd order contains a transversal.

![Latin square diagram]

Latin square \iff **Edge-colored $K_{n,n}$**

transversal \iff **Rainbow perfect matching**
Definitions and Prior Results

In an edge-colored graph (no loops or multi-edges),
Definitions and Prior Results

In an edge-colored graph (no loops or multi-edges),

Def. color-degree $\hat{d}(v) = \# \text{distinct colors at } v$.

minimum color-degree $\delta(G) = \min\{\hat{d}(v): v \in V(G)\}$.

rainbow matching = disjoint edges whose colors are distinct (survey by Kano–X.Li [2008])
Definitions and Prior Results

In an edge-colored graph (no loops or multi-edges),

Def. color-degree $\hat{d}(v) = \#\text{distinct colors at } v$.

minimum color-degree $\hat{\delta}(G) = \min \{\hat{d}(v): v \in V(G)\}$.

rainbow matching = disjoint edges whose colors are distinct \hspace{1cm} \text{(survey by Kano–X.Li [2008])}

Thm. (Wang–H.Li [2008]) Every edge-colored graph G has a rainbow matching of size at least $\left\lceil \frac{5\hat{\delta}(G) - 3}{12} \right\rceil$.
Definitions and Prior Results

In an edge-colored graph (no loops or multi-edges),

Def. color-degree $\hat{d}(\nu) = \#\text{distinct colors at } \nu$.

minimum color-degree $\hat{\delta}(G) = \min\{\hat{d}(\nu) : \nu \in V(G)\}$.

rainbow matching = disjoint edges whose colors are distinct (survey by Kano–X.Li [2008])

Thm. (Wang–H.Li [2008]) Every edge-colored graph G has a rainbow matching of size at least $\left\lceil \frac{5\hat{\delta}(G) - 3}{12} \right\rceil$.

Conj. (Wang–H.Li [2008]) If $\hat{\delta}(G) \geq 4$, then G has a rainbow matching of size at least $\left\lceil \hat{\delta}(G)/2 \right\rceil$.
Definitions and Prior Results

In an edge-colored graph (no loops or multi-edges),

Def. color-degree $\hat{d}(v) = \#\text{distinct colors at } v$.

minimum color-degree $\hat{\delta}(G) = \min\{\hat{d}(v): v \in V(G)\}$.

rainbow matching = disjoint edges whose colors are distinct (survey by Kano–X.Li [2008])

Thm. (Wang–H.Li [2008]) Every edge-colored graph G has a rainbow matching of size at least $\left\lceil \frac{5\hat{\delta}(G) - 3}{12} \right\rceil$.

Conj. (Wang–H.Li [2008]) If $\hat{\delta}(G) \geq 4$, then G has a rainbow matching of size at least $\left\lceil \hat{\delta}(G)/2 \right\rceil$.

Thm. (X.Li–Z.Xu [2009]) The conjecture holds for properly edge-colored complete graphs.
New Results

Ex. A properly 3-edge-colored K_4 has no rainbow matching of size 2.
New Results

Ex. A properly 3-edge-colored K_4 has no rainbow matching of size 2.

Thm. (LeSaulnier–Stocker–Wenger–West [2009+]) Every edge-colored graph G has a rainbow matching of size at least $\lfloor \hat{\delta}(G)/2 \rfloor$.
New Results

Ex. A properly 3-edge-colored K_4 has no rainbow matching of size 2.

![Diagram of K_4 with colors]

Thm. (LeSaulnier–Stocker–Wenger–West [2009+]) Every edge-colored graph G has a rainbow matching of size at least $\lceil \delta(G)/2 \rceil$.

Thm. (L–S–W–W) Each condition below yields a rainbow matching of size at least $\lceil \delta(G)/2 \rceil$.

(a) G has more than $\frac{3(\delta(G)-1)}{2}$ vertices.
(b) G is triangle-free.
(c) The coloring is proper, $G \neq K_4$, and $|V(G)| \neq \delta(G)+2$.

Notation

Fix an edge-colored graph G. Let $k = \delta(G)$ and $n = V(G)$.
Fix an edge-colored graph G. Let $k = \delta(G)$ and $n = V(G)$. Let M be a largest rainbow matching. Let $c = k/2 - |M|$. We may assume $c \geq 1/2$ and $n \geq k + 2$.
Fix an edge-colored graph G. Let $k = \delta(G)$ and $n = V(G)$. Let M be a largest rainbow matching. Let $c = k/2 - |M|$. We may assume $c \geq 1/2$ and $n \geq k + 2$.

Let $H = G - V(M)$, with p vertices: $p = n - (k - 2c) \geq 2c + 2$.
Fix an edge-colored graph G. Let $k = \hat{\delta}(G)$ and $n = V(G)$.

Let M be a largest rainbow matching. Let $c = k/2 - |M|$. We may assume $c \geq 1/2$ and $n \geq k + 2$.

Let $H = G - V(M)$, with p vertices: $p = n - (k - 2c) \geq 2c + 2$.

Delete edges within $V(M)$ and $V(H)$ to form A.
Fix an edge-colored graph G. Let $k = \hat{\delta}(G)$ and $n = V(G)$. Let M be a largest rainbow matching. Let $c = k/2 - |M|$. We may assume $c \geq 1/2$ and $n \geq k + 2$.

Let $H = G - V(M)$, with p vertices: $p = n - (k - 2c) \geq 2c + 2$.

Delete edges within $V(M)$ and $V(H)$ to form A.

If $u \in V(M)$, then $\hat{d}_A(u) \geq \hat{\delta}(G) - (2|M| - 1) = 2c + 1$. (1)
Def. A color used in G but not in M is free. Let B be the spanning subgraph of A whose edges have free colors. Let $f(S) = \sum_{x \in S} f(x)$ when f is a function on vertices.
Def. A color used in G but not in M is free. Let B be the spanning subgraph of A whose edges have free colors. Let $f(S) = \sum_{x \in S} f(x)$ when f is a function on vertices.

Idea: Count upper and lower bounds on $\hat{d}_B(V(H))$. Obtain a contradiction if M is too small (i.e., c too big).
Def. A color used in G but not in M is free. Let B be the spanning subgraph of A whose edges have free colors. Let $f(S) = \sum_{x \in S} f(x)$ when f is a function on vertices.

Idea: Count upper and lower bounds on $\hat{d}_B(V(H))$. Obtain a contradiction if M is too small (i.e., c too big).

Since only $k/2 - c$ colors are not free, each vertex of H is incident to at least $k/2 + c$ free colors.
Def. A color used in G but not in M is free. Let B be the spanning subgraph of A whose edges have free colors. Let $f(S) = \sum_{x \in S} f(x)$ when f is a function on vertices.

Idea: Count upper and lower bounds on $\hat{d}_B(V(H))$. Obtain a contradiction if M is too small (i.e., c too big).

Since only $k/2 - c$ colors are not free, each vertex of H is incident to at least $k/2 + c$ free colors.

By the choice of M, colors in H are not free, so

$$\hat{d}_B(V(H)) \geq p(k/2 + c) \quad (2)$$
Free Colors

Def. A color used in G but not in M is free. Let B be the spanning subgraph of A whose edges have free colors. Let $f(S) = \sum_{x \in S} f(x)$ when f is a function on vertices.

Idea: Count upper and lower bounds on $\hat{d}_B(V(H))$. Obtain a contradiction if M is too small (i.e., c too big).

Since only $k/2 - c$ colors are not free, each vertex of H is incident to at least $k/2 + c$ free colors.

By the choice of M, colors in H are not free, so

$$\hat{d}_B(V(H)) \geq p(k/2 + c)$$

(2)

For the upper bound, group $E(B)$ by the endpoints in M:
Free Colors

Def. A color used in G but not in M is free. Let B be the spanning subgraph of A whose edges have free colors. Let $f(S) = \sum_{x \in S} f(x)$ when f is a function on vertices.

Idea: Count upper and lower bounds on $\hat{d}_B(V(H))$. Obtain a contradiction if M is too small (i.e., c too big).

Since only $k/2 - c$ colors are not free, each vertex of H is incident to at least $k/2 + c$ free colors.

By the choice of M, colors in H are not free, so

$$\hat{d}_B(V(H)) \geq p(k/2 + c) \quad (2)$$

For the upper bound, group $E(B)$ by the endpoints in M: Let $M = \{u_j, v_j : 1 \leq j \leq |M| \}$. Let B_j be the subgraph of B induced by $V(H) \cup \{u_j, v_j\}$.
Slices of B

Lem. If $\hat{d}_{B_j} \geq 1$ for w_1, w_2, w_3 in $V(H)$, then only one can have $\hat{d}_{B_j} = 2$. Furthermore,

$$\hat{d}_{B_j}(V(H)) \leq p + 1$$

(3)
Slices of B

Lem. If $\hat{d}_{B_j} \geq 1$ for w_1, w_2, w_3 in $V(H)$, then only one can have $\hat{d}_{B_j} = 2$. Furthermore,

$$\hat{d}_{B_j}(V(H)) \leq p + 1 \quad (3)$$

Pf. Suppose $\hat{d}_{B_j}(w_1) = \hat{d}_{B_j}(w_2) = 2$ and $w_3 v_j \in E(B_j)$.

![Diagram of B with vertices u_j, v_j, w_1, w_2, w_3, and M, H]
Slices of B

Lem. If $\hat{d}_{B_j} \geq 1$ for w_1, w_2, w_3 in $V(H)$, then only one can have $\hat{d}_{B_j} = 2$. Furthermore,

$$\hat{d}_{B_j}(V(H)) \leq p + 1$$ \hspace{1cm} (3)

Pf. Suppose $\hat{d}_{B_j}(w_1) = \hat{d}_{B_j}(w_2) = 2$ and $w_3 v_j \in E(B_j)$. Maximality of $M \Rightarrow \phi(u_j w_1) = \phi(v_j w_2)$.
Slices of B

Lem. If $\hat{d}_{B_j} \geq 1$ for w_1, w_2, w_3 in $V(H)$, then only one can have $\hat{d}_{B_j} = 2$. Furthermore,

$$\hat{d}_{B_j}(V(H)) \leq p + 1$$ \hspace{1cm} (3)

Pf. Suppose $\hat{d}_{B_j}(w_1) = \hat{d}_{B_j}(w_2) = 2$ and $w_3 \nu_j \in E(B_j)$. Maximality of $M \Rightarrow \phi(u_j w_1) = \phi(v_j w_2)$.

$\hat{d}_{B_j}(w_2) = 2 \Rightarrow \phi(u_j w_2) \neq \phi(v_j w_2)$.

\begin{itemize}
 \item M
 \item u_j
 \item w_1
 \item w_2
 \item w_3
 \item H
 \item ν_j
\end{itemize}
Slices of B

Lem. If $\hat{d}_{B_j} \geq 1$ for w_1, w_2, w_3 in $V(H)$, then only one can have $\hat{d}_{B_j} = 2$. Furthermore,

$$\hat{d}_{B_j}(V(H)) \leq p + 1$$ (3)

Pf. Suppose $\hat{d}_{B_j}(w_1) = \hat{d}_{B_j}(w_2) = 2$ and $w_3 v_j \in E(B_j)$. Maximality of $M \Rightarrow \phi(u_j w_1) = \phi(v_j w_2)$.

$\hat{d}_{B_j}(w_2) = 2 \Rightarrow \phi(u_j w_2) \neq \phi(v_j w_2)$.

Now $w_3 v_j$ enlarges M with $u_j w_1$ or $u_j w_2$.

![Diagram](attachment:image.png)
Slices of B

Lem. If $\hat{d}_{B_j} \geq 1$ for w_1, w_2, w_3 in $V(H)$, then only one can have $\hat{d}_{B_j} = 2$. Furthermore,

$$\hat{d}_{B_j}(V(H)) \leq p + 1$$

(3)

Pf. Suppose $\hat{d}_{B_j}(w_1) = \hat{d}_{B_j}(w_2) = 2$ and $w_3 v_j \in E(B_j)$. Maximality of $M \Rightarrow \phi(u_j w_1) = \phi(v_j w_2)$.

$\hat{d}_{B_j}(w_2) = 2 \Rightarrow \phi(u_j w_2) \neq \phi(v_j w_2)$.

Now $w_3 v_j$ enlarges M with $u_j w_1$ or $u_j w_2$.

Note $p \geq 2c + 2$ and $c \geq 1/2$ imply $p \geq 3$. Since $\hat{d}_{B_j}(w) \leq 2$ for $w \in V(H)$, $\hat{d}_{B_j}(V(H)) \geq p + 2$ requires a bad triple.

[Diagram showing the relationship between M, w_1, w_2, w_3, u_j, and v_j.]
What is Left to Do?

There are $k/2 - c$ values of j, so (2) and (3) imply
\[p(k/2 + c) \leq \hat{d}_B(V(H)) \leq (p + 1)(k/2 - c). \]
What is Left to Do?

There are \(k/2 - c \) values of \(j \), so (2) and (3) imply
\[
p(k/2 + c) \leq \hat{d}_B(V(H)) \leq (p + 1)(k/2 - c).
\]
Reducing \(p + 1 \) to \(p \) on the right would yield \(c \leq 0 \) and prove the conjecture. If not, then still \(|M| \geq \lfloor k/2 \rfloor \).
What is Left to Do?

There are \(k/2 - c \) values of \(j \), so (2) and (3) imply
\[
p(k/2 + c) \leq \hat{d}_B(V(H)) \leq (p + 1)(k/2 - c).
\]
Reducing \(p + 1 \) to \(p \) on the right would yield \(c \leq 0 \) and prove the conjecture. If not, then still \(|M| \geq \lfloor k/2 \rfloor \).

Lem. If \(p \geq 4 \) and \(\hat{d}_{B_j}(V(H)) = p + 1 \) for some \(j \), then \(c \leq 1/2 \), the edge-coloring is not proper, and \(K_3 \subseteq G \).
What is Left to Do?

There are $k/2 - c$ values of j, so (2) and (3) imply

$$p(k/2 + c) \leq \hat{d}_B(V(H)) \leq (p + 1)(k/2 - c).$$

Reducing $p + 1$ to p on the right would yield $c \leq 0$ and prove the conjecture. If not, then still $|M| \geq \lfloor k/2 \rfloor$.

Lem. If $p \geq 4$ and $\hat{d}_{B_j}(V(H)) = p + 1$ for some j, then $c \leq 1/2$, the edge-coloring is not proper, and $K_3 \subseteq G$.

Pf. $p + 1 \geq 5 \Rightarrow \hat{d}_{B_j} \geq 1$ for at least three vertices of H.

By the Lemma, $\hat{d}_{B_j}(w) = 2$ for only one vertex $w \in V(H)$.
What is Left to Do?

There are $k/2 - c$ values of j, so (2) and (3) imply

$$p(k/2 + c) \leq \hat{d}_B(V(H)) \leq (p + 1)(k/2 - c).$$

Reducing $p + 1$ to p on the right would yield $c \leq 0$ and prove the conjecture. If not, then still $|M| \geq \lfloor k/2 \rfloor$.

Lem. If $p \geq 4$ and $\hat{d}_{B_j}(V(H)) = p + 1$ for some j, then $c \leq 1/2$, the edge-coloring is not proper, and $K_3 \subseteq G$.

Pf. $p + 1 \geq 5 \Rightarrow \hat{d}_{B_j} \geq 1$ for at least three vertices of H. By the Lemma, $\hat{d}_{B_j}(w) = 2$ for only one vertex $w \in V(H)$.
What is Left to Do?

There are \(k/2 - c \) values of \(j \), so (2) and (3) imply
\[
p(k/2 + c) \leq \hat{d}_B(V(H)) \leq (p + 1)(k/2 - c).
\]
Reducing \(p + 1 \) to \(p \) on the right would yield \(c \leq 0 \) and prove the conjecture. If not, then still \(|M| \geq \lfloor k/2 \rfloor \).

Lem. If \(p \geq 4 \) and \(\hat{d}_{B_j}(V(H)) = p + 1 \) for some \(j \), then \(c \leq 1/2 \), the edge-coloring is not proper, and \(K_3 \subseteq G \).

Pf. \(p + 1 \geq 5 \) \(\Rightarrow \hat{d}_{B_j} \geq 1 \) for at least three vertices of \(H \). By the Lemma, \(\hat{d}_{B_j}(w) = 2 \) for only one vertex \(w \in V(H) \).
What is Left to Do?

There are $k/2 - c$ values of j, so (2) and (3) imply

$$p(k/2 + c) \leq \hat{d}_B(V(H)) \leq (p + 1)(k/2 - c).$$

Reducing $p + 1$ to p on the right would yield $c \leq 0$ and prove the conjecture. If not, then still $|M| \geq \lfloor k/2 \rfloor$.

Lem. If $p \geq 4$ and $\hat{d}_{B_j}(V(H)) = p + 1$ for some j, then $c \leq 1/2$, the edge-coloring is not proper, and $K_3 \subseteq G$.

Pf. $p + 1 \geq 5 \implies \hat{d}_{B_j} \geq 1$ for at least three vertices of H. By the Lemma, $\hat{d}_{B_j}(w) = 2$ for only one vertex $w \in V(H)$.

Maximality of $M \implies U = \emptyset$ or $V = \emptyset$, so $\hat{d}_A(v_j) \leq 2$ or $\hat{d}_A(u_j) \leq 2$, but $\hat{d}_A(u) \geq 2c + 1$, so $c \leq 1/2$. ■
Conclusion

Thm. (LeSaulnier–Stocker–Wenger–West [2009+])

Every edge-colored graph G has a rainbow matching of size $\left\lceil \frac{\delta(G)}{2} \right\rceil$, improving to $\left\lceil \frac{\hat{\delta}(G)}{2} \right\rceil$ under any of:

(a) G has more than $\frac{3(\delta(G)-1)}{2}$ vertices.
(b) G is triangle-free.
(c) The coloring is proper, $G \neq K_4$, and $n \neq \hat{\delta}(G) + 2$.

Conclusion

Thm. (LeSaulnier–Stocker–Wenger–West [2009+])
Every edge-colored graph G has a rainbow matching of size $\left\lfloor \hat{\delta}(G)/2 \right\rfloor$, improving to $\left\lceil \hat{\delta}(G)/2 \right\rceil$ under any of:
(a) G has more than $\frac{3(\hat{\delta}(G)-1)}{2}$ vertices.
(b) G is triangle-free.
(c) The coloring is proper, $G \neq K_4$, and $n \neq \hat{\delta}(G) + 2$.

Pf. When $p \geq 4$, the Lemma yields $c \leq 1/2$.
When $p \leq 3$, apply $p = n - 2 |M| = n - (k - 2c) \geq 2c + 2$.
Conclusion

Thm. (LeSaulnier–Stocker–Wenger–West [2009+])
Every edge-colored graph G has a rainbow matching of size $\left\lfloor \frac{\hat{\delta}(G)}{2} \right\rfloor$, improving to $\left\lceil \frac{\hat{\delta}(G)}{2} \right\rceil$ under any of:
(a) G has more than $\frac{3(\hat{\delta}(G) - 1)}{2}$ vertices.
(b) G is triangle-free.
(c) The coloring is proper, $G \neq K_4$, and $n \neq \hat{\delta}(G) + 2$.

Pf. When $p \geq 4$, the Lemma yields $c \leq 1/2$. When $p \leq 3$, apply $p = n - 2|M| = n - (k - 2c) \geq 2c + 2$.
(a) The stronger bound ($c \leq 0$) holds unless $\hat{d}_{B_j}(V(H)) = p + 1$ for some j, and then $c = 1/2$. Now $p(k/2 + c) \leq \hat{d}_B(V(H)) \leq (p + 1)(k/2 - c)$.

simplifies to $2p + 1 \leq k$, or $n \leq 3(k - 1)/2$.
Conclusion

Thm. (LeSaulnier–Stocker–Wenger–West [2009+])
Every edge-colored graph G has a rainbow matching of size $\left\lceil \frac{\hat{\delta}(G)}{2} \right\rceil$, improving to $\left\lceil \frac{\hat{\delta}(G)}{2} \right\rceil$ under any of:

(a) G has more than $\frac{3(\hat{\delta}(G)-1)}{2}$ vertices.
(b) G is triangle-free.
(c) The coloring is proper, $G \neq K_4$, and $n \neq \hat{\delta}(G) + 2$.

Pf. When $p \geq 4$, the Lemma yields $c \leq 1/2$. When $p \leq 3$, apply $p = n - 2 |M| = n - (k - 2c) \geq 2c + 2$.

(a) The stronger bound ($c \leq 0$) holds unless $\hat{d}_{B_j}(V(H)) = p + 1$ for some j, and then $c = 1/2$. Now $p(k/2 + c) \leq \hat{d}_B(V(H)) \leq (p + 1)(k/2 - c)$. Simplifies to $2p + 1 \leq k$, or $n \leq 3(k - 1)/2$.

(b,c) For $n = k + 1$, apply Li–Xu. If $n \geq k + 3$, then $p \geq 4$, and the Lemma \Rightarrow triangles and improper coloring. ■