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n The p-intersection graph of a collection of finite sets {Si} i :  1 is the graph with vertices 
1,... ,n such that i, j are adjacent if and only if ISi N SjI> p. The p-intersection number of a 
graph G, herein denoted Op(G), is the minimum size of a set U such that G is the p-intersection 
graph of subsets of U. If G is the complete bipartite graph Kn,n and p _~ 2, then Op(Kn,n) ~_ 
(n2§ When p=  2, equality holds if and only if Kn has an orthogonal double covering, 
which is a collection of n subgraphs of Kn, each with n -  1 edges and maximum degree 2, such 
that each pair of subgraphs shares exactly one edge. By construction, Kn has a simple explicit 
orthogonal double covering when n is congruent modulo 12 to one of {1,2,5, 7,10,11}. 

1. Introduction 

We s t u d y  a m o d e l  of g raph  r ep re sen t a t i on  using in tersec t ions  of finite sets. 
Given a g raph  G wi th  ver t ices  V, a col lect ion of sets {Sv:V E V}  is an intersection 
representation of G if uv E E(G)  if and  only  if Su • Sv ~ O. We also say t h a t  G is 
the  intersection graph of the  col lect ion of sets. 

W h e n  using finite sets, we define the  intersection number of G to be  the  
m i n i m u m  t such t h a t  G has an in te rsec t ion  r ep resen ta t ion  using subsets  of a t- 
e lement  set U. Erdbs ,  G o o d m a n ,  and  Pdsa  [6] showed t h a t  the  in te rsec t ion  number  
of G equals  the  m i n i m u m  number  of cl iques needed to  cover the  edges of G; the  
cliques co r respond  to e lements  of U. 

One way to general ize  in te rsec t ion  graphs  is to  genera te  edges only when the  
in te rsec t ion  of the  co r respond ing  sets is "large enough".  This  has been  s tud ied  when 
the  represen t ing  sets are in tervals  by  assigning " tolerances"  to  vert ices,  genera t ing  
an edge uv if the  length  of Su A Sv is a t  leas t  some funct ion of the  to lerances  on u 
and  v (see [12, 17, 18]). W h e n  using finite sets,  we define the  p-intersection graph 
by genera t ing  the  edge uv if and  only  if I Su A S v l > p .  The  p-intersection number of 
G is m i n i m u m  t such t h a t  G is the  p - in te r sec t ion  g raph  of a col lect ion of subsets  of 
a t -se t  U. 

A specia l  case of th is  concept  arose in the  t heo ry  of c o m p e t i t i o n  graphs.  A 
g raph  G is the  p-competition graph of a d ig r aph  D if G has the  same vert ices  as 
D,  and  xy E E(G)  if and  only if x and  y have p common  successors.  In  o the r  
words,  a p - c o m p e t i t i o n  g raph  is a p - in te r sec t ion  graph,  where  the  sets  ass igned 
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are the successor sets (out-neighborhoods) of the vertices of D. The concept of 
p-intersection graph was introduced in [19] and studied further in [15, 20]. 

Like the ordinary intersection number, the p-intersection number has an equiv- 
alent description using a covering problem. For this reason we use the notation 
Op(G) for the p-intersection number of G. Given a p-representation of G, we can 
associate with each element a E U the vertex set T(a)= {v E V(G):  a E Sv}. a col- 
lection of subsets of V(G) generates a p-representation of G precisely when vertices 
are adjacent in G if and only if they appear in at least p common sets. We call such 
a collection of vertex subsets a p-generator of G. Since a 1-generator consists of 
cliques in G, a p-generator has also been called a "p-edge clique cover" (see [3, 20, 
21, 22]); we prefer the te rm "p-generator" because the vertex sets need not induce 
cliques when p >  1. These authors study Op(G) under the name"p-edge clique cover 
number" .  

Since sets in a p-generator can be repeated, Op(G) <_ pOI(G). Also Op(G) <_ 
Op I(G) + 1, as observed in [3], since adding the full vertex set V(G) to a p -  1- 
generator. Nevertheless, 0p can be smaller tha t  0p-1. The natural  problem is to 
maximize 0p(G) over n-vertex graphs. For p = 1, the solution is well-known to be 

[n2/4J [6], achieved by KLn/2j, [n/2~" Experimentat ion suggests that  this graph also 
maximizes Op for n-vertex graphs when p > 1, or at least achieves the maximum 
infinitely often for any fixed p. We pose this as a conjecture. In this paper, we 
study the value of Op(t(n,n). By using a counting argument and solving the resulting 
integer program, we prove Op(Kn,n) >_ (n2+(2p  - 1)n)/p when p>_2, which places a 
lower bound on the max imum p-intersection number for 2n-vertex graphs. Earlier, 
Jacobson [16] used another counting argument to prove Op(Kn,n) >_ a(nl25). More 
recently, Fiiredi [9] used a result of Frankl and Rhdl [7] (described also in [8, p. 190]) 
to prove that  the lower bound of (n 2 + ( 2 p -  1)n)/p is asymptotical ly best possible 
for Op(Kn,n). This was proved independently by Eaton,  Gould, and Rhdl in [5]. 

Achieving the lower bound exactly for p = 2 is equivalent to a graph design 
problem of independent interest. An orthogonal double covering of/~n is a collection 
of n subgraphs o f / ~ ,  each with n - 1  edges and maximum degree 2, such that  each 
pair of subgraphs shares exactly one edge. In such a configuration, every edge must 
appear  in exactly two subgraphs. We prove that  02(Kn,n)= (n2+3n)/2 if and only 
if Kn has an orthogonal double covering. Orthogonal double coverings of Kn have 
independently been studied under the name ~'self-orthogonal 0,2-factorizations of 
2Kn"; see [1] for a survey on this and related topics. Various papers contain 
orthogonal double coverings with special additional properties. For example, [13, 
14] contain constructions of orthogonal double coverings in which each subgraph 
is a cycle of length n - 1 plus an isolated vertex, for special values of n. In [4], 
each subgraph was required to be a union of disjoint cliques; here the terminology 
and motivation was much different, and the maximum degree condition was not 
imposed. For n z  i mod 3, [4] requested orthogonal double coverings in which each 
subgraph is a collection of disjoint triangles plus one isolated vertex. Solutions when 
n - l , 4  rood 12 were constructed in [4]. This cannot be done when n = 1 0  [23], but 
otherwise the cases n = 7, 10 mod 12 were solved independently in [2] and [10]. 

In the less restrictive setting of maximum degree 2 (not necessarily near- 
spanning cycles or triangles), we obtain simple constructions for infinite classes 
of values. When n is congruent mod 12 to one of 1, 2, 5, 7, 10, 11, we construct 



p - I N T E R S E C T I O N  N U M B E R  455 

an explicit cyclically invariant orthogonal double covering of Kn, thus proving that  
02(Kn,n) = (n 2 +3n ) /2  for these values. Very recently, Ganter, Gronau, and Mullin 
[11] solved the problem for all values of n. Using known results in design theory 
plus a few ad hoe examples, they obtained orthogonal double covers in which each 
subgraph consists of an isolated vertex and a union of disjoint cycles; except for 
n E {2, 3, 8}, they obtain constructions using cycles of length at most 5. 

Concerning larger p, we present just two special constructions that  achieve 
equality in the linear programming bound, for (p,n)= (3,7) and (p,n)= (4,13). 
These may generalize when n =p2_p + 1 and there is a projective plane of order 
p - 1 .  

2. The lower bound 

Consider G=Krn,n with parti te sets X, Y. Let T be a vertex subset appearing 
in a p-generator of t(m,n, and suppose that  T consists of r vertices in X and s 
vertices in Y. Among the (r+s) pairs of vertices in T, there are rs good pairs 
(corresponding to edges of G) and (i) + (~) bad pairs (corresponding to edges of 
G). When we sum this over all subsets in a p-generator, we must have at least 

n pmn good pairs and at most ( p - 1 ) ( ( r ~ ) +  (2)) bad pairs. Note that  if T has k =  
r + s vertices, then the number of good pairs is maximized and the number of bad 
pairs is minimized simultaneously when r = [k/2J. Because the argument leads to 
an optimal bound when m = n (for p = 2) and because our primary interest is the 
lower bound on the maximal value of Op for graphs of fixed order, we henceforth 
discuss only Kn,n. 

Theorem 1. Iep>_ 2, then Op(K~,n) >_ (n 2 + (2p- 1>) />  

Proof. For k _> 2, let Yk be the number of vertex subsets of size k in some fixed p- 
generator of I~n,  n .  Using the constraints described above, we obtain a lower bound 
on ~ Yk by bounding the following linear programming problem: over nonnegative 
variables {Yk}, minimize ~ Yk subject to 

(1, E y  k [ ( E k ~ 2 ] ) +  ([ /~s < 2 ( p _  1 ) ( 2 ) ,  

(2) yk Lk2/4J > p n2. 

Let o~ k = (Lk~ 2]) + (Fk~ 2]) and /3k= L k2/4j.  
Our linear minimization problem is phrased in a canonical form: minimize 

y.  b such that  yA >_ c and {Yi} >- O. For such a problem, there is a canonical dual 
maximization problem: maximize c. z such that  Ax < b and {xj} > O. If y, x are 
both feasible solutions to their respective problems, then we have yb > yam > ex. 
Hence Op(Kn,n)> z is implied by any feasible solution to the dual that  has value z. 
We present such a solution. 

In our problem, b is a column vector of l 's, and c = ( - ( p -  1)n(n - 1),pn2). 
The dual problem has two variables x l ,  x2 corresponding to the constrains (1) and 
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(2), and it has a constraint for each minimization variable Yk. The problem is to 
maximize x2pn 2 - x l ( p -  1 ) n ( n -  1) such that  Xl, x 2 ~ 0 and x2/3k ---- X l a  k ~ 1 for 
k > 2. We choose Xl = (2p -1 ) /~o (p -1 ) ]  and x2 =2/p. The value of this solution is 
2n 2 -  ( 2 p - 1 ) n ( n - 1 ) / p =  (n2+ ( 2 p - 1 ) n ) / p ,  so it suffices to show that  this solution 
is feasible. Consider constraint k, and let r = Ik/2]. We have ak = ( r -  1)/r3k 
and/3 k = r ( k - r ) .  Substituting in these values and those of Xl, x2, we must show 
2r (k - r )  - ( 2 p -  1 ) ( p -  1)-1(r  - 1 ) ( k - r )  _<p, or (2p-  1 - r ) ( k - r )  < p ( p -  1). Since 
k - r  = [k/2J, we have k - r  < r, and it suffices to show ( 2 p -  1 - r ) r  <p(p-  1). Since 
(2 p -  1 - r) + r = p + ( p -  1), this holds for every value of r not satisfying p -  1 < r < p, 
which covers all integers. | 

To show that the bound of the theorem above is the best possible bound 
from the linear program and is potentially achievable, we exhibit a solution to 
the minimization problem that  has the same value as the solution (Xl,X2) given 
above to the maximization problem. The argument given for feasibility of the dual 
solution also shows that  the kth constraint holds with equality if and only if k is 
2p or 2 p -  2. The complementary slackness theorem of linear programming then 
implies that  a solution to the min problem that has the same value must have Yk = 
0 for k ~ {2p, 2 p - 2 } .  (In actuality, the dual solution above was obtained from the 
min solution below using this method.) 

This leads us to set all Yk = 0  except Y2p-2 =pn and Y2p= (n2(p - 1)2n)/p. We 
show below that  the constraints (1), (2) hold with equality and the solution is thus 
feasible. The value of this solution is (n 2 + p2n - (p -  1)2n)/p= (n 2 + ( 2 p -  1)n)/p. 
However, the nonnegativity constraint for Y2p requires n _> ( p -  1) 2, so for n < 
( p -  1) 2 the bound of the theorem is probably not best possible. Indeed, Ffiredi [9] 
(and independently Eaton, Gould, Rbdl [5]) has proved the alternative lower bound 
Op(Kn,n) > (n+p - 1)2/p, which exceeds (n 2 + (2p - 1)n)/p when n < ( p -  1) 2. 

With the values specified, the left side of (1) becomes pn[2(P~l)] + (n 2 -  
( p -  1)2)n[2(P)] = n ( p -  1)[p(p-  2 ) + n -  ( p -  1)2]. Substracting the right side leaves 
n ( p - 1 ) [ p ( p - 2 ) + l - ( p - 1 )  2 ] = 0 .  For (2), the left side is pn (p -1 )  2 + ( n  2 -  
(p -  1)2n)p-lp 2 =pn[(p- 1) 2 + n -  ( p -  1) 2] =pn 2, which equals the right side. 

This solution to the minimization problem narrows the search for constructions 
achieving equality in the bound. 

3. Equivalent design problem for p = 2 

The solution to the linear programs places considerable restriction on 2- 
generators of Kn,n having size (nZ+3n)/2, which we call perfect 2-generators. A 
perfect 2-generator must consist of exactly 2n 2-sets and n ( n - 1 ) / 2  = (~) 4-sets, 
each set having half its vertices on each side. We reduce the existence of such a col- 
lection of vertex sets to an equivalent graph design problem, for which we exhibit 
solutions for special congruence classes of n mod 12. 

A orthogonal double covering of (the labeled complete graph) Kn is a collection 
of n subgraphs, each consisting of n -  1 edges, such that  the maximum degree of 
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each subgraph is two and each pair of subgraphs shares exactly one edge. The use 
of the word "double" in this term arises from the following lemma. 

L e m m a  1. ][f GI,... ,Gn are n -  1-edge subgraphs of Kn such that each pair shares 
exactly one edge, then each edge appears in exactly two subgraphs. 
Proof.  Counting by pairs of subgraphs, there are (~) edge-intersections between 
subgraphs. Let us count this also by edges of Kn. If e appears in t(e) subgraphs, 

then e contributes (t(2e)) edge-intersections to the total. We have (~) = 2 t(e)[t(e)- 
e 

1]/2 and }-~t(e) -- n(n-  1)/2. Since the sum of squared numbers with fixed sum 
e 

is minimized precisely when they are equal, the summation has value at least (~), 
with equality if and only if each edge is in two subgraphs. I 

Now we reduce the perfect 2-generator problem to the orthogonal double 
covering problem. 

T heorem 2. Kn,n has a perfect 2-generator if and only if Kn has a orthogonM 
double covering. 

Proof. Suppose Kn,n with parti te sets X, Y has a perfect 2-generator T. As noted 
above, each set in T must be half in X and half in Y. The (~) 4-sets generate 
(~) pairs in X. No pair of vertices in X can appear in two sets of T, so each pair 
appears in exactly one 4-set of T. The same argument holds for Y, so the 4-sets 
establish a bijection f between the pairs in X and the pairs in Y. Furthermore, 
since the total count of good pairs is exactly 2n 2 from the 2n 2-sets (~) 4-sets, no 
x E X and y E Y can appear together in three sets of T. 

Let X I, y / d e n o t e  the complete graphs with vertex sets X, Y. Let Ex denote 
the edges of X t incident to x c X. Consider the edges f(Ex) in y i .  If any three 
edges of f(Ex) are incident to a single vertex y E Y, then x, y appear together in 
three of the 4-sets in T. Hence {f(Ex):xEX} is a collection of n subgraphs of Y~, 
each having n - 1  edges and maximum degree 2. Furthermore, by construction each 
edge e E E(Y I) is in exactly two of these subgraphs, corresponding to the endpoints 
of f - l ( e ) .  Indeed, the stronger condition of orthogonality holds, for if el,  e2 E 
f(Exl) NI(Ex2), then both f - l ( e l )  and f - l ( e 2 )  are incident to xl  and x2. 

Conversely, given an orthogonal double covering of y / ,  we can label the sub- 
graphs arbitrarily by the elements of X and define g(e) for e E E(Y') to be the 
edge of X p whose endpoints are the two labels on e. The (~) 4-sets in the perfect 
2-generator are then the sets obtained by taking the endpoints of e and the end- 
points of g(e), for each e. The properties of double covering imply that  each good 
pair xy appears at most twice. Since there are 2 n ( n - 1 )  good pairs, the 2-generator 
is completed by adding 2n 2-sets. I 

4. Upper  bound  construct ions  for p = 2 

For p = 2, we seek constructions of orthogonal double coverings of Kn. In fact, 
these abound, but it is not easy to describe a construction that  works for all n. 
One desirable property for the subgraphs in the covering is cyclic invariance. 
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Let the vertices of Kn correspond to the integers modulo n, and let the length 
of edge ij be I J - i l .  Let the kth displacement class of E(Kn) be the edges of length 
k; there are [ ( n -  1)/21 displacement classes of size n, and if n is even there is 
one class of size n/2. We seek solutions that  are invariant under cyclic (rotational) 
symmetry.  This means we need only seek one "fundamental" subgraph of htn. It  
must have maximum degree 2, and it must have 2 edges of each displacement class, 
except one edge of class n/2 if n is even. In addition, let the kth delay of such 
a subgraph be the rotational distance between its two edges of length k; we take 
the convention tha t  the delay" for length n/2 is n/2 if n is even. A fundamental  
subgraph rotates to form an orthogonal double covering if and only if the delays are 
the distinct integers 1 , . . . ,  [n/2j .  In particular, the i th rotation and j th rotat ion 
share an edge of length k if and only if the delay for the kth displacement class is 
IJ-il. 
Theorem 3. If n -  1,5 mod 6, then Kn has a cyclically symmetric orthogonal double 
cove~ing, and 02(K~,n) = (n 2 + 3n ) / 2 .  

Proof. Viewing the vertices (congruence classes) as 0, •  + ( n - I ) / 2 ,  let the n - 1  
edges of the fundamental  subgraph be {(i,2i)}. Note that  0 belongs to no edges. 
Each other vertex is the "initiator" i of exactly one edge (i, 2i). Maximum degree 
2 holds as long as no vertex is the "terminator" of one edge from each direction. 
This would require 2i -= 2 ( - j )  mod n, where 1 < i, j < ( n -  1)/2, which is impossible 
since n is odd. 

For 1 < i  < ( n - 1 ) / 2 ,  the two edges (i,2i) and ( - i , -2 i )  have length i, and the 
delay between the them is 3i, which can also be viewed as n - 3i. If  the delays 
are not distinct, then we have 3i = n -  3j, which impossible when n is not. divisible 
b y 3 .  | 

Theorem 4. If n = 2,10 mod 12, then Kn has a cyclically symmetric orthogonal 
double covering, and 02(Kn,n)= (n2+ 3n)/2. 

Proof. View the vertices (congruence classes) as { 0 , . . . , n -  1}. Let d k denote the 
delay specified between the two edges of length k; we choose d k = n/2 - k for 1 _< 
k < n/2 (for k = n /2  there is only one edge). Let p~ denote the "starting vertex" 
for the first edge of length k; we choose Pk = 3k. Thus we are choosing the edges 
(Pk,Pk + k) and (Pk + dk,Pk + dk + k). Since we have enforced distinct delays by 
construction, it suffices to show that  every vertex is used at most twice. 

Think of {Pk}, {Pk + k }, {Pk + dk}, and {Pk + dk + k} as columns of numbers, 
with row indexed by k. Call these columns A, B, C, D, respectively. Note tha t  row 
n /2  has only the two numbers 3n/2 and 4n/2 (i.e., n/2 and 0); all others have four 
numbers. The successive entries in the columns change by - 1 ,  3, 2, 3, respectively. 
Since there are at most n/2 entries in a column and n/2 is not divisible by 3, no 
column has a repeated entry. 

Given our choices for dk and Pk, the formulas for row k in the four columns 
are 3k, 4k, 2k+n/2, 3 k + n / 2 ,  respectively. We claim no value appears in column 
A and column D; otherwise, we have 3i=3j+n/2 ,  but n/2 is not a multiple of 3. 
Similarly, no value appears in column B and column C; otherwise, we have 4i = 
2j +n/2, but  n/2 is not a multiple of 2. Hence each vertex appears at most once 
in columns A and D and once in columns B and C, and the construction has the 
desired properties. | 
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Discovery of a cyclically invariant orthogonal double covering is equivalent to 
finding distinct values d k and suitable values Pk such that  the resulting array of four 
columns contains each congruence class at most twice. By shifting the congruence 
classes by n/2 and looking at the other edge of each class as the start ing edge, the 
fundamental  subgraph generated by Theorem 4 can also be obtained by using dk = 
k + n/2 and Pk = 2k. The fundamental  subgraph in Theorem 3 can be obtained by 
dk = n - 3k and Pk = k. 

5. Constructions for larger p 

We briefly mention some ideas for larger p. We seek to achieve the bound 
(n 2 + ( 2 p -  1)n)/p. If the sets in the p-generator are viewed as blocks, the linear 
program says that  a construction achieving the bound must have [n 2 -  n(p-1)  2]/p 
blocks of size 2p and pn blocks of size 2 p -  2. 

Consider the case n = p  2 - p +  1; the requirement becomes n blocks of size 2p 
and pn blocks of size 2 p - 2 .  Let X - - x l , . . .  ,xn and Y---Yl,. . .  ,Yn, by the counting 
argument,  we must have each pair xixj with i # j appearing together in exactly 
p -  1 blocks, and each pair xiYi appearing together in exactly p blocks. It  seems 
likely that  this structure exists when there exists a projective plane of order p -  1; 
we have completed the construction for p = 3 and p = 4. 

Suppose there exists such a plane with points {1, . . . ,  n}. The plane consists of 
n lines, each containing exactly p points, such tha t  every point is on p lines, every 
pair of lines has one common point, and every pair of points appears together on 
one line. Form copies of the plane on X and on Y; given a line L in the plane, we 
have corresponding lines {xi : i  E L} and {Yi : i E L}. We form n blocks of size 2p 
by taking, for each line L, the union of the lines in X and Y corresponding to L. 
This contributes one copy of each bad pair, p copies of each good pair xiYi, and 
one copy of each good pair xiYj for i # j .  

The blocks of size 2 p - 2  must have p - 1  elements in each of X and Y. Let S be 
the collection of sets obtainable by deleting one element from a line in L, and let 
S(X),  S(Y) be the corresponding collections from X and Y. The pn "half-blocks" 
from X are the elements of S(X); those from Y are the elements of S(Y). Since 
each bad pair appears together in one line, this contributes exactly p -  2 copies of 
each bad pair, regardless of how the half-blocks are matched. I t  remains only to 
match  up the half-blocks such that  each pair xiYi never appears in matched half- 
blocks, and each pair xiYj with i 7~ j appears  together in exactly p - 1 matched 
half-blocks. Since there are p n ( p -  1) 2 appearances of X Y  pairs in any matching 
and we have requested n ( n - 1 ) ( p - 1 )  pairs, this exhausts the pairs exactly. 

I t  remains only to define a permutat ion cr of S such that  S A or(S)= 0 for all 
S E S and for each ordered pair i, j E [n] there are exactly p -  1 elements S in S such 
that  i E S  and j E a ( S ) .  

We have done this for p = 3 and p = 4, though the constructions we give below 
are described more explicitly. In particular, the lines of a projective plane can be 
described cyclically using difference sets. A perfect cyclic difference set of order 
p - 1  is a collection of p congruence classes mod p2 _ p +  1 such tha t  the p(p -1 )  
pairwise difference are incongruent. (Of course, 0 is the class omitted.) Such sets 
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exist whenever there is a projective plane of order p - 1 ,  and the n translates of the 
difference set give the lines of a projective plane. Examples include {0,1,3} for p =  
3 and {0,1,3,9} for p = 4 .  

We can seek a cyclically invariant or, such that  cr(S/) is the translate of or(S) 
when S / is the translate of S. The result for the blocks of size 2p - 2 will be pn 
blocks in p classes of size n that  are close under cyclic permutation of the indices. 
For p = 3 with elements modulo 7, such classes are generated by {(05 I 23),(23 I 
14),(14 I 05)} , for example. Here the first two elements are chosen from X, the 
last two from Y. For p = 4, with elements modulo 13, we list below various ways 
to generate these cyclic classes (with T = 10, E = 11, W = 12), but not using the 
technique described above. Our blocks of size 2p - 2 come in p cyclic classes and 
consists of matched half-blocks with the desired covering properties on the pairs, 
but the half-blocks are not obtained by deleting elements from the lines generated 
by 0139. Of course, because the covering multiplicities are symmetric, the lines of 
any projective plane can be used for the blocks of size 2p. 

{(014 I 8EW),  (016 I 257), (035 I 268), (046 I 9T2)} 

{(034 I 569), (016 I 48T), (035 I EW4) ,  (046 I E13)} 

{(034 I 569), (056 I W14), (025 I TW3),  (026 ] 49T)} 

{(01  I s ew) ,  (05  1 9E2), (02 1 167), (026 1 35s)} 
The conjecture that  this can be done when a projective plane exists was made 

also by Fiiredi [9]. He obtained the exact value of Op(Kn,n) for n = ( p -  1) 2 when 
a projective plane of order p -  1 exists, using two copies of the blocks in the affine 
plane (and more generally for higher dimensions and multipartite graphs). With 
the affine plane, the desired coverage of pairs occurs more simply. 
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