Proper Path-Factors and Interval Edge-Coloring of (3,4)-Biregular Bigraphs

Douglas B. West

Department of Mathematics
University of Illinois at Urbana-Champaign
west@math.uiuc.edu

Joint work with
Armen S. Asratian, Carl Johan Casselgren, Jennifer Vandenbergueshe
The Problem

How to schedule parent-teacher conferences?
Goal: Each person’s conferences occur consecutively.
The Problem

How to schedule parent-teacher conferences? Goal: Each person’s conferences occur consecutively.

Def. (Asratian–Kamalian [1987]) An interval coloring of G is a proper edge-coloring with integers such that the colors incident to any vertex are consecutive.
The Problem

How to schedule parent-teacher conferences?
Goal: Each person’s conferences occur consecutively.

Def. (Asratian–Kamalian [1987]) An interval coloring of G is a proper edge-coloring with integers such that the colors incident to any vertex are consecutive.

Exists for: regular or complete bipartite graphs, trees, grids, simple outerplanar bipartite graphs.
The Problem

How to schedule parent-teacher conferences? Goal: Each person’s conferences occur consecutively.

Def. (Asratian–Kamalian [1987]) An interval coloring of G is a proper edge-coloring with integers such that the colors incident to any vertex are consecutive.

Exists for: regular or complete bipartite graphs, trees, grids, simple outerplanar bipartite graphs.

Necessary condition: must have a proper edge-coloring with $\Delta(G)$ colors (Asratian-Kamalian [1994]).
More Specific Problem

Def. An \((a, b)\)-biregular \(X, Y\)-bigraph is a bipartite graph with degree \(a\) at vertices of \(X\) and degree \(b\) at vertices of \(Y\).
Def. An \((a, b)\)-biregular \(X, Y\)-bigraph is a bipartite graph with degree \(a\) at vertices of \(X\) and degree \(b\) at vertices of \(Y\).

At least \(a + b - \gcd(a, b)\) colors are needed in an interval coloring (Hanson-Loten [1996]).
More Specific Problem

Def. An \((a, b)\)-biregular \(X, Y\)-bigraph is a bipartite graph with degree \(a\) at vertices of \(X\) and degree \(b\) at vertices of \(Y\).

At least \(a + b - \gcd(a, b)\) colors are needed in an interval coloring (Hanson-Loten [1996]).

All \((2, b)\)-biregular bigraphs have interval colorings (Hansen [1992] for even \(b\); Hanson-Loten-Toft [1998] for all \(b\)).
Def. An \((a, b)\)-biregular \(X, Y\)-bigraph is a bipartite
graph with degree \(a\) at vertices of \(X\) and degree \(b\) at
vertices of \(Y\).

At least \(a + b - \gcd(a, b)\) colors are needed in an
interval coloring (Hanson-Loten [1996]).

All \((2, b)\)-biregular bigraphs have interval colorings
(Hansen [1992] for even \(b\); Hanson-Loten-Toft [1998]
for all \(b\)).

Recognizing whether \((3, 6)\)-biregular bigraphs have
interval 6-colorings is NP-complete.
Open Problem: Does every \((3, 4)\)-biregular bigraph have an interval coloring?
Open Problem: Does every \((3, 4)\)-biregular bigraph have an interval coloring?

Thm. Pyatkin [2004]: If a \((3, 4)\)-biregular \(X, Y\)-bigraph has a 3-regular subgraph covering \(Y\), then it has an interval \(6\)-coloring.
Open Problem: Does every (3, 4)-biregular bigraph have an interval coloring?

Thm. Pyatkin [2004]: If a (3, 4)-biregular X, Y-bigraph has a 3-regular subgraph covering Y, then it has an interval 6-coloring.

Def. A *proper path-factor* of a (3, 4)-biregular X, Y-bigraph is a spanning subgraph whose components are paths with ends in X and lengths in \{2, 4, 6, 8\}.
Still More Specific

Open Problem: Does every \((3, 4)\)-biregular bigraph have an interval coloring?

Thm. Pyatkin [2004]: If a \((3, 4)\)-biregular \(X, Y\)-bigraph has a 3-regular subgraph covering \(Y\), then it has an interval 6-coloring.

Def. A proper path-factor of a \((3, 4)\)-biregular \(X, Y\)-bigraph is a spanning subgraph whose components are paths with ends in \(X\) and lengths in \(\{2, 4, 6, 8\}\).

Our main result: If a \((3, 4)\)-biregular bigraph has a proper path-factor, then it has an interval 6-coloring.
Still More Specific

Open Problem: Does every (3, 4)-biregular bigraph have an interval coloring?

Thm. Pyatkin [2004]: If a (3, 4)-biregular X, Y-bigraph has a 3-regular subgraph covering Y, then it has an interval 6-coloring.

Def. A proper path-factor of a (3, 4)-biregular X, Y-bigraph is a spanning subgraph whose components are paths with ends in X and lengths in \{2, 4, 6, 8\}.

Our main result: If a (3, 4)-biregular bigraph has a proper path-factor, then it has an interval 6-coloring.

Neither result implies the other.
Proper Path Factors

Henceforth let G be a $(3, 4)$-biregular X, Y-bigraph. Given a proper path-factor P of G, let $Q = G - E(P)$.
Proper Path Factors

Henceforth let G be a $(3, 4)$-biregular X, Y-bigraph. Given a proper path-factor P of G, let $Q = G - E(P)$.

$P \cup Q = G$
Proper Path Factors

Henceforth let G be a $(3, 4)$-biregular X, Y-bigraph. Given a proper path-factor P of G, let $Q = G - E(P)$.

Prop. Every component of Q is an even cycle or is a path with endpoints in X.
Proper Path Factors

Henceforth let G be a $(3, 4)$-biregular X, Y-bigraph. Given a proper path-factor P of G, let $Q = G - E(P)$.

Prop. Every component of Q is an even cycle or is a path with endpoints in X.

Pf. Always $d_Q(y) = 2$ when $y \in Y$. Also $d_Q(x) = 2$ if x is an endpoint of a component of P, while $d_Q(x) = 1$ if $x \in X$ and x is an internal vertex of a component of P. ■
The P-graph of G

Def. Given a proper path-factor P of G, let G_P be the graph with vertex set $\{x \in X: d_P(x) = 2\}$, with x_i and x_j adjacent when any condition below holds:

(a) x_i and x_j have degree 2 in one copy of P_7 in P, or
(b) x_i and x_j have degree 2 at distance 4 in one copy of P_9 in P, or
(c) x_i and x_j have degree 1 in one component of Q.
The P-graph of G

Def. Given a proper path-factor P of G, let G_P be the graph with vertex set $\{x \in X : d_P(x) = 2\}$, with x_i and x_j adjacent when any condition below holds:

(a) x_i and x_j have degree 2 in one copy of P_7 in P, or
(b) x_i and x_j have degree 2 at distance 4 in one copy of P_9 in P, or
(c) x_i and x_j have degree 1 in one component of Q.

Lem. If P is a proper path-factor, then G_P is bipartite.

Pf. Every vertex of G_P has one incident type (c) edge; some have another of type (a) or (b). Hence $\Delta(G_P) \leq 2$ and no odd cycle.
The Main Result

Thm. If G has a proper path-factor P, then G has an interval 6-coloring.
The Main Result

Thm. If G has a proper path-factor P, then G has an interval 6-coloring.

Pf. Let c be a proper 2-coloring of G_P, using A and B. We will use colors $\{1, 2, 5, 6\}$ on P and $\{3, 4\}$ on Q.
The Main Result

Thm. If G has a proper path-factor P, then G has an interval 6-coloring.

Pf. Let c be a proper 2-coloring of G_P, using A and B. We will use colors $\{1, 2, 5, 6\}$ on P and $\{3, 4\}$ on Q.

Color cycles in Q arbitrarily using 3 and 4. A path in Q has endpoints x and x' adjacent in G_P. If $c(x) = A$ and $c(x') = B$, alternate 3 and 4 starting with 3 on the edge at x and ending with 4 on the edge at x'. Now 3 and 4 both appear at every vertex of G with degree 2 in Q.
The Main Result

Thm. If G has a proper path-factor P, then G has an interval 6-coloring.

Pf. Let c be a proper 2-coloring of G_P, using A and B. We will use colors $\{1, 2, 5, 6\}$ on P and $\{3, 4\}$ on Q.

Color cycles in Q arbitrarily using 3 and 4. A path in Q has endpoints x and x' adjacent in G_P. If $c(x) = A$ and $c(x') = B$, alternate 3 and 4 starting with 3 on the edge at x and ending with 4 on the edge at x'. Now 3 and 4 both appear at every vertex of G with degree 2 in Q.

On each path in P, alternate 2 and then 1 from one end, and alternate 5 and then 6 from the other. The choice of which end is which and when to switch from $\{2, 1\}$ to $\{5, 6\}$ uses the colors that c assigns to the internal vertices. They have degree 1 in Q and lie in G_P.
Choosing Colors in \(P \)

A component \(H \) of \(P \) is a copy of \(P_3, P_5, P_7, \) or \(P_9 \). If \(x \in V(H) \) and \(c(x) = A \), use 1 and 2 at \(x \); if \(c(x) = B \), use 6 and 5. On \(P_7 \) and \(P_9 \), vertices two steps from the ends are adjacent in \(G_P \) and have distinct colors under \(c \).
Choosing Colors in P

A component H of P is a copy of P_3, P_5, P_7, or P_9. If $x \in V(H)$ and $c(x) = A$, use 1 and 2 at x; if $c(x) = B$, use 6 and 5. On P_7 and P_9, vertices two steps from the ends are adjacent in G_P and have distinct colors under c.

Each Y-vertex gets $\{3, 4\}$ on its edges in Q and gets $\{2, 5\}$ or $\{1, 2\}$ or $\{5, 6\}$ on its edges in P: an interval.

Each leaf in P gets $\{3, 4\}$ from Q and 2 or 5 from P.

Each non-leaf in P gets 3 from Q and $\{1, 2\}$ from P if $c(x) = A$, but 4 from Q and $\{5, 6\}$ from P if $c(x) = B$.

Ex. The containment bigraph of the 3-sets and 2-sets in \{1, 2, 3, 4, 5, 6\} is a (3, 4)-biregular bigraph with a simple explicit P_7-factor (with 5-fold cyclic symmetry).
Constructions

Ex. The containment bigraph of the 3-sets and 2-sets in \{1, 2, 3, 4, 5, 6\} is a (3, 4)-biregular bigraph with a simple explicit \(P_7\)-factor (with 5-fold cyclic symmetry).

Ex. \(K_{3,4}\) has a \(P_7\)-factor and satisfies Pyatkin’s condition (a “full” 3-regular subgraph). The graph below has a \(P_7\)-factor but has no full 3-regular subgraph.
Constructions

Ex. The containment bigraph of the 3-sets and 2-sets in \(\{1, 2, 3, 4, 5, 6\} \) is a \((3, 4)\)-biregular bigraph with a simple explicit \(P_7 \)-factor (with 5-fold cyclic symmetry).

Ex. \(K_{3,4} \) has a \(P_7 \)-factor and satisfies Pyatkin’s condition (a “full” 3-regular subgraph). The graph below has a \(P_7 \)-factor but has no full 3-regular subgraph.

Lem. For \(i \in \{1, 2\} \), let \(G_i \) be 2-edge-connected with a \(P_7 \)-factor \(F_i \), and \(e_i \in E(G_i) - E(F_i) \). Form \(G \) from \(G_1 + G_2 \) by replacing \(e_1 \) and \(e_2 \) with other edges \(e'_1 \) and \(e'_2 \) joining their endpoints. If \(G_1 \) has no full 3-regular subgraph, then \(G \) is a larger such example.
Sufficient Conditions

Thm. A \((3, 4)\)-biregular \(X, Y\)-bigraph \(G\) has a \(P_7\)-factor if \(G\) has a \((2, 4)\)-biregular subgraph covering \(X\).
Sufficient Conditions

Thm. A \((3, 4)\)-biregular \(X, Y\)-bigraph \(G\) has a \(P_7\)-factor if \(G\) has a \((2, 4)\)-biregular subgraph covering \(X\).

This and most of the above allows multiple edges, but not every \((3, 4)\)-biregular multi-bigraph has a proper path-factor, even with Pyatkin’s Condition:
Sufficient Conditions

Thm. A \((3, 4)\)-biregular \(X, Y\)-bigraph \(G\) has a \(P_7\)-factor if \(G\) has a \((2, 4)\)-biregular subgraph covering \(X\).

This and most of the above allows multiple edges, but not every \((3, 4)\)-biregular multi-bigraph has a proper path-factor, even with Pyatkin’s Condition:

Thm. (Asratian-Casselgren(?) - just finished) Every simple \((3, 4)\)-biregular \(X, Y\)-bigraph has a path-factor with all endpoints in \(X\) (lengths unrestricted).
Sufficient Conditions

Thm. A $(3, 4)$-biregular X, Y-bigraph G has a P_7-factor if G has a $(2, 4)$-biregular subgraph covering X.

This and most of the above allows multiple edges, but not every $(3, 4)$-biregular multi-bigraph has a proper path-factor, even with Pyatkin’s Condition:

![Diagram](image)

Thm. (Asratian-Casselgren(?) - just finished) Every simple $(3, 4)$-biregular X, Y-bigraph has a path-factor with all endpoints in X (lengths unrestricted).

Conj. Every simple $(3, 4)$-biregular X, Y-bigraph has a proper path-factor.