Parity Edge-Coloring of Graphs

Douglas B. West

Department of Mathematics
University of Illinois at Urbana-Champaign
west@math.uiuc.edu

(Joint with David Bunde, Kevin Milans, Hehui Wu)
Motivation

Ques. What graphs embed in a k-dimensional cube?
Motivation

Ques. What graphs embed in a k-dimensional cube?

• k-coloring the edges by the k coordinates yields natural necessary conditions. In this coloring:
 (1) On every cycle, every color appears even # times.
 (2) On every path, some color appears odd # times.
Motivation

Ques. What graphs embed in a k-dimensional cube?

- k-coloring the edges by the k coordinates yields natural necessary conditions. In this coloring:
 1. On every cycle, every color appears even # times.
 2. On every path, some color appears odd # times.

- Some graphs ($C_{2m+1}, K_{2,3}$, etc.) occur in no cube, but every graph has a coloring satisfying (2).
Motivation

Ques. What graphs embed in a k-dimensional cube?

- k-coloring the edges by the k coordinates yields natural necessary conditions. In this coloring:
 1. On every cycle, every color appears even # times.
 2. On every path, some color appears odd # times.

- Some graphs ($C_{2m+1}, K_{2,3}$, etc.) occur in no cube, but every graph has a coloring satisfying (2).

Def. Parity edge-coloring = edge-coloring having (2). Parity edge-chrom. num. $p(G) = \text{min # colors needed.}$
Motivation

Ques. What graphs embed in a k-dimensional cube?

- k-coloring the edges by the k coordinates yields natural necessary conditions. In this coloring:
 1. On every cycle, every color appears even # times.
 2. On every path, some color appears odd # times.

- Some graphs ($C_{2m+1}, K_{2,3},$ etc.) occur in no cube, but every graph has a coloring satisfying (2).

Def. Parity edge-coloring = edge-coloring having (2).
Parity edge-chrom. num. $p(G) = \min \# \text{ colors needed.}$

Obs. $p(G) \geq \chi'(G),$ and $H \subseteq G \Rightarrow p(H) \leq p(G).$
A Related Parameter

Def. Parity walk = walk using each color even \#times.
Strong parity edge-coloring (spec) = edge-coloring such that every parity walk is closed.
spec number $\hat{\rho}(G)$ = least \#colors in a spec.
A Related Parameter

Def. Parity walk = walk using each color even #times.
Strong parity edge-coloring (spec) = edge-coloring such that every parity walk is closed.
spec number $\hat{p}(G) = \text{least } \#\text{colors in a spec.}$

Obs. $\hat{p}(G) \geq p(G)$.
A Related Parameter

Def. Parity walk = walk using each color even #times.
Strong parity edge-coloring (spec) = edge-coloring such that every parity walk is closed.
spec number $\hat{\rho}(G) = $ least #colors in a spec.

Obs. $\hat{\rho}(G) \geq \rho(G)$.

Thm. $\hat{\rho}(K_n) = \rho(K_n) = \chi'(K_n) = n - 1$ when $n = 2^k$, with a unique coloring.
A Related Parameter

Def. Parity walk = walk using each color even \#times.
Strong parity edge-coloring (spec) = edge-coloring such that every parity walk is closed.
spec number \(\hat{\rho}(G) \) = least \#colors in a spec.

Obs. \(\hat{\rho}(G) \geq p(G) \).

Thm. \(\hat{\rho}(K_n) = p(K_n) = \chi'(K_n) = n - 1 \) when \(n = 2^k \), with a unique coloring.

Thm. [Main Result] \(\hat{\rho}(K_n) = 2^{\lceil \log n \rceil} - 1 \) for all \(n \).
A Related Parameter

Def. Parity walk = walk using each color even #times.
Strong parity edge-coloring (spec) = edge-coloring such that every parity walk is closed.

spec number $\hat{\chi}(G) = \text{least } \#\text{colors in a spec.}$

Obs. $\hat{\chi}(G) \geq \chi(G)$.

Thm. $\hat{\chi}(K_n) = \chi(K_n) = \chi'(K_n) = n - 1$ when $n = 2^k$, with a unique coloring.

Thm. [Main Result] $\hat{\chi}(K_n) = 2^{\lceil \log n \rceil} - 1$ for all n.

Appl. extends special case of Yuzvinsky’s Thm [1981], which is tight lower bound on $|\{a + b : a \in A, b \in B\}|$ when $A, B \subseteq \mathbb{F}_2^k$ with $|A| = r$ and $|B| = s$.

A Related Parameter

Def. Parity walk = walk using each color even #times. Strong parity edge-coloring (spec) = edge-coloring such that every parity walk is closed. spec number \(\hat{\rho}(G) \) = least #colors in a spec.

Obs. \(\hat{\rho}(G) \geq \rho(G) \).

Thm. \(\hat{\rho}(K_n) = \rho(K_n) = \chi'(K_n) = n - 1 \) when \(n = 2^k \), with a unique coloring.

Thm. [Main Result] \(\hat{\rho}(K_n) = 2^{[\lg n]} - 1 \) for all \(n \).

Appl. extends special case of Yuzvinsky’s Thm [1981], which is tight lower bound on \(|\{a + b: a \in A, b \in B\}| \) when \(A, B \subseteq \mathbb{F}_2^k \) with \(|A| = r \) and \(|B| = s \).

** Conj.** \(\rho(K_n) = 2^{[\lg n]} - 1 \) for all \(n \). (Known for \(n \leq 16 \).)
Embedding Trees in k-cubes

Prop. A tree T is a subgraph of Q_k $\iff p(T) \leq k$.
Embedding Trees in k-cubes

Prop. A tree T is a subgraph of Q_k $\iff p(T) \leq k$.

Pf. It suffices to show $p(T) = k \implies T$ embeds in Q_k.
Embedding Trees in k-cubes

Prop. A tree T is a subgraph of $Q_k \iff p(T) \leq k$.

Pf. It suffices to show $p(T) = k \implies T$ embeds in Q_k.

Fix $r \in V(T)$. For $v \in V(T)$, pick $f(v) \in V(Q_k)$ by letting bit i be the parity of color i usage on the r, v-path in T.
Embedding Trees in k-cubes

Prop. A tree T is a subgraph of Q_k \iff $p(T) \leq k$.

Pf. It suffices to show $p(T) = k$ \implies T embeds in Q_k.

Fix $r \in V(T)$. For $v \in V(T)$, pick $f(v) \in V(Q_k)$ by letting bit i be the parity of color i usage on the r, v-path in T.

The image of each edge in T is an edge in Q_k.
Embedding Trees in k-cubes

Prop. A tree T is a subgraph of Q_k $\iff p(T) \leq k$.

Pf. It suffices to show $p(T) = k \Rightarrow T$ embeds in Q_k.

Fix $r \in V(T)$. For $v \in V(T)$, pick $f(v) \in V(Q_k)$ by letting bit i be the parity of color i usage on the r, v-path in T.

The image of each edge in T is an edge in Q_k.

Color with odd usage on the u, v-path $\Rightarrow f(u) \neq f(v)$.
Prop. A tree T is a subgraph of Q_k $\iff p(T) \leq k$.

Pf. It suffices to show $p(T) = k \Rightarrow T$ embeds in Q_k.

Fix $r \in V(T)$. For $v \in V(T)$, pick $f(v) \in V(Q_k)$ by letting bit i be the parity of color i usage on the r, v-path in T.

The image of each edge in T is an edge in Q_k.

Color with odd usage on the u,v-path $\Rightarrow f(u) \neq f(v)$. □

• Embeddability in hypercubes is NP-complete for trees (Wagner–Corneil [1990]), so computing $p(G)$ is also.
Embedding Trees in k-cubes

Prop. A tree T is a subgraph of Q_k $\iff p(T) \leq k$.

Pf. It suffices to show $p(T) = k \implies T$ embeds in Q_k. Fix $r \in V(T)$. For $v \in V(T)$, pick $f(v) \in V(Q_k)$ by letting bit i be the parity of color i usage on the r, v-path in T. The image of each edge in T is an edge in Q_k. Color with odd usage on the u, v-path $\implies f(u) \neq f(v)$. ■

Cor. (Havel-Movárek [1972]) A graph G embeds in Q_k $\iff G$ has a k-pec where every cycle is a parity walk.
Embedding Trees in k-cubes

Prop. A tree T is a subgraph of Q_k $\iff p(T) \leq k$.

Pf. It suffices to show $p(T) = k$ $\implies T$ embeds in Q_k.

Fix $r \in V(T)$. For $v \in V(T)$, pick $f(v) \in V(Q_k)$ by letting bit i be the parity of color i usage on the r, v-path in T. The image of each edge in T is an edge in Q_k.

Color with odd usage on the u, v-path $\implies f(u) \neq f(v)$.

Cor. (Havel-Movárek [1972]) A graph G embeds in Q_k $\iff G$ has a k-pec where every cycle is a parity walk.

Pf. Embed a spanning tree T of G in Q_k as done above.
Embedding Trees in k-cubes

Prop. A tree T is a subgraph of Q_k $\iff p(T) \leq k$.

Pf. It suffices to show $p(T) = k \implies T$ embeds in Q_k.
Fix $r \in V(T)$. For $v \in V(T)$, pick $f(v) \in V(Q_k)$ by letting bit i be the parity of color i usage on the r, v-path in T.

The image of each edge in T is an edge in Q_k.

Color with odd usage on the u, v-path $\implies f(u) \neq f(v)$. ■

Cor. (Havel-Movárek [1972]) A graph G embeds in Q_k $\iff G$ has a k-pec where every cycle is a parity walk.

Pf. Embed a spanning tree T of G in Q_k as done above.
Each remaining edge e completes a cycle. When $e = uv$, the color on e is the only color with odd usage on the u, v-path in T. Hence $f(u) \leftrightarrow f(v)$ in Q_k. ■
Cor. If G is connected, then $\rho(G) \geq \lceil \lg n(G) \rceil$, with equality for paths and even cycles.
Cor. If G is connected, then $\rho(G) \geq \lfloor \log n(G) \rfloor$, with equality for paths and even cycles.

Pf. If T is a spanning tree of G, then $\rho(G) \geq \rho(T)$. Since $T \subseteq Q_{\rho(T)}$, we have $n(G) = n(T) \leq n(Q_{\rho(T)}) = 2^\rho(T)$.

Cor. If G is connected, then $p(G) \geq \lceil \lg n(G) \rceil$, with equality for paths and even cycles.

Pf. If T is a spanning tree of G, then $p(G) \geq p(T)$. Since $T \subseteq Q_{p(T)}$, we have $n(G) = n(T) \leq n(Q_{p(T)}) = 2^{p(T)}$. Equality: Any P_n and even C_n embed in $Q_{\lceil \lg n \rceil}$. □
Cor. If G is connected, then $p(G) \geq \lceil \lg n(G) \rceil$, with equality for paths and even cycles.

Pf. If T is a spanning tree of G, then $p(G) \geq p(T)$. Since $T \subseteq Q_{p(T)}$, we have $n(G) = n(T) \leq n(Q_{p(T)}) = 2^{p(T)}$. Equality: Any P_n and even C_n embed in $Q_{\lceil \lg n \rceil}$.

- Odd cycles will need one more!
Cor. If G is connected, then $p(G) \geq \lceil \lg n(G) \rceil$, with equality for paths and even cycles.

Pf. If T is a spanning tree of G, then $p(G) \geq p(T)$. Since $T \subseteq Q_{p(T)}$, we have $n(G) = n(T) \leq n(Q_{p(T)}) = 2^{p(T)}$.

Equality: Any P_n and even C_n embed in $Q_{\lceil \lg n \rceil}$.

• Odd cycles will need one more!

Obs. Always $p(G) \leq p(G - e) + 1$.

Pf. Put optimal pec on $G - e$; add new color on e. Each path is okay in G whether it uses e or not.
Cor. If G is connected, then $p(G) \geq \lceil \lg n(G) \rceil$, with equality for paths and even cycles.

Pf. If T is a spanning tree of G, then $p(G) \geq p(T)$. Since $T \subseteq Q_{p(T)}$, we have $n(G) = n(T) \leq n(Q_{p(T)}) = 2^{p(T)}$. Equality: Any P_n and even C_n embed in $Q_{\lceil \lg n \rceil}$.

- Odd cycles will need one more!

Obs. Always $p(G) \leq p(G - e) + 1$.

Pf. Put optimal pec on $G - e$; add new color on e. Each path is okay in G whether it uses e or not.

Cor. If n is odd, then $\lceil \lg n \rceil \leq p(C_n) \leq \lceil \lg n \rceil + 1$.
Lower Bound for Odd Cycles

Lem. Every pec of C_n is a spec, so $p(C_n) = \hat{p}(C_n)$.

Pf. Take a pec of C_n. The edges with odd usage in any open walk W form a path P joining the ends of W. P has some odd-used color; \[.\therefore W\] is not a parity walk. \[\blacksquare\]
Lower Bound for Odd Cycles

Lem. Every pec of C_n is a spec, so $p(C_n) = \hat{p}(C_n)$.

Pf. Take a pec of C_n. The edges with odd usage in any open walk W form a path P joining the ends of W. P has some odd-used color; $\therefore W$ is not a parity walk. ■

Lem. If n is odd, then $\hat{p}(C_n) \geq p(P_{2n})$.

Pf. Spec of C_n yields pec of P_{2n}.

Each path in P_{2n} arises from an open walk in C_n or one trip around the cycle (which is odd length). ■
Lower Bound for Odd Cycles

Lem. Every pec of C_n is a spec, so $p(C_n) = \hat{p}(C_n)$.

Pf. Take a pec of C_n. The edges with odd usage in any open walk W form a path P joining the ends of W. P has some odd-used color; \(\therefore \) W is not a parity walk.

Lem. If n is odd, then $\hat{p}(C_n) \geq p(P_{2n})$.

Pf. Spec of C_n yields pec of P_{2n}.

Each path in P_{2n} arises from an open walk in C_n or one trip around the cycle (which is odd length).

Thm. If n is odd, then $p(C_n) = \lceil \lg n \rceil + 1$.
Example Showing $p \neq \hat{p}$

- **Unrolling technique** (like lower bound for odd cycle)

![Graph Image]

G

$p(G) \leq 4$

not spec
Example Showing $p \neq \hat{p}$

- **Unrolling technique** (like lower bound for odd cycle)

\[p(G) \leq 4 \]

\[\text{not spec} \]

Obs. \[\hat{p}(G) \geq p(P_{18}) = 5. \]

Pf. Copy a spec of G onto P_{18} (path edges doubled).
An x, y'-subpath of P_{18} comes from an open walk in G.
An x, x'-subpath of P_{18} comes from an odd walk in G. ■
Complete Graphs, $n = 2^k$

Def. canonical coloring of K_{2^k} = edge-coloring f defined by $f(uv) = u + v$, where $V(K_{2^k}) = \mathbb{F}_2^k$.

![Graph Diagram]
Complete Graphs, $n = 2^k$

Def. canonical coloring of $K_{2^k} = $ edge-coloring f
defined by $f(uv) = u + v$, where $V(K_{2^k}) = \mathbb{F}_2^k$.

![Diagram of a complete graph with vertices labeled 00, 01, 10, 11 and edges colored in red, purple, and blue.]

Prop. If $n = 2^k$, then $\hat{\chi}(K_n) = \chi(K_n) = \chi'(K_n) = n - 1$.

Complete Graphs, $n = 2^k$

Def. canonical coloring of $K_{2^k} = \text{edge-coloring } f$ defined by $f(uv) = u + v$, where $V(K_{2^k}) = \mathbb{F}_2^k$.

![Graph diagram]

Prop. If $n = 2^k$, then $\hat{\rho}(K_n) = \rho(K_n) = \chi'(K_n) = n - 1$.

Pf. Canonical coloring uses $n - 1$ colors (0^k not used).

It is a spec: When the ends of a walk W differ in bit i, the total usage of colors flipping bit i is odd, so \exists odd-usage color on W.

■
Complete Graphs, $n = 2^k$

Def. canonical coloring of $K_{2^k} = \text{edge-coloring } f$
defined by $f(uv) = u + v$, where $V(K_{2^k}) = \mathbb{F}_2^k$.

![Diagram of a complete graph with nodes labeled 00, 01, 10, 11 and edges colored in purple, blue, and red.]

$01 \quad 11$
$00 \quad 10$

= 01
= 11
= 10

Prop. If $n = 2^k$, then $\hat{\rho}(K_n) = \rho(K_n) = \chi'(K_n) = n - 1$.

Pf. Canonical coloring uses $n - 1$ colors (0^k not used).
It is a spec: When the ends of a walk W differ in bit i, the total usage of colors flipping bit i is odd, so \exists odd-usage color on W. \blacksquare

Cor. $\hat{\rho}(K_n) \leq 2^{[\lg n]} - 1 \leq 2n - 3$.

Conj. $\rho(K_n) = 2^{[\lg n]} - 1$. (Thm. $\hat{\rho}(K_n) = 2^{[\lg n]} - 1$.)
Just Above the Threshold: K_2, K_3, K_5, K_9

- It suffices to prove $p(K_{2^k+1}) = 2^{k+1} - 1$.
 - $k = 0$: $p(K_2) = 1$;
 - $k = 1$: $p(K_3) = 3$

Prop. $p(K_5) = 7$.
Just Above the Threshold: K_2, K_3, K_5, K_9

- It suffices to prove $p(K_{2^k+1}) = 2^{k+1} - 1$.

 $k = 0: \ p(K_2) = 1; \quad k = 1: \ p(K_3) = 3$

Prop. $p(K_5) = 7$.

Pf. Each color forms a matching \Rightarrow used at most twice. 10 edges, ≤ 6 colors \Rightarrow at least four colors used twice.
Just Above the Threshold: K_2, K_3, K_5, K_9

- It suffices to prove $p(K_{2^k+1}) = 2^{k+1} - 1$.

 $k = 0$: $p(K_2) = 1$;
 $k = 1$: $p(K_3) = 3$

Prop. $p(K_5) = 7$.

Pf. Each color forms a matching \Rightarrow used at most twice.
10 edges, ≤ 6 colors \Rightarrow at least four colors used twice.
Two colors used twice cannot form parity path P_5.
\therefore Colors used twice are used at the same four vertices, but then only three can be used twice.
Just Above the Threshold: K_2, K_3, K_5, K_9

- It suffices to prove $p(K_{2^k+1}) = 2^{k+1} - 1$.

 $k = 0$: $p(K_2) = 1$;
 $k = 1$: $p(K_3) = 3$

Prop. $p(K_5) = 7$.

Pf. Each color forms a matching \Rightarrow used at most twice.
10 edges, ≤ 6 colors \Rightarrow at least four colors used twice.
Two colors used twice cannot form parity path P_5.
\therefore Colors used twice are used at the same four vertices, but then only three can be used twice.

Thm. $p(K_9) = 15$. (Longer ad hoc argument.)
Yuzvinsky’s Theorem

Def. Hopf–Stiefel function (Hopf [1940], Stiefel [1940]):

\[r \circ s = \text{least } n \text{ such that } (x + y)^n \text{ is in the ideal of } F_2[x, y] \text{ generated by } x^r \text{ and } y^s. \]
Yuzvinsky’s Theorem

Def. Hopf–Stiefel function (Hopf [1940], Stiefel [1940]):

\[r \circ s = \text{least } n \text{ such that } (x + y)^n \text{ is in the ideal of } \mathbb{F}_2[x, y] \text{ generated by } x^r \text{ and } y^s. \]

Equivalently, \(r \circ s = \text{least } n \text{ such that } \binom{n}{k} \text{ is even for } n - s < k < r. \) (Empty if \(n \geq r + s - 1, \) so \(r \circ s \leq r + s - 1. \))
Yuzvinsky’s Theorem

Def. Hopf–Stiefel function (Hopf [1940], Stiefel [1940]):

\[r \circ s = \text{least } n \text{ such that } (x + y)^n \text{ is in} \]

the ideal of \(\mathbb{F}_2[x, y] \) generated by \(x^r \) and \(y^s \).

Equivalently, \(r \circ s = \text{least } n \text{ such that } \binom{n}{k} \text{ is even for } \]

\(n - s < k < r \). (Empty if \(n \geq r + s - 1 \), so \(r \circ s \leq r + s - 1 \).)

Thm. (Yuzvinsky [1981]) If \(A, B \subseteq \mathbb{F}^k_2 \) with \(|A| = r \) and \(|B| = s \), then \(|\{a + b: a \in A, b \in B\}| \geq r \circ s \).
Yuzvinsky’s Theorem

Def. Hopf–Stiefel function (Hopf [1940], Stiefel [1940]):
\[
 r \circ s = \text{least } n \text{ such that } (x + y)^n \text{ is in the ideal of } \mathbb{F}_2[x, y] \text{ generated by } x^r \text{ and } y^s.
\]

Equivalently, \(r \circ s = \text{least } n \text{ such that } \binom{n}{k} \text{ is even for } n - s < k < r. \) (Empty if \(n \geq r + s - 1 \), so \(r \circ s \leq r + s - 1. \))

Thm. (Yuzvinsky [1981]) If \(A, B \subseteq \mathbb{F}_2^k \) with \(|A| = r \) and \(|B| = s \), then \(|\{a + b : a \in A, b \in B\}| \geq r \circ s. \)

Thm. (Plagne [2003], Károlyi [2006])
\[
 r \circ s = \min_{j \in \mathbb{N}} 2^j \left(\left\lceil \frac{r}{2^j} \right\rceil + \left\lceil \frac{s}{2^j} \right\rceil - 1 \right).
\]
Yuzvinsky’s Theorem

Def. Hopf–Stiefel function (Hopf [1940], Stiefel [1940]):
\[r \circ s = \text{least } n \text{ such that } (x + y)^n \text{ is in} \]
the ideal of \(\mathbb{F}_2[x, y] \) generated by \(x^r \) and \(y^s \).

Equivalently, \(r \circ s = \text{least } n \text{ such that } \binom{n}{k} \text{ is even for} \]
\(n - s < k < r \). (Empty if \(n \geq r + s - 1 \), so \(r \circ s \leq r + s - 1 \).)

Thm. (Yuzvinsky [1981]) If \(A, B \subseteq \mathbb{F}_2^k \) with \(|A| = r \) and
\(|B| = s \), then \[|\{a + b : a \in A, b \in B\}| \geq r \circ s. \]

Thm. (Plagne [2003], Károlyi [2006])
\[r \circ s = \min_{j \in \mathbb{N}} 2^j(\left\lceil \frac{r}{2^j} \right\rceil + \left\lceil \frac{s}{2^j} \right\rceil - 1). \]

- If \(A = B \), with size \(r \), then \(r \circ r = 2^{\lfloor \lg r \rfloor} \). (Set \(j = \lfloor \lg r \rfloor \).)
Yuzvinsky’s Theorem

Def. Hopf–Stiefel function (Hopf [1940], Stiefel [1940]):

\[r \circ s = \text{least } n \text{ such that } (x + y)^n \text{ is in the ideal of } \mathbb{F}_2[x, y] \text{ generated by } x^r \text{ and } y^s. \]

Equivalently, \(r \circ s = \text{least } n \text{ such that } \binom{n}{k} \text{ is even for } n - s < k < r. \) (Empty if \(n \geq r + s - 1, \) so \(r \circ s \leq r + s - 1. \))

Thm. (Yuzvinsky [1981]) If \(A, B \subseteq \mathbb{F}_2^k \) with \(|A| = r \) and \(|B| = s, \) then \(|\{a + b : a \in A, b \in B\}| \geq r \circ s. \)

Thm. (Plagne [2003], Károlyi [2006])

\[r \circ s = \min_{j \in \mathbb{N}} 2^j(\left\lceil \frac{r}{2^j} \right\rceil + \left\lceil \frac{s}{2^j} \right\rceil - 1). \]

- If \(A = B, \) with size \(r, \) then \(r \circ r = 2^{\lfloor \lg r \rfloor}. \) (Set \(j = \lfloor \lg r \rfloor. \))

Yuzvinsky \Rightarrow \text{ canonical coloring of } K_r \text{ needs } \geq 2^{\lfloor \lg r \rfloor} - 1. \]

Our theorem \Rightarrow \text{ same lower bound for any spec.}
Yuzvinsky’s Theorem

Def. Hopf–Stiefel function (Hopf [1940], Stiefel [1940]):
\[r \circ s = \text{least } n \text{ such that } (x + y)^n \text{ is in the ideal of } \mathbb{F}_2[x, y] \text{ generated by } x^r \text{ and } y^s. \]

Equivalently, \(r \circ s = \text{least } n \text{ such that } \binom{n}{k} \text{ is even for } n - s < k < r. \) (Empty if \(n \geq r + s - 1 \), so \(r \circ s \leq r + s - 1. \))

Thm. (Yuzvinsky [1981]) If \(A, B \subseteq \mathbb{F}_2^k \) with \(|A| = r \) and \(|B| = s \), then \(|\{a + b : a \in A, b \in B\}| \geq r \circ s. \)

Thm. (Plagne [2003], Károlyi [2006])
\[r \circ s = \min_{j \in \mathbb{N}} 2^j \left(\left\lceil \frac{r}{2^j} \right\rceil + \left\lceil \frac{s}{2^j} \right\rceil - 1 \right). \]

- If \(A = B \), with size \(r \), then \(r \circ r = 2^{\left\lfloor \log_2 r \right\rfloor}. \) (Set \(j = \left\lfloor \log_2 r \right\rfloor. \))

Yuzvinsky ⇒ canonical coloring of \(K_r \) needs \(\geq 2^{\left\lfloor \log_2 r \right\rfloor} - 1. \)
Our theorem ⇒ same lower bound for any spec.

** Conj.** \(\hat{\rho}(K_{r,s}) = r \circ s. \) (Would strengthen Yuzv. & ours.)
Main Steps of the Proof

Thm. If f is a spec of K_n with every color class a perfect matching, then f is canonical & n is a 2-power.
Main Steps of the Proof

Thm. If f is a spec of K_n with every color class a perfect matching, then f is canonical & n is a 2-power.

Thm. If an optimal spec f of K_n uses some color α not on a perfect matching, then $\hat{\rho}(K_{n+1}) = \hat{\rho}(K_n)$.
Main Steps of the Proof

Thm. If f is a spec of K_n with every color class a perfect matching, then f is canonical & n is a 2-power.

Thm. If an optimal spec f of K_n uses some color α not on a perfect matching, then $\hat{\rho}(K_{n+1}) = \hat{\rho}(K_n)$.

Tools:
1) If every color class in a spec is a perfect matching, then the 4-constraint holds: If $f(uv) = f(xy)$ and vx exists, then uy exists and $f(uy) = f(vx)$.
Main Steps of the Proof

Thm. If f is a spec of K_n with every color class a perfect matching, then f is canonical & n is a 2-power.

Thm. If an optimal spec f of K_n uses some color α not on a perfect matching, then $\hat{\rho}(K_{n+1}) = \hat{\rho}(K_n)$.

Tools:
1) If every color class in a spec is a perfect matching, then the **4-constraint** holds: If $f(uv) = f(xy)$ and vx exists, then uy exists and $f(uy) = f(vx)$.

2) For a walk W and coloring f, the **parity vector** $\pi(W)$ sets bit i to be the parity of the usage of color i on W. **Parity space** $L_f = \text{set of parity vectors of closed walks.}$
Main Steps of the Proof

Thm. If f is a spec of K_n with every color class a perfect matching, then f is canonical & n is a 2-power.

Thm. If an optimal spec f of K_n uses some color α not on a perfect matching, then $\hat{\rho}(K_{n+1}) = \hat{\rho}(K_n)$.

Tools:
1) If every color class in a spec is a perfect matching, then the 4-constraint holds: If $f(uv) = f(xy)$ and vx exists, then uy exists and $f(uy) = f(vx)$.

2) For a walk W and coloring f, the parity vector $\pi(W)$ sets bit i to be the parity of the usage of color i on W.

Parity space $L_f = $ set of parity vectors of closed walks.

Lem. If G (colored by f) has a dominating vertex v, then $L_f = \text{span}\{\pi(T): T \text{ is a triangle containing } v\}$.
Specs Consisting of 1-Factors Are Canonical

Thm. If \(f \) is a spec of \(K_n \) with every color class a perfect matching, then \(f \) is canonical & \(n \) is a 2-power.

Pf. Such a coloring satisfies the 4-constraint: If \(f(uv) = f(xy) \), then \(f(uy) = f(vx) \). (Since every color is at every vertex.)
Thm. If f is a spec of K_n with every color class a perfect matching, then f is canonical & n is a 2-power.

Pf. Such a coloring satisfies the 4-constraint:

If $f(uv) = f(xy)$, then $f(uy) = f(vx)$.

(Since every color is at every vertex.)

Aim: Map $V(K_n)$ to \mathbb{F}_2^k so f is the canonical coloring.
Specs Consisting of 1-Factors Are Canonical

Thm. If f is a spec of K_n with every color class a perfect matching, then f is canonical & n is a 2-power.

Pf. Such a coloring satisfies the 4-constraint:

If $f(uv) = f(xy)$, then $f(uy) = f(vx)$.

(Since every color is at every vertex.)

![Diagram](image)

Aim: Map $V(K_n)$ to \mathbb{F}_2^k so f is the canonical coloring.

Every edge is a canonically colored K_2. Let R be a largest vertex set on which f restricts to a canonical coloring. If $R \neq V(K_n)$, we obtain a larger such set.
Specs Consisting of 1-Factors Are Canonical

Thm. If f is a spec of K_n with every color class a perfect matching, then f is canonical & n is a 2-power.

Pf. Such a coloring satisfies the 4-constraint: If $f(uv) = f(xy)$, then $f(uy) = f(vx)$.

(Since every color is at every vertex.)

Aim: Map $V(K_n)$ to \mathbb{F}_2^k so f is the canonical coloring.

Every edge is a canonically colored K_2. Let R be a largest vertex set on which f restricts to a canonical coloring. If $R \neq V(K_n)$, we obtain a larger such set.

With $|R| = 2^{j-1}$, we are given a bijection from R to \mathbb{F}_2^{j-1} under which f is the canonical coloring.
Expanding the Canonical Portion

\[f \text{ canonical on } R \Rightarrow \text{ any color used within } R \text{ pairs up } R. \]
Expanding the Canonical Portion

\(f \) canonical on \(R \) \(\implies \) any color used within \(R \) pairs up \(R \).

New color \(c \) pairs \(R \) to some set \(U \); set \(R' = R \cup U \).
Expanding the Canonical Portion

\(f \) canonical on \(R \) \(\Rightarrow \) any color used within \(R \) pairs up \(R \).

New color \(c \) pairs \(R \) to some set \(U \); set \(R' = R \cup U \).

Map \(R' \) to \(\mathbb{F}_2^j \) by appending 0 to the codes in \(R \) and appending 1 instead to their \(c \)-mates in \(U \).
Expanding the Canonical Portion

\[f \text{ canonical on } R \implies \text{ any color used within } R \text{ pairs up } R. \]

New color \(c \) pairs \(R \) to some set \(U \); set \(R' = R \cup U \).

Map \(R' \) to \(F_2^i \) by appending 0 to the codes in \(R \) and appending 1 instead to their \(c \)-mates in \(U \).

The 4-constraint copies the coloring from \(R \) to \(U \), so \(f(uu') = f(\nu \nu') = \nu + \nu' = u + u' \).
Expanding the Canonical Portion

\(f \) canonical on \(R \) \(\Rightarrow \) any color used within \(R \) pairs up \(R \).

New color \(c \) pairs \(R \) to some set \(U \); set \(R' = R \cup U \).

Map \(R' \) to \(F^i_2 \) by appending \(0 \) to the codes in \(R \) and appending \(1 \) instead to their \(c \)-mates in \(U \).

The 4-constraint copies the coloring from \(R \) to \(U \),
so \(f(uu') = f(\nu\nu') = \nu + \nu' = u + u' \).

Use \(u \) to name the color on \(0^i u \), so \(f(0^i u) = u = 0^i + u \).

The rest: \(\nu \in R \) & \(w = u + \nu \in U \) \(\Rightarrow \) \(f(\nu 0^i) = f(uw) = \nu \);
4-constraint \(\Rightarrow \) \(f(\nu w) = f(0^i u) = u = \nu + w \).
Def. Given an edge-coloring f and a walk W, the parity vector $\pi(W)$ is the binary vector where bit i is the parity of the usage of color i on W.
Parity space $L_f = \text{set of parity vectors of closed walks.}$
Def. Given an edge-coloring f and a walk W, the parity vector $\pi(W)$ is the binary vector where bit i is the parity of the usage of color i on W.

Parity space $L_f = \text{set of parity vectors of closed walks}$.

Lem. If f is an edge-coloring of a connected graph G, then L_f is a binary vector space.
Def. Given an edge-coloring f and a walk W, the **parity vector** $\pi(W)$ is the binary vector where bit i is the parity of the usage of color i on W.

Parity space $L_f = \text{set of parity vectors of closed walks}$.

Lem. If f is an edge-coloring of a connected graph G, then L_f is a binary vector space.

Pf. When W is a u, u-walk and W' is a v, v-walk, let P be a u, v-path, with P' its reverse. Now W_1, P, W_2, P' is a u, u-walk with parity vector $\pi(W) + \pi(W')$.

\[\begin{array}{c}
W_1 \\
\text{u} \\
\text{P} \\
\text{v} \\
W_2
\end{array} \]
Parity Space for Spec of K_n

Def. Let $w(L)$ denote the minimum weight ($\text{wt} = \#1s$) of the nonzero vectors in a binary space L.

Prop. Edge-coloring f of K_n is a spec $\iff w(L_f) \geq 2$.
Parity Space for Spec of \(K_n\)

Def. Let \(w(L)\) denote the minimum weight (\(wt=\#1s\)) of the nonzero vectors in a binary space \(L\).

Prop. Edge-coloring \(f\) of \(K_n\) is a spec \(\iff w(L_f) \geq 2\).

Pf. \(\exists \pi(W)\) with weight 1 for closed walk \(W\)

\(\iff\) one color has odd usage in \(W\) (used on \(e\))

\(\iff\) \(\exists\) open parity walk \(W-e\)

\(\iff\) \(f\) is not a spec
Parity Space for Spec of K_n

Def. Let $w(L)$ denote the minimum weight ($wt=#1s$) of the nonzero vectors in a binary space L.

Prop. Edge-coloring f of K_n is a spec $\iff w(L_f) \geq 2$.

Pf. $\exists \pi(W)$ with weight 1 for closed walk W

\iff one color has odd usage in W (used on e)

$\iff \exists$ open parity walk $W-e$

$\iff f$ is not a spec

Lem. Given colors a and b in an optimal spec f of K_n, some closed W has odd usage for a, b, and one other.
Parity Space for Spec of K_n

Def. Let $w(L)$ denote the minimum weight ($\text{wt} = \#1s$) of the nonzero vectors in a binary space L.

Prop. Edge-coloring f of K_n is a spec $\iff w(L_f) \geq 2$.

Pf. $\exists \pi(W)$ with weight 1 for closed walk W

\iff one color has odd usage in W (used on e)

$\iff \exists$ open parity walk $W - e$

$\iff f$ is not a spec

Lem. Given colors a and b in an optimal spec f of K_n, some closed W has odd usage for a, b, and one other.

Pf. Merging a and b into one color a' yields non-spec f'. \therefore some closed W has odd usage only for c under f'.

Since $c = a'$ \implies $\text{wt}(\pi_f(W)) = 1$, we have $c \neq a'$.

$\text{wt}(\pi_f(W)) \geq 2 \implies a$ and b have odd usage in W.

\blacksquare
More on Parity Spaces

Lem. If G (colored by f) has a dominating vertex v, then $L_f = \text{span}\{\pi(T): T \text{ is a triangle containing } v\}$.

Pf. The span is in L_f. Conversely, suppose $\pi(W) \in L_f$.
More on Parity Spaces

Lem. If G (colored by f) has a dominating vertex v, then $L_f = \text{span}\{\pi(T): T \text{ is a triangle containing } v\}$.

Pf. The span is in L_f. Conversely, suppose $\pi(W) \in L_f$.

Define H by $E(H) = \{\text{edges w. odd usage in } W\}$.

[Diagram showing W and H]
Lem. If G (colored by f) has a dominating vertex v, then $L_f = \text{span}\{\pi(T) : T \text{ is a triangle containing } v\}$.

Pf. The span is in L_f. Conversely, suppose $\pi(W) \in L_f$.

Define H by $E(H) = \{\text{edges w. odd usage in } W\}$. H is an even subgraph of G. Also, $\pi(H) = \pi(W)$.
More on Parity Spaces

Lem. If G (colored by f) has a dominating vertex v, then $L_f = \text{span}\{\pi(T) : T \text{ is a triangle containing } v\}$.

Pf. The span is in L_f. Conversely, suppose $\pi(W) \in L_f$.

Define H by $E(H) = \{\text{edges w. odd usage in } W\}$. H is an even subgraph of G. Also, $\pi(H) = \pi(W)$.

\[\therefore\] it suffices to show that H is the sum (mod 2) of the set of triangles formed by adding v to edges of $H - v$.

Each edge of $H - v$ is in one such triangle.
More on Parity Spaces

Lem. If G (colored by f) has a dominating vertex v, then $L_f = \text{span}\{\pi(T): T$ is a triangle containing $v\}$.

Pf. The span is in L_f. Conversely, suppose $\pi(W) \in L_f$.

Define H by $E(H) = \{\text{edges w. odd usage in } W\}$. H is an even subgraph of G. Also, $\pi(H) = \pi(W)$.

\therefore it suffices to show that H is the sum (mod 2) of the set of triangles formed by adding v to edges of $H - v$.

Each edge of $H - v$ is in one such triangle.

Edge vw is in odd $\#$ triangles $\iff d_{H-v}(w)$ is odd $\iff w \in N_H(v)$ (since $d_H(w)$ is even) $\iff vw \in E(H)$. \qed
Enlarging the Clique

Lem. If an optimal spec \(f \) of \(K_n \) uses some color \(a \) not on a perfect matching, then \(\hat{\rho}(K_{n+1}) = \hat{\rho}(K_n) \).

Pf. Let \(v \) be a vertex missed by \(a \); let \(u \) be a new vertex. We use \(f \) to define \(f' \) on the larger complete graph.
Lem. If an optimal spec f of K_n uses some color a not on a perfect matching, then $\hat{\rho}(K_{n+1}) = \hat{\rho}(K_n)$.

Pf. Let v be a vertex missed by a; let u be a new vertex. We use f to define f' on the larger complete graph.

Let $f'(uv) = a$. For $w \notin \{u, v\}$, let $b = f(vw)$. $3W$ with odd usage of a, b, and some c. Let $f'(uw) = c$.

![Diagram](attachment:image.png)
Enlarging the Clique

Lem. If an optimal spec \(f \) of \(K_n \) uses some color \(a \) not on a perfect matching, then \(\hat{\rho}(K_{n+1}) = \hat{\rho}(K_n) \).

Pf. Let \(v \) be a vertex missed by \(a \); let \(u \) be a new vertex. We use \(f \) to define \(f' \) on the larger complete graph.

Let \(f'(uv) = a \). For \(w \notin \{u, v\} \), let \(b = f(vw) \). \(\exists W \) with odd usage of \(a, b, \) and some \(c \). Let \(f'(uw) = c \).

![Diagram](https://example.com/diagram.png)

We show that \(L_{f'} \subseteq L_f \) to get \(w(L_{f'}) \geq 2 \). It suffices that \(\pi(T) \in L_f \) when \(T \) is a triangle in \(K_{n+1} \) containing \(v \), since these vectors span \(L_{f'} \) (by lemma).
Lem. If an optimal spec f of K_n uses some color a not on a perfect matching, then $\hat{\rho}(K_{n+1}) = \hat{\rho}(K_n)$.

Pf. Let v be a vertex missed by a; let u be a new vertex. We use f to define f' on the larger complete graph.

Let $f'(uv) = a$. For $w \notin \{u, v\}$, let $b = f(vw)$. For w with odd usage of a, b, and some c. Let $f'(uw) = c$.

We show that $L_f' \subseteq L_f$ to get $\omega(L_f') \geq 2$. It suffices that $\pi(T) \in L_f$ when T is a triangle in K_{n+1} containing v, since these vectors span L_f' (by lemma).

If $u \notin T$, then $\pi(T) \in L_f$ by definition of L_f.
If $T = \{u, v, w\}$, then $\pi(T) = \pi(W) \in L_f$.

\[\begin{array}{c}
\text{K}_n \\
\text{v} \quad a \\
\text{w} \quad b \\
\text{u} \quad c
\end{array} \]
Thm. \(\hat{\rho}(K_n) = 2^{|\lg n|} - 1 \)

Pf. Let \(k = \hat{\rho}(K_n) \). Canonical coloring \(\Rightarrow k \leq 2^{|\lg n|} - 1 \).
Thm. \(\hat{\rho}(K_n) = 2^{[\lg n]} - 1 \)

Pf. Let \(k = \hat{\rho}(K_n) \). Canonical coloring \(\Rightarrow k \leq 2^{[\lg n]} - 1 \).

Accumulate additional vertices without increasing \(\hat{\rho} \) until every color class is a perfect matching.

This can’t exceed \(2^{[\lg n]} \) vertices, since vertex degree then reaches \(2^{[\lg n]} - 1 \).
Thm. $\hat{\rho}(K_n) = 2^{[\log n]} - 1$

Pf. Let $k = \hat{\rho}(K_n)$. Canonical coloring $\Rightarrow k \leq 2^{[\log n]} - 1$.

Accumulate additional vertices without increasing $\hat{\rho}$ until every color class is a perfect matching.

This can’t exceed $2^{[\log n]}$ vertices, since vertex degree then reaches $2^{[\log n]} - 1$.

\therefore It stops with every color class a perfect matching. We showed this occurs only in the canonical coloring.

Hence $\hat{\rho}(K_n) = \hat{\rho}(K_{2^{[\log n]}}) = 2^{[\log n]} - 1$. $lacksquare$
Thm. \(\hat{\rho}(K_n) = 2^{\lceil \log n \rceil} - 1 \)

Pf. Let \(k = \hat{\rho}(K_n) \). Canonical coloring \(\Rightarrow k \leq 2^{\lceil \log n \rceil} - 1 \).

Accumulate additional vertices without increasing \(\hat{\rho} \) until every color class is a perfect matching.

This can’t exceed \(2^{\lceil \log n \rceil} \) vertices, since vertex degree then reaches \(2^{\lceil \log n \rceil} - 1 \).

\[\therefore \] It stops with every color class a perfect matching. We showed this occurs only in the canonical coloring.

Hence \(\hat{\rho}(K_n) = \hat{\rho}(K_{2^{\lceil \log n \rceil}}) = 2^{\lceil \log n \rceil} - 1 \). \[\blacksquare \]

Cor. Every optimal spec of a complete graph is obtained by deleting vertices from a canonical coloring.
Other Related Parameters

Def. conflict-free coloring = edge-coloring s.t. each path has some color used once; $c(G) = \text{least \# colors.}$

edge-ranking = edge-coloring s.t. each path has the highest color used once; $\chi'_r(G) = \text{least \# colors.}$

Other Related Parameters

Def. conflict-free coloring = edge-coloring s.t. each path has some color used once; \(c(G) \) = least #colors.
edge-ranking = edge-coloring s.t. each path has the highest color used once; \(\chi'_r(G) \) = least #colors.

- \(\chi'_r(G) \geq c(G) \geq p(G) \), and the difference can be large.
Indeed, \(\chi'_r(K_n) \in \Theta(n^2) \) [BDJKKMT], but \(p(K_n) \in \Theta(n) \).
Other Related Parameters

Def. conflict-free coloring = edge-coloring s.t. each path has some color used once; $c(G) =$ least #colors.

edge-ranking = edge-coloring s.t. each path has the highest color used once; $\chi'_r(G) =$ least #colors.

- $\chi'_r(G) \geq c(G) \geq p(G)$, and the difference can be large.
 Indeed, $\chi'_r(K_n) \in \Theta(n^2)$ [BDJKKMT], but $p(K_n) \in \Theta(n)$.

Def. nonrepetitive edge-coloring = Thue coloring = edge-coloring with no immediate repetition $c_1, \ldots, c_k, c_1, \ldots, c_k$ on any path; $t(G)$ = least #colors.

Alon–Grytczuk–Hałuszczak–Riordan [2002]

- $p(G) \geq t(G) \geq \chi'(G)$.
Examples Showing $c \neq \hat{c}$

Ex. C_8: $p(C_8) = \lfloor \lg 8 \rfloor = 3$. Suppose $c(C_8) = 3$. A color used once \Rightarrow parity 4-path in the other two.
\therefore usage $(4, 2, 2)$ or $(3, 3, 2)$; delete edge of largest class to leave P_8 with no color used once.
Examples Showing $c \neq \hat{\rho}$

Ex. C_8: $p(C_8) = \lceil \log_2 8 \rceil = 3$. Suppose $c(C_8) = 3$. A color used once \Rightarrow parity 4-path in the other two. \therefore usage $(4, 2, 2)$ or $(3, 3, 2)$; delete edge of largest class to leave P_8 with no color used once.

Ex. Let $T_k = \text{broom formed by identifying an end of } P_{2^k-2k+2}$ with a leaf of a k-edge star. (T_5 below.)
Examples Showing $c \neq \hat{c}$

Ex. C_8: $p(C_8) = \lfloor \log_2 8 \rfloor = 3$. Suppose $c(C_8) = 3$. A color used once \Rightarrow parity 4-path in the other two.

\therefore usage $(4, 2, 2)$ or $(3, 3, 2)$; delete edge of largest class to leave P_8 with no color used once.

Ex. Let $T_k =$ broom formed by identifying an end of P_{2^k-2k+2} with a leaf of a k-edge star. (T_5 below.)

T_k embeds in Q_k, so $p(T_k) = k$. (Induction on k.)
Examples Showing $c \neq \hat{c}$

Ex. C_8: $p(C_8) = \lfloor \log_2 8 \rfloor = 3$. Suppose $c(C_8) = 3$. A color used once \Rightarrow parity 4-path in the other two. \therefore usage $(4, 2, 2)$ or $(3, 3, 2)$; delete edge of largest class to leave P_8 with no color used once.

Ex. Let $T_k = \text{broom formed by identifying an end of } P_{2^k-2k+2}$ with a leaf of a k-edge star. (T_5 below.)

T_k embeds in Q_k, so $p(T_k) = k$. (Induction on k.)

For $k \geq 5$, $c(T_k) = k + 1$. If conflict-free w. k colors, $P_{2^{k-1}+1}$ takes k colors, and $P_{2^{k-2}+1}$ takes $k - 1$. All k colors are at x, use the color missing on $P_{2^{k-2}+1}$. ■
Open Problems

Conj. 1 \(p(K_n) = 2^{[\lg n]} - 1 \) for all \(n \).
Known for \(n \leq 16 \); proved \(\hat{p}(K_n) = 2^{[\lg n]} - 1 \) for all \(n \).

Conj. 2 \(p(K_{n,n}) = \hat{p}(K_{n,n}) = 2^{[\lg n]} \). (\(\hat{p}(K_{r,s}) = r \circ s \)?)

Conj. 3 \(\hat{p}(G) = p(G) \) for every bipartite graph \(G \).

Ques. 4 What is \(\max \hat{p}(G) \) (or \(\max c(G) \)) for \(p(G) = k \)?

Ques. 5 How do \(\hat{p}(K_{k,n}) \) and \(p(K_{k,n}) \) grow with \(k \)?

Ques. 6 What is \(\max p(T) \) when \(T \) is an \(n \)-vertex tree with maximum degree \(k \)? (That is, what cube contains all \(n \)-vertex trees with maximum degree \(k \)?)

Ques. 7 When does \(p(G) \) equal \([\lg n(G)] \)?

Ques. 8 Is \(p(T) \) NP-hard on trees w. bounded degree?

Ques. 9 Stability . . . \(\hat{p}(G \Box H) \) . . . Digraphs . . .