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Abstract

Containment and overlap representations of digraphs are studied, with the fol-
lowing results. The interval containment digraphs are the digraphs of Ferrers
dimension 2, and the circular-arc containment digraphs are the complements of
circular-arc intersection digraphs. A poset is an interval containment poset if and
only if its comparability digraph is an interval containment digraph, and a graph
is an interval graph if and only if the corresponding symmetric digraph with loops
is an interval digraph. In an appropriate model of overlap representation using
intervals, the unit right-overlap interval digraphs are precisely the unit interval
digraphs, and the adjacency matrices of right-overlap interval digraphs have a
simple structural characterization bounding their Ferrers dimension by 3.
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1. INTRODUCTION

The intersection graph of a family of sets F' = {S,} is the graph with vertices corre-
sponding to the sets such that vertices are adjacent if and only if the corresponding sets
intersect. Many classes of intersection graphs in which the sets are restricted in some way
have been studied; the best known class is the interval graphs; these are the graphs with
intersection representations in which F' is a family of intervals on a line.

In [17,18,19], we studied an analogous model for representation of digraphs. The in-
tersection digraph of a family F' = {(S5,,T,): v € V} is the digraph with vertex set V in
which there is an edge from u to v if and only if S, intersects T),. A digraph is an interval
digraph if F' is a family of pairs of intervals on a line. Given a graph (G, the adjacency
matrix of the corresponding “symmetric digraph with loops” D((G) is obtained from the
adjacency matrix of G by adding 1’s on the diagonal. Many results about interval digraphs
in [17,18,19] are generalizations of results about interval graphs, because G is an interval
graph if and only D(G) is an interval digraph (see section 2).

Subclasses of interval digraphs have been studied. If the intervals all have the same
length, we obtain a unit interval digraph [19]. If T, C S, for all v, we obtain an interval
nest digraph; these were introduced and characterized by Prisner [15]. We can extend the
study of intersection graphs of subtrees of a tree to intersection digraphs of pairs of subtrees
of a tree. Every digraph is the intersection digraph of a family of pairs of subtrees of a star,
so it makes sense to define the leafage of a digraph to be the minimum number of leaves
in the host tree of a subtree intersection representation. Interval digraphs correspond to
leafage 2; leafage is studied in [12].

In this paper, we study generation of digraphs by models related to intersection. This
mirrors investigations for undirected graphs. In a containment representation for undi-
rected graphs, edges correspond to containment of sets S, C S, or S, D S,. In an overlap
representation, edges correspond to pairs of sets that intersect without either set contain-
ing the other. Classes of containment graphs have been studied by Golumbic [7,8] and
Golumbic and Scheinerman [9]; overlap representations by intervals have been studied by
Fournier [5].

We extend these models to representations of digraphs. The containment digraph of
a family F' = {(S,,T,): v € V} is the digraph with vertex set V' in which there is an edge
from u to v if and only if S, properly contains 7). It is easy to represent any digraph as
a containment digraph; given vertex set V = {v;}, let T,,, = {¢}, and let S,, be the the
element —i together with {j: v; € NT(v;)}, where N*(v;) is the set of successors (out-
neighbors) of v;. Naturally, we wish to restrict the pairs of sets in F to obtain interesting
classes of digraphs. If F' is a family of pairs of intervals, then the resulting containment
digraph is called an interval containment digraph. The characterization of interval con-
tainment digraphs uses Ferrers digraphs, introduced independently by Guttman [10] and
Riguet [16], which are those whose successor sets are linearly ordered by inclusion, which
is equivalent to transformability of the adjacency matrix by independent row and column
permutations to a 0,1-matrix in which the 1’s are clustered in the form of a Ferrers dia-
gram. The Ferrers dimension of a digraph D is the minimum number of Ferrers digraphs
whose intersection is D. In section 2 we observe that the digraphs of Ferrers dimension



2, characterized independently by Cogis [2] and Doignon, Ducamp, and Falmagne [3], are
precisely the interval containment digraphs.

Just as interval digraphs are closely related to interval graphs, so interval containment
digraphs are closely related to interval containment posets. A containment representation
of a poset assigns each element v € P a set S, such that z < y if and only if 5, C S,. It is
well known that interval containment posets are precisely the posets of dimension 2 [4,13].
Furthermore, the Ferrers dimension of the comparability digraph of a poset (a digraph that
is reflexive, antisymmetric, and transitive) equals the order dimension of the posets [1,3].
Hence it is not surprising that interval containment digraphs are precisely the digraphs
of Ferrers dimension 2, which we prove in Section 2. Together, these results imply that
a poset P is an interval containment poset if and only if its comparability digraph is an
interval containment digraph. Unlike the corresponding result about interval intersection
graphs, this does not yet have have a direct proof.

When F is restricted to be a family of arcs on a circle, we obtain the undirected
circular-arc graphs characterized by Tucker [20] (see [6] for a survey). In [17], we stud-
ied the intersection digraphs of families of ordered pairs of arcs on a circle, calling these
circular-arc digraphs. In section 3 we characterize the circular-arc containment digraphs,
proving that D is a circular-arc containment digraph if and only if its complement D (the
digraph whose adjacency matrix is the difference between the the adjacency matrix of D
and the matrix of all 1’s) is a circular-arc (intersection) digraph.

For our study of overlap digraphs represented by intervals, we will use a more restric-
tive model than the direct analogue with undirected graphs. For undirected graphs, it is
well known that G has an overlap representation in which F'is a family of intervals on a
line if and only if G has an intersection representation in which F' is a family of chords
of a circle. Fournier [5] characterized these graphs in terms of relations, leading us again
to digraphs. We define a right overlap interval digraph (ROI-digraph) to be one having
a representation by a family F' of ordered pairs of intervals such that there is an edge
from u to v if and only if S, and T, overlap (no containment) and inf S, < inf T,. In the
last section of this paper, we characterize the adjacency matrices of right-overlap interval
digraphs; this is the most difficult result of the paper. We also observe that the digraphs
having right-overlap interval representations in which all the intervals have unit length
(unit ROI-digraphs), are the same as the digraphs having interval intersection represen-
tations in which all the intervals have unit length (unit interval digraphs or indifference
digraphs), which were characterized in [19].

Another model for obtaining digraphs from sets was introduced by Harary, Kabell, and
McMorris [11]. Let Si,..., S, be subsets of a poset P with distinct and well-defined infima.
The intersection acyclic digraph of {S1,...,5,} is the digraph with vertices vq, ..., v, such
that v;v; is an edge if and only if 5; N S; # @ and inf S; < infS;. Suppose the sets are
intervals on a single chain. Since all interval graphs can be represented using distinct
integer endpoints for intervals, the interval acyclic digraphs are thus precisely the orien-
tations of interval graphs with respect to the left endpoints. McMorris and Mulder [14]
generalize this to subpaths of a rooted tree. For such classes of digraphs, we suggest the
name “source” to describe the model, as in “interval source digraphs” or “subpath source
digraphs”.



2. GRAPHS, DIGRAPHS, AND POSETS

In this section we consider relationships between representations of graphs or posets
and representations of digraphs. We write v «» v and © — v to mean “uv is an edge” (in
a graph or digraph) and u ¢ v and u /4 v to mean “uv is not an edge”.

THEOREM 1. A graph (G is an interval graph if and only if the corresponding symmetric
digraph with loops D(G) is an interval digraph.

Proof: Necessity is trivial. If G is an interval graph, with interval I, assigned to vertex
v, then setting S, = T\, = I, yields an intersection representation of the digraph D(G).
For sufficiency, suppose {(S,,7,): v € V(G)} is an interval intersection representation of
D(G), where S, = [ay,b,] and T, = [cy,d,]. We claim that setting I, = [ay + ¢y, by +
d,] yields an interval intersection representation of (G. The verification depends on the
observation that two intervals intersect if and only if each left endpoint is less than or
equal to the other right endpoint.

For the desired edges, we want I, N I, # @ if u — v and v — u in D(G). This means
¢y < by and a, < d,, which implies a, + ¢, < by + d,. Similarly we have ¢, < b, and
ay < dy, which implies a, + ¢, < by + dy.

The other possibility is v 4 v and v 4 u in D(G), but also v — v and v — v.
The non-edges imply d, < a, or b, < ¢,, and also d, < a, or b, < ¢,. If we choose
the first option in each case, the loops give us d, < a, < dy < a, < dy. If we choose
the second option in each case, we find b, < ¢, < b, < ¢y < b,. Hence we must choose
first /second or second/first. Summing the resulting inequalities yields b, + d, < a, + ¢4
or b, +d, < a, + ¢,. Each of these implies I, N I, = @, as desired. O

Next we consider interval containment, characterizing the digraphs representable by
this model. We use one of the equivalent characterizations of Ferrers digraphs. We prove
this for completeness and because we need a slight variant.

LEMMA 1. A digraph is a Ferrers digraph if and only if there exist functions
fyg: V(G) — R such that v — v if and only if f(u) < ¢g(v). Furthermore, when
such functions exist, they can be chosen so the ranges of f and ¢ are disjoint.

Proof: Sufficiency of the condition is clear, because the successor sets are ordered by
inclusion. For necessity, consider an independent permutation of the rows and columns of
the adjacency matrix so that the ones appear in the upper left in the positions of a Ferrers
diagram. There is a unique walk of length 2n from the upper right corner to the lower left
corner that separates the 1’s from the 0’s. Select values for f(u) and ¢g(v) as follows: If
the row corresponding to u is the ith row or column crossed in the walk, set f(u) =¢. If
the column corresponding to v is the ¢th row or column crossed in the walk, set g(v) = ¢.
Then v — v if and only if f(u) < g(v).

If any values are shared between f and ¢, then we can reduce all values of f by an
amount smaller than the distance between any two distinct values. 0



4

For interval containment digraphs there is an alternative model, which we call weak
containment representation, in which there is an edge from u to v if and only if S, contains
T,, without requiring the containment to be proper. The alternative model is better suited
for characterizing interval containment digraphs. Fortunately, the two classes are the same.

LEMMA 2. Every interval containment digraph has an interval containment represen-
tation such that no source interval equals any sink interval. This also holds for every
interval weak containment digraph. In particular, the classes of interval containment
digraphs and interval weak containment digraphs are the same.

Proof: Consider an interval containment representation with the minimum number of
identical pairs. If this is nonzero, suppose 5,, 7, are an identical pair with the right end-
point x. By the definition, © 4 v. For all intervals in the representation having right
endpoint z, except the sink intervals identical to 7, move the right endpoint leftward
by an amount less than the distance between any pair of distinct endpoints. No proper
inclusion relations have changed, and we have reduced the number of equalities between
source intervals and sink intervals.

For the statement about interval weak containment digraphs, again take a weak con-
tainment representation with the minimum number of identical pairs. However, since this
time we want to preserve those edges, we move the right endpoint of the sink intervals
identical to 5, leftward and do not change the other intervals sharing that right endpoint.

The final statement follows from the fact that a representation with no source set
identical to any sink set is both a containment representation and a weak containment
representation. 0

THEOREM 2. A digraph is an interval containment digraph if and only if it has Ferrers
dimension at most 2.

Proof: For necessity, suppose {(S,,7,): v € V(D)} is an interval containment representa-
tion of the digraph D, where S, = [a,, b,] and T, = [¢,, d,]. By the lemma, we may assume
that this is a weak containment representation. Hence we have the chain of inequalities
ay < ¢y <d, < b, if and only if u — v. We define two Ferrers digraphs whose intersection
is D. Define Dy by u — v in D; if and only if a, < ¢,, and define Dy by u — v in D,
if and only if d, < b, (the converse of a Ferrers digraph is also a Ferrers digraph). Since
always ¢, < d, (from the representation), we have D = Dy N D;.

For sufficiency, suppose D = Dy N D,. Let a, b, ¢, d be functions representing D; and
Dj such that v — v in Dy if and only if a, < ¢,, and u — v in D, if and only if d, < b,.
Reduce every value in {a,} U {¢c,} by the same amount (“translate” the representation) to
reach values {a! U{c!} such that ¢! <d, for every v € V(D). Now uv € E(D;ND;)if and
only if a!, < ¢! < d, < b,, which is the statement that {(S,,7,)} given by S, = [a}, b, ]
and T, = [c}, d,] is an interval weak containment representation of D. O



COROLLARY 1. A poset P is an interval containment poset if and only if its compa-
rability digraph is an interval containment digraph.

Proof: Let D(P) denote the comparability digraph of P, so that © — v in D(P) if and
only if v >= v in P. Necessity is trivial. If P is an interval containment poset, with
interval I, assigned to element v, then setting S, = T}, = I,, yields an interval containment
representation of the digraph D(P).

For sufficiency, suppose D(P) is an interval containment digraph. By Theorem 2, the
Ferrers dimension of D(P) is at most 2. Bouchet [1] proved that the order dimension of a
poset equals the Ferrers dimension of its (reflexive, transistive, anti-symmetric) compara-
bility digraph. Hence dim P = 2. This is turn implies that P is an interval containment
poset, as observed in [4,13]. O

Since the converse of a Ferrers digraph is also a Ferrers digraph, Theorem 2 also im-
plies that the converse of an interval containment digraph is also an interval containment
digraph.

3. CIRCULAR-ARC CONTAINMENT DIGRAPHS

A circular-arc containment representation of D assigns pairs (S,,7,) of arcs on a
circle to the vertices v € V(D) such that v — v if and only if S, properly contains T,. By
complementing all the arcs assigned, we see that the converse of a circular-arc containment
digraph is also a circular-arc containment digraph. In [17], we showed that the complement
of a digraph with Ferrers dimension 2 is a circular-arc digraph, but the sufficient condition
of Ferrers dimension 2 for the complement to be a circular-arc digraph is not necessary.
It turns out that the complements of circular-arc digraphs are precisely the circular-arc
containment digraphs.

THEOREM 3. A digraph is a circular-arc containment digraph if and only if its com-
plement is a circular-arc digraph.

Proof: Suppose D is a circular-arc containment digraph with circular-arc containment
representation {(S,,7,)}, where S, has endpoints a,,b, and T, has endpoints ¢,,d, in
clockwise order. Then u — v if and only if these endpoints occur in the order a,, ¢,, d,, b,
in the clockwise sense. By using the argument of Lemma 2, we may forbid shared endpoints
between source intervals and sink intervals. Let S! be the complement of S, on the circle,
together with its endpoints. If S, D T}, then S, N T, = @. If S, 7 T,, then the circular
order of endpoints starting with a, must be ay, ¢y, by, d, or ay,dy, by, ¢y O ay, by, cy, dy.

In each case, S, N T, # @. Hence {(S5),T,)} is a circular-arc representation for D.

The other direction follows from the fact that this transformation is reversible; it maps
circular-arc containment representations into circular-arc representations and vice versa.

O



4. OVERLAP DIGRAPHS

In this section we characterize the adjacency matrices of right-overlap interval di-
graphs.

DEFINITION . A 0,1-matrix has a P, R-partition if its rows and columns can be per-
muted independently so that its 0’s can be labeled P or R such that 1) the positions
to the right and the positions above any R are also 0’s labeled R, and 2) the positions
to the left or the positions below any P are also 0’s labeled P.

Note that this definition applies to non-square matrices (and hence general binary
relations) as well as to adjacency matrices of digraphs. As illustrated in the first matrix of
Fig. 1, it is easy to see that the R’s constitute a Ferrers digraph, and the P’s constitute
the union of two Ferrers digraphs. Hence any digraph whose adjacency matrix has a P, R-
partition is a digraph of Ferrers dimension at most 3.

THEOREM 4. A digraph is a right-overlap interval digraph if and only if its adjacency
matrix has a P, R-partition.

Proof: Necessity is relatively easy to show. Let {(S,,T,): v € V} be a right-overlap
interval representation of a digraph D, where S, = [a,,b,] and T, = [¢y,d,]. We have
v — v if and only if a, < ¢, < by, < dy. If v /4 v, then ¢, > b, or a, > ¢, or b, > d,.
The latter two possibilities are not mutually exclusive. We place the position uv of the
matrix in the set R if ¢, > b, and in the set P if a, > ¢, or b, > d,. Now place the rows
of the matrix in increasing order of the values b,, and place the columns of the matrix in
increasing order of the values ¢,. If (u,v) € R, then every position to the right of (u,v)
and every position above (u,v) is also in R. If (u,v) € P with a, > ¢,, then every position
to the left of (u,v) is in P. If (u,v) € P with b, > d,, then every position below (u,v) is
in P. See the first matrix of Fig. 1 for an illustration.

For the converse, consider a permutation of the rows and columns of the adjacency
matrix M that exhibits a P, R-partition. As observed earlier, D is the union of three Fer-
rers digraphs, which we view as sets of positions in the adjacency matrix: 1) H; consisting
of the P’s in M that have only P’s to their left, 2) H; consisting of the P’s in A/ that have
only P’s below them, and 3) H; consisting of the R’s in /. We want to construct intervals
Sy = |ay,by] and T, = [¢y,d,] for all v € V such that uv is outside all of Hy, Hy, Hs if
and only if a, < ¢, < b, < d,, which makes this a right-overlap interval representation
(since we will not have equality between any a’s and ¢’s, ¢’s and b’s, or b’s and d’s). The
values used for the endpoints will come from a topological ordering of an auxiliary acyclic
digraph.

We use Hy, H;, H; to define six partitions of V. Because the successor sets of a Fer-
rers digraph are ordered by inclusion, we can define a natural partition of the rows of the
adjacency matrix, with two rows in the same block if and only if the successor sets of the
two corresponding vertices are identical. Furthermore, the blocks of the partition received
a natural order from the inclusion ordering on the successor sets. The same is true of the
predecessor sets and the columns of the adjacency matrix.



The positions of H; already occupy those of a Ferrers diagram in the upper right
corner of M. For H;, we can permute the rows to achieve this in the lower left, and
for H,, we can permute the columns to achieve this in the lower left. Hence the natural
partitions that H; and Hj3 induce on the columns have the columns in the same order, and
the natural partitions that H; and H; induce on the rows have the rows in the same order.
This is illustrated in Fig. 1, where we have given names to the blocks of the partitions.
Because a row or column of zeros can be placed in R, we may assume that Ay, C']'D, By,
and D, are non-empty, although C{' and/or B]' may be empty.

c Cy .- Ch D, --- D, g ... ClL
B' BI’

R (? 1. Hs
bi| P ; ; :
P I H2 n
Ap_l Hl Bq._l Br

Fig. 1. Decomposition of adjacency matrix of overlap digraph

Let A = {A4;} and D = {D;}. Since the rows of H, H; and the columns of Hy, H3
are in the same order, we can define additional partitions By,...,Bs and Cy,...,C; that
maintain the order of the rows, where each block B; is the intersection of one B} and one
By, and each C; is the intersection of one '} and one C}'. In other words, the partition
B = {Bi} is the common refinement of {B’} and {B]/} with fewest blocks, indexed by
the shared order on the rows, and similarly for C = {C;}. Note that the indexing of the
various types of B’s agrees with the row order for H, and Hj;, and the indexing for the
(C’s agrees with the column order for H; and Hs.

We construct an auxiliary digraph ) with vertices A UB U C U D, which we call
“nodes” to distinguish them from the vertices of the original digraph. We will assign dis-
tinct integers to these nodes via a map f. Each v € A; will receive f(A;) as the value
of a,; similarly b,,¢,,d, are set from the values of f on B,C,D. We put an edge in
from one node to another when we want the number assigned to the first node to be less
than the number assigned to the second, and then f will be chosen to increase along every
edge. Since we want the b-values and c-values to be increasing in rows and columns in
accordance with the discussion of the P, R-partition above, we put B; — B; in Q if ¢ < j,
and similarly C; — C; in Q if ¢ < j.

If uec A; and v € C’} with ¢ > j, then uv ¢ E(D) and we want a, > ¢, to forbid
right-overlap, while if : < ; we want a, < ¢, to allow right-overlap if the other inequalities
are also satisfied. Hence for the pair A;, C; with C; C C’}, we put A; — C;in Q if 1 < 7,
but C; — A; if + > j. This defines a linear ordering on A U C. Similarly, for the pair
By, D; with B, C B!, we put By — D; if ¢ < j and D; — By, if ¢ > j, which establishes a
linear ordering on B U D.

For the interaction between these two orderings, note first that if we want the a’s and
b’s to be the endpoints of real intervals, then we must require f(A4;) < f(By) if there is a
vertex v € A; N By. We represent this by placing an edge from A; to By in (). Similarly, if



v € CiNDj, then we add C; — D; to Q). Since we have only added edges from {A;} U {C}}
to {By} U{D;}, this portion @; of @ is still acyclic.

We must still consider the requirements imposed by H3. Suppose u € By and v € (7,
with By C B! and C; C C']”. If : <y, then we have u /4 v in D, and we want b, < ¢, to
enforce this in the representation. On the other hand, if z > j, then possibly u — v, and
we need to allow this by ¢, < b,. Hence if : < j we place the edge By — C; in (), while if
i > j we put C; — By. Let @2 consist of these edges together with the edges among {B;}
and {C;}. The edges of (), impose a linear ordering on B U C.

Our problem now is to show that Q = Q)1 UQ); is acyclic. Ifit is, consider a numbering
f: V(Q) — Z such that XY € E(Q) implies f(X) < f(Y). Then using the values of f
to determine a,, b,,¢,,d, as described above, we have created intervals S, = [a,, b,] and
T, = [¢y,dy] such that uv € E(D) if and only if a, < ¢, < b, < d,, and otherwise one of
these three inequalities points the other way.

In 1 U Q)2 we have described three linear orderings (paths): on A UC, B U D, and
B U C. In each ordering, the indices on a particular type of node appear in increasing
order; call this property I. If there is a cycle created by adding the edges of (), to @)1, then
it must use an edge of the form By — C} from ()3, since all other edges between the two
orderings of (J; point in the other direction. Choose such an edge so that there is no other
edge Bp/Cp with k' > k and I' > [. By property I, there is no edge from a later C to an
earlier By, so the choice of k, ! implies the cycle must come back to a By with &' < k from
an A; later than C; or come back to a D; earlier than By from a Cp with ' > [. These
two possibilities are symmetric; we need only consider one. Suppose the former. Since
every node of A is adjacent to every node of C in (); and we have chosen A; appearing
later than C; in the first linear order, we have B, — C; — A; — B in Q with k' < k.
The edge By C} implies that the positions defined by the blocks By and C; are in Hs. The
edge C7A; implies that the positions defined by the blocks C; and A; are in Hy. The edge
A; By implies that some row belongs to both A; and Bys. This is impossible, because the
rows having positions of H; in the original matrix are below those having positions of Hj
in any column. Hence the rows of A; are below those of By, but the rows of By are above
those of By, by the chosen indexing. The contradiction implies that () is in fact acyclic. O

If the intervals in a right-overlap interval representation all have unit length, then
the condition a, > ¢, for membership in H; is equivalent to the condition b, > d, for
membership in H;. Hence a unit ROI-digraph has a permutation of rows and columns and
a partition of zeros such that every R has only R’s above and to its right, and every P has
only P’s below and to its left. In [20], it was proved that this condition on an adjacency
matrix, called a monotone consecutive arrangement, characterizes the intersection digraphs
of pairs of unit-length intervals. These are called unit interval digraphs or indifference
digraphs. It is easy to show directly that these classes are the same.

THEOREM 5. The class of unit right-overlap interval digraphs is the same as the class
of indifference digraphs.

Proof: Given an unit interval intersection representation of D, let f(u) be the midpoint



9

of S, and ¢g(v) be the midpoint of T,; this transformation is reversible. Hence D is a unit
interval digraph if and only if there exist f,¢: V(D) — R such that v — v if and only if
0 < |g(v) — f(u)] <1 (hence the name “indifference” digraph). By a similar association,
D is a unit right-overlap interval digraph if and only if there exist f,g: V(D) — R such
that v — v if and only if 0 < g(v) — f(u) < 1.

To show that these conditions are the same, we observe first that the possibility of
lg(v) — f(u)| =1 can be ignored in the condition for finite indifference digraphs. If D has
such a representation(and has non-edges), let ¢ be the smallest positive value such that
some ¢(v) and f(u) differ by 1+ €. If we multiply all values of f and ¢g by a fixed constant
between 1 and 1/(1 + €), then we have changed no edges and have eliminated all instances
where values of f and ¢ differ by 1, without introducing any.

Hence D is a unit interval digraph if and only if there exist f,¢: V(D) — R such that
u — v if and only if —1 < ¢g(v)— f(u) < 1. Given such a representation, let f'(u) = f(u)/2
and ¢'(v) = (14 ¢(v))/2. Then 0 < ¢'(v)— f'(u) < 1ifand only if —1 < g(v)— f(u) < 1, so
f', ¢' provide a right-overlap interval representation of D. Furthermore, the transformation
is reversible, by setting f = 2f' and ¢ = 2¢' — 1 if f', ¢’ provides a right-overlap interval
representation. 0
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