On-Line Ramsey Theory in Bounded Degree Graphs

Douglas B. West

Department of Mathematics
University of Illinois at Urbana-Champaign
west@math.uiuc.edu
http://www.math.uiuc.edu/~west/pubs/publink.html

Joint work with
Jane Butterfield, Tracy Grauman, Bill Kinnersley, Kevin Milans, Christopher Stocker
The Problem

Graph Ramsey theory = a game
Builder presents a graph; **Painter** 2-colors the edges.
Builder wins if a monochromatic G is produced.
The Problem

Graph Ramsey theory = a game
Builder presents a graph; Painter 2-colors the edges.
Builder wins if a monochromatic G is produced.

“Arrow” $H \rightarrow G \iff$ Builder wins by playing H.
The Problem

Graph Ramsey theory = a game
Builder presents a graph; Painter 2-colors the edges.
Builder wins if a monochromatic G is produced.

“Arrow” $H \rightarrow G \iff$ Builder wins by playing H.

On-line Graph Ramsey theory = a stronger Builder
Builder presents one edge at a time; Painter colors it.
Builder wins if a monochromatic G is produced.
The Problem

Graph Ramsey theory = a game
Builder presents a graph; Painter 2-colors the edges.
Builder wins if a monochromatic G is produced.

“Arrow” $H \rightarrow G \Leftrightarrow$ Builder wins by playing H.

On-line Graph Ramsey theory = a stronger Builder
Builder presents one edge at a time; Painter colors it.
Builder wins if a monochromatic G is produced.

Idea: Restrict Builder to play on a family \mathcal{H}.
After every move, the graph presented so far lies in \mathcal{H}.
The Problem

Graph Ramsey theory = a game
Builder presents a graph; Painter 2-colors the edges.
Builder wins if a monochromatic G is produced.

“Arrow” $H \rightarrow G \iff$ Builder wins by playing H.

On-line Graph Ramsey theory = a stronger Builder
Builder presents one edge at a time; Painter colors it.
Builder wins if a monochromatic G is produced.

Idea: Restrict Builder to play on a family \mathcal{H}.
After every move, the graph presented so far lies in \mathcal{H}.
This defines the on-line Ramsey game (G, \mathcal{H}).
Can Builder playing on \mathcal{H} force a monochromatic G?
Prior Work

Grytczuk–Hałuszcak–Kierstead [2004] (ElJC)
Prior Work

Grytczuk–Hałuszczak–Kierstead [2004] (ElJC)

\(\chi(G) \leq k, \mathcal{H} = k\)-colorable graphs \(\Rightarrow \) Builder wins.

\(G \) a forest, \(\mathcal{H} = \{\text{forests}\} \) \(\Rightarrow \) Builder wins.
Prior Work

Grytczuk–Hałuszczak–Kierstead [2004] (ElJC)

\(\chi(G) \leq k, \mathcal{H} = k\)-colorable graphs \(\Rightarrow \) Builder wins.

\(G \) a forest, \(\mathcal{H} = \{\text{forests}\} \Rightarrow \) Builder wins.

\(G = C_3, \mathcal{H} = \{\text{outerplanar}\} \Rightarrow \) Painter wins.

\(G = C_3, \mathcal{H} = \{\text{planar 2-degenerate}\} \Rightarrow \) Builder wins.
Prior Work

Grytczuk–Hałuszczak–Kierstead [2004] (ElJC)

$\chi(G) \leq k$, $\mathcal{H} = k$-colorable graphs \Rightarrow Builder wins.

G a forest, $\mathcal{H} = \{\text{forests}\}$ \Rightarrow Builder wins.

$G = C_3$, $\mathcal{H} = \{\text{outerplanar}\}$ \Rightarrow Painter wins.

$G = C_3$, $\mathcal{H} = \{\text{planar 2-degenerate}\}$ \Rightarrow Builder wins.

$G = C_n$, $\mathcal{H} = \{\text{planar}\}$ \Rightarrow Builder wins.

$G = P_n \lor K_1$, $\mathcal{H} = \{\text{planar}\}$ \Rightarrow Builder wins. (extra idea)
Prior Work

Grytczuk–Hałuszczak–Kierstead [2004] (ElJC)

\(\chi(G) \leq k, \mathcal{H} = k \)-colorable graphs \(\Rightarrow \) Builder wins.

\(G \) a forest, \(\mathcal{H} = \{ \text{forests} \} \) \(\Rightarrow \) Builder wins.

\(G = C_3, \mathcal{H} = \{ \text{outerplanar} \} \) \(\Rightarrow \) Painter wins.

\(G = C_3, \mathcal{H} = \{ \text{planar 2-degenerate} \} \) \(\Rightarrow \) Builder wins.

\(G = C_n, \mathcal{H} = \{ \text{planar} \} \) \(\Rightarrow \) Builder wins.

\(G = P_n \lor K_1, \mathcal{H} = \{ \text{planar} \} \Rightarrow \) Builder wins. (extra idea)

Conj. On planar graphs, **Builder** wins if and only if \(G \) is outerplanar.
Prior Work

Grytczuk–Hałuszcak–Kierstead [2004] (ElJC)

\(\chi(G) \leq k, \mathcal{H} = k\)-colorable graphs \(\Rightarrow \) Builder wins.

G a forest, \(\mathcal{H} = \{\text{forests}\} \Rightarrow \) Builder wins.

\(G = C_3, \mathcal{H} = \{\text{outerplanar}\} \Rightarrow \) Painter wins.

\(G = C_3, \mathcal{H} = \{\text{planar 2-degenerate}\} \Rightarrow \) Builder wins.

\(G = C_n, \mathcal{H} = \{\text{planar}\} \Rightarrow \) Builder wins.

\(G = P_n \lor K_1, \mathcal{H} = \{\text{planar}\} \Rightarrow \) Builder wins. (extra idea)

** Conj.** On planar graphs, Builder wins if and only if \(G \) is outerplanar.

Grytczuk–Kierstead–Prałat [2008?]

\(\tilde{r}(G) = \min \{k: \text{Builder wins on graphs with} \leq k \text{ edges}\} \).

\(\tilde{r}(P_n) \leq 4n - 7 \), but for trees it can be quadratic.
Bounded-degree Graphs

Def. \(S_k \) = family of graphs with maximum degree \(\leq k \).

\[\text{ostr}(G) = \min \{ k : \text{Builder wins } (G, S_k) \} . \]
Bounded-degree Graphs

Def. $S_k = \text{family of graphs with maximum degree } \leq k$.

$$\text{odr}(G) = \min\{k : \text{Builder wins } (G, S_k)\}.$$

Thm. $\text{odr}(G) \leq 3 \iff \text{each component of } G \text{ is a path or each component is a subgraph of } K_{1,3}$.
Bounded-degree Graphs

Def. \(S_k = \) family of graphs with maximum degree \(\leq k \).

\[\text{odr}(G) = \min \{ k : \text{Builder wins } (G, S_k) \} . \]

Thm. \(\text{odr}(G) \leq 3 \iff \) each component of \(G \) is a path or each component is a subgraph of \(K_{1,3} \).

Thm. \(\text{odr}(G) \leq 2\Delta(G) - 1 \) when \(G \) is a tree, sharp when \(G \) has adjacent vertices of maximum degree.
Bounded-degree Graphs

Def. \(S_k \) = family of graphs with maximum degree \(\leq k \).

\[
\text{odr}(G) = \min\{k : \text{Builder wins } (G, S_k)\}.
\]

Thm. \(\text{odr}(G) \leq 3 \iff \) each component of \(G \) is a path or each component is a subgraph of \(K_{1,3} \).

Thm. \(\text{odr}(G) \leq 2\Delta(G) - 1 \) when \(G \) is a tree, sharp when \(G \) has adjacent vertices of maximum degree.

Thm. \(4 \leq \text{odr}(C_n) \leq 5 \).
Def. $S_k =$ family of graphs with maximum degree $\leq k$.

$$\text{odr}(G) = \min\{k: \text{Builder wins } (G, S_k)\}.$$

Thm. $\text{odr}(G) \leq 3 \iff$ each component of G is a path or each component is a subgraph of $K_{1,3}$.

Thm. $\text{odr}(G) \leq 2\Delta(G) - 1$ when G is a tree, sharp when G has adjacent vertices of maximum degree.

Thm. $4 \leq \text{odr}(C_n) \leq 5$.

Thm. $\text{odr}(C_n) = 4$ if n is even or large or 3.
Bounded-degree Graphs

Def. $S_k =$ family of graphs with maximum degree $\leq k$.

$$\text{odr}(G) = \min\{k: \text{Builder wins } (G, S_k)\}.$$

Thm. $\text{odr}(G) \leq 3 \iff$ each component of G is a path or each component is a subgraph of $K_{1,3}$.

Thm. $\text{odr}(G) \leq 2\Delta(G) - 1$ when G is a tree, sharp when G has adjacent vertices of maximum degree.

Thm. $4 \leq \text{odr}(C_n) \leq 5$.

Thm. $\text{odr}(C_n) = 4$ if n is even or large or 3.

Thm. $\text{odr}(G) \leq 8$ if $\Delta(G) \leq 2$ (maybe less).
Warmup - Paths

Thm. $\text{odr}(P_n) \leq 3$.

Pf. Stronger statement: In S_3, Builder forces a monochr. P_m with $m \geq n$ whose ends have no other edges.
Thm. $\text{o}dr(P_n) \leq 3$.

Pf. Stronger statement: In S_3, Builder forces a monochromatic P_m with $m \geq n$ whose ends have no other edges.

Induction step: Play the P_{n-1}-strategy enough times to get $n-2$ such paths in the same color, say red.
Thm. \(\text{odr}(P_n) \leq 3. \)

Pf. Stronger statement: In \(S_3 \), Builder forces a monochr. \(P_m \) with \(m \geq n \) whose ends have no other edges.

Induction step: Play the \(P_{n-1} \)-strategy enough times to get \(n-2 \) such paths in the same color, say red.

Play a path of \(n-1 \) new edges through their endpoints.
Thm. \(\text{odr}(P_n) \leq 3. \)

Pf. Stronger statement: In \(S_3 \), Builder forces a monochr. \(P_m \) with \(m \geq n \) whose ends have no other edges.

Induction step: Play the \(P_{n-1} \)-strategy enough times to get \(n - 2 \) such paths in the same color, say red.

Play a path of \(n - 1 \) new edges through their endpoints. If all new edges are blue, done.
Warmup - Paths

Thm. \(\text{odr}(P_n) \leq 3. \)

Pf. Stronger statement: In \(S_3 \), Builder forces a monochr. \(P_m \) with \(m \geq n \) whose ends have no other edges.

Induction step: Play the \(P_{n-1} \)-strategy enough times to get \(n - 2 \) such paths in the same color, say red.

Play a path of \(n - 1 \) new edges through their endpoints. If all new edges are blue, done. If one is red, done.
Weighted Graphs

- Each vertex v has an “allowed” degree $c(v)$. Weight of $v = $ total number of edges played at v.
Weighted Graphs

- Each vertex v has an “allowed” degree $c(v)$. Weight of $v = \text{total number of edges played at } v$.

Obs. If Builder can force a copy of G with weight at most k at each vertex when no restrictions are imposed on edges played, then $\text{odr}(G) \leq k$.

Pf. It doesn’t matter what Painter does on an edge with a vertex whose degree exceeds k, because this edge cannot lie in the resulting G.

Weighted Graphs

- Each vertex v has an “allowed” degree $c(v)$. Weight of v = total number of edges played at v.

Obs. If Builder can force a copy of G with weight at most k at each vertex when no restrictions are imposed on edges played, then $\text{odr}(G) \leq k$.

Pf. It doesn’t matter what Painter does on an edge with a vertex whose degree exceeds k, because this edge cannot lie in the resulting G.

Obs. If Builder wins (G, \mathcal{H}) (weighted G), then Builder wins (mG, \mathcal{H}).

Pf. Play $2m - 1$ times, then pigeonhole on two colors.
Thm. Builder can force a weighted $K_{1,m}$ if center has weight $\geq 2m - 1$ or each vertex has weight $\geq m$.
Thm. Builder can force a weighted $K_{1,m}$ if center has weight $\geq 2m - 1$ or each vertex has weight $\geq m$.

Pf. With weight $2m - 1$ allowed at center, play $K_{1,2m-1}$.

Stars

Thm. Builder can force a weighted $K_{1,m}$ if center has weight $\geq 2m - 1$ or each vertex has weight $\geq m$.

Pf. With weight $2m - 1$ allowed at center, play $K_{1,2m-1}$.

Stars

Thm. Builder can force a weighted $K_{1,m}$ if center has weight $\geq 2m - 1$ or each vertex has weight $\geq m$.

Pf. With weight $2m - 1$ allowed at center, play $K_{1,2m-1}$.

Stars

Thm. Builder can force a weighted $K_{1,m}$ if center has weight $\geq 2m - 1$ or each vertex has weight $\geq m$.

Pf. With weight $2m - 1$ allowed at center, play $K_{1,2m-1}$.

Thm. Builder can force a weighted $K_{1,m}$ if center has weight $\geq 2m - 1$ or each vertex has weight $\geq m$.

Pf. With weight $2m - 1$ allowed at center, play $K_{1,2m-1}$. For weight m, induct on m. Trivial for $m = 1$.

Stars
Thm. Builder can force a weighted $K_{1,m}$ if center has weight $\geq 2m - 1$ or each vertex has weight $\geq m$.

Pf. With weight $2m - 1$ allowed at center, play $K_{1,2m-1}$. For weight m, induct on m. Trivial for $m = 1$. For $m > 1$, Builder can force $mK_{1,m-1}$ in S_{m-1}.
Thm. Builder can force a weighted $K_{1,m}$ if center has weight $\geq 2m - 1$ or each vertex has weight $\geq m$.

Pf. With weight $2m - 1$ allowed at center, play $K_{1,2m-1}$.

For weight m, induct on m. Trivial for $m = 1$.

For $m > 1$, Builder can force $mK_{1,m-1}$ in S_{m-1}.

Add $K_{1,m}$ with new center having old centers as leaves.
Thm. Builder can force a weighted $K_{1,m}$ if center has weight $\geq 2m - 1$ or each vertex has weight $\geq m$.

Pf. With weight $2m - 1$ allowed at center, play $K_{1,2m-1}$. For weight m, induct on m. Trivial for $m = 1$. For $m > 1$, Builder can force $mK_{1,m-1}$ in S_{m-1}. Add $K_{1,m}$ with new center having old centers as leaves.

All blue. One red.
Thm. $\text{odr}(C_3) \leq 4$.

Pf. If Builder forces a $(4, 2, 2, 2)$-claw, then Builder wins by presenting a triangle on its leaves.
Triangles

Thm. $\text{odr}(C_3) \leq 4$.

Pf. If **Builder** forces a $(4, 2, 2, 2)$-claw, then **Builder** wins by presenting a triangle on its leaves.

1) Present a claw (centered at u), done if monochromatic. Say uv blue, others red.
Thm. $\text{o}d\text{r}(C_3) \leq 4$.

Pf. If **Builder** forces a $(4, 2, 2, 2)$-claw, then **Builder** wins by presenting a triangle on its leaves.

1) Present a claw (centered at u), done if monochromatic. Say uv blue, others red.

2) Present a claw centered at v (gives it degree 4), done if all red. Say vw blue.
Thm. $\text{odr}(C_3) \leq 4$.

Pf. If Builder forces a $(4, 2, 2, 2)$-claw, then Builder wins by presenting a triangle on its leaves.

1) Present a claw (centered at u), done if monochromatic. Say uv blue, others red.

2) Present a claw centered at v (gives it degree 4), done if all red. Say vw blue.

3) Present uw. Done if blue; otherwise, red $(4, 2, 2, 2)$-claw.
The Greedy Painter

Def. The greedy \mathcal{F}-Painter colors each edge red if the resulting red graph lies in \mathcal{F}.
The Greedy Painter

Def. The greedy \mathcal{F}-Painter colors each edge red if the resulting red graph lies in \mathcal{F}.

Thm. S_{m-1}-Painter makes Builder use $\geq 2m - 1$ at center or $\geq m$ at each vertex to get monochr. $K_{1,m}$.
The Greedy Painter

Def. The greedy \mathcal{F}-Painter colors each edge red if the resulting red graph lies in \mathcal{F}.

Thm. S_{m-1}-Painter makes Builder use $\geq 2m - 1$ at center or $\geq m$ at each vertex to get monochr. $K_{1,m}$.

Pf. Edge gets blue \iff an endpt already has $m - 1$ red. Painter never makes a red $K_{1,m}$. If a blue $K_{1,m}$, then center has $m - 1$ red or each leaf has $m - 1$ red.
Def. The greedy \mathcal{F}-Painter colors each edge red if the resulting red graph lies in \mathcal{F}.

Thm. S_{m-1}-Painter makes Builder use $\geq 2m - 1$ at center or $\geq m$ at each vertex to get monochr. $K_{1,m}$.

Pf. Edge gets blue if an endpt already has $m - 1$ red. Painter never makes a red $K_{1,m}$. If a blue $K_{1,m}$, then center has $m - 1$ red or each leaf has $m - 1$ red.

Thm. $\text{odr}(G) \geq \Delta(G) - 1 + \max_{uv \in E(G)} \min \{d(u), d(v)\}$.
The Greedy Painter

Def. The greedy \mathcal{F}-Painter colors each edge red if the resulting red graph lies in \mathcal{F}.

Thm. S_{m-1}-Painter makes Builder use $\geq 2m - 1$ at center or $\geq m$ at each vertex to get monochr. $K_{1,m}$.

Pf. Edge gets blue \iff an endpt already has $m-1$ red. Painter never makes a red $K_{1,m}$. If a blue $K_{1,m}$, then center has $m-1$ red or each leaf has $m-1$ red.

Thm. $\text{odr}(G) \geq \Delta(G) - 1 + \max_{uv \in E(G)} \min \{ d(u), d(v) \}$.

Pf. Let $m = \Delta(G)$. S_{m-1}-Painter never makes red G. Let xy be an edge with maxmin degree in G. A blue G has an edge for xy; it has $m-1$ red at one endpt and at least $\min \{ d_G(x), d_G(y) \}$ blue there.
Theorem. $\text{odr}(G) \leq 3 \iff$ each component is a path or each component is a subgraph of $K_{1,3}$.
Small odr

Thm. odr(G) ≤ 3 \iff each component is a path or each component is a subgraph of $K_{1,3}$.

Pf. Suffic.: **Builder** can force long path or $mK_{1,3}$.
Small odr

Thm. $\text{odr}(G) \leq 3 \iff$ each component is a path or each component is a subgraph of $K_{1,3}$.

Pf. Suffic.: Builder can force long path or $mK_{1,3}$.
Necessity: Builder plays in S_3.
Painter uses greedy \mathcal{L}, where $\mathcal{L} = \{\text{linear forests}\}$. Red graph is always a linear forest. What of blue?
Small odr

Thm. $odr(G) \leq 3 \iff$ each component is a path or each component is a subgraph of $K_{1,3}$.

Pf. Suffic.: Builder can force long path or $mK_{1,3}$.

Necessity: Builder plays in S_3.
Painter uses greedy \mathcal{L}, where $\mathcal{L} = \{\text{linear forests}\}$.
Red graph is always a linear forest. What of blue?

To create degree 3 in blue at v, each neighbor must already have two red and hence no more blue (in S_3).
\[\therefore \text{blue component is } K_{1,3}. \]
odr \leq 3, \text{ cont.}

Long blue path unforceable against greedy \mathcal{L}-Painter.

Suppose blue $\langle u, v, w \rangle$ has another blue at u and w (maybe uw). Each of u, v, w has at most one red (in S_3).
odr ≤ 3, cont.

Long blue path unforceable against greedy \mathcal{L}-Painter.

Suppose blue $\langle u, v, w \rangle$ has another blue at u and w (maybe uw). Each of u, v, w has at most one red (in S_3).

uv, vw blue $\Rightarrow \exists$ red u, v-path and red v, w-path.

This violates red $\subseteq \mathcal{L}$.

![Diagram](attachment:diagram.png)
odr ≤ 3, cont.

Long blue path unforceable against greedy \mathcal{L}-Painter.

Suppose blue $\langle u, v, w \rangle$ has another blue at u and w (maybe uw). Each of u, v, w has at most one red (in S_3).

uv, vw blue $\Rightarrow \exists \text{ red } u, v$-path and red v, w-path.

This violates red $\subseteq \mathcal{L}$.

Builder forces blue $K_{1,3} + P_4$ against greedy \mathcal{L}-Painter.
odr ≤ 3, cont.

Long blue path unforceable against greedy \mathcal{L}-Painter.

Suppose blue $\langle u, v, w \rangle$ has another blue at u and w (maybe uw). Each of u, v, w has at most one red (in S_3). uv, vw blue $\Rightarrow \exists$ red u, v-path and red v, w-path. This violates $\text{red} \subseteq \mathcal{L}$.

Builder forces blue $K_{1,3} + P_4$ against greedy \mathcal{L}-Painter.

However, greedy S_2-Painter yields
$\text{odr}(K_{1,3} + P_4) \geq 3 - 1 + \min\{2, 2\} = 4.$
Cor. If G has adjacent vertices of maximum degree, then $\text{odr}(G) \geq 2\Delta(G) - 1$.
Trees

Cor. If G has adjacent vertices of maximum degree, then $\text{odr}(G) \geq 2\Delta(G) - 1$.

Thm. If G is a tree, then $\text{odr}(G) \leq 2\Delta(G) - 1$.
Cor. If G has adjacent vertices of maximum degree, then $\text{odr}(G) \geq 2\Delta(G) - 1$.

Thm. If G is a tree, then $\text{odr}(G) \leq 2\Delta(G) - 1$.
[Stronger result: $\text{odr}(G) \leq d_1 + d_2 - 1$.]
Cor. If G has adjacent vertices of maximum degree, then $\text{o dr}(G) \geq 2\Delta(G) - 1$.

Thm. If G is a tree, then $\text{o dr}(G) \leq 2\Delta(G) - 1$. [Stronger result: $\text{o dr}(G) \leq d_1 + d_2 - 1$.]

Pf. Idea: Builder forces an arbitrarily large monochr. complete k-ary tree, where $k = \Delta(G) - 1$.
Cor. If G has adjacent vertices of maximum degree, then $\text{odr}(G) \geq 2\Delta(G) - 1$.

Thm. If G is a tree, then $\text{odr}(G) \leq 2\Delta(G) - 1$.

[Stronger result: $\text{odr}(G) \leq d_1 + d_2 - 1$.]

Pf. Idea: Builder forces an arbitrarily large monochromatic complete k-ary tree, where $k = \Delta(G) - 1$.

Candidate tree T_R or T_B has an active vertex x_R or x_B - a vertex of least depth w/o k children via its own color.
Cor. If G has adjacent vertices of maximum degree, then $\text{odr}(G) \geq 2\Delta(G) - 1$.

Thm. If G is a tree, then $\text{odr}(G) \leq 2\Delta(G) - 1$. [Stronger result: $\text{odr}(G) \leq d_1 + d_2 - 1$.]

Pf. Idea: Builder forces an arbitrarily large monochr. complete k-ary tree, where $k = \Delta(G) - 1$.

Candidate tree T_R or T_B has an active vertex x_R or x_B - a vertex of least depth w/o k children via its own color.

Invariant: In T_R, each vertex other than x_R either 1) is a leaf in T_R with no other incident edge (wt 1), or 2) has k red children and at most k blue incident edges. (Symmetrically for T_B).
Invariant Condition

In T_R, each vertex other than x_R either
1) is a leaf in T_R with no other incident edge (wt 1), or
2) has k red children and at most k blue incident edges.
(Symmetrically for T_B).
Invariant Condition

In T_R, each vertex other than x_R either
1) is a leaf in T_R with no other incident edge (wt 1), or
2) has k red children and at most k blue incident edges.
(Symmetrically for T_B).

An active vertex is
satisfied if it has k children via its own color.
dangerous if it has k incident edges of the other color.
Builder strategy

Builder plays pendant edges at active vertices (in T_R or T_B) until Painter makes one satisfied or dangerous.
Builder Strategy

Builder plays pendant edges at active vertices (in T_R or T_B) until **Painter** makes one satisfied or dangerous.

When an active vertex is satisfied, **Builder** rechooses it (closest to root w/o k children via its own color).
Builder Strategy

Builder plays pendant edges at active vertices (in T_R or T_B) until **Painter** makes one satisfied or dangerous.

When an active vertex is satisfied, **Builder** rechooses it (closest to root w/o k children via its own color).

If x_R and x_B are both dangerous,

![Diagram of trees T_R and T_B with vertices x_R, x_B]
Builder Strategy

Builder plays pendant edges at active vertices (in T_R or T_B) until Painter makes one satisfied or dangerous.

When an active vertex is satisfied, Builder rechooses it (closest to root w/o k children via its own color).

If x_R and x_B are both dangerous, Builder plays x_Rx_B.
Builder Strategy

Builder plays pendant edges at active vertices (in T_R or T_B) until Painter makes one satisfied or dangerous.

When an active vertex is satisfied, Builder rechooses it (closest to root w/o k children via its own color).

If x_R and x_B are both dangerous, Builder plays x_Rx_B.

This edge enters the tree for its color, dragging the other tree with it.
Builder Strategy

Builder plays pendant edges at active vertices (in T_R or T_B) until Painter makes one satisfied or dangerous.

When an active vertex is satisfied, Builder rechooses it (closest to root w/o k children via its own color).

If x_R and x_B are both dangerous, Builder plays $x_R x_B$.

This edge enters the tree for its color, dragging the other tree with it.

Then Builder regenerates the other tree.
The Consistent Painter

Def. Painter follows a **consistent** strategy if the color given to a newly presented edge depends only on the current 2-colored components containing its endpoints (regardless of what has been played elsewhere).
The Consistent Painter

Def. Painter follows a **consistent** strategy if the color given to a newly presented edge depends only on the current 2-colored components containing its endpoints (regardless of what has been played elsewhere).

Thm. If \mathcal{H} is an additive family (closed under disjoint unions), and A is a Painter strategy on \mathcal{H}, then there is a consistent Painter strategy A' on \mathcal{H} such that for any list E' presented by Builder, there is another list E such that $A'(E') \subseteq A(E)$ (as 2-colored graphs).
The Consistent Painter

Def. Painter follows a consistent strategy if the color given to a newly presented edge depends only on the current 2-colored components containing its endpoints (regardless of what has been played elsewhere).

Thm. If \mathcal{H} is an additive family (closed under disjoint unions), and A is a Painter strategy on \mathcal{H}, then there is a consistent Painter strategy A' on \mathcal{H} such that for any list E' presented by Builder, there is another list E such that $A'(E') \subseteq A(E)$ (as 2-colored graphs).

Cor. To prove that $\text{odr}(G) \leq k$, it suffices to show that Builder can win against any consistent Painter on S_k.
The Consistent Painter

Def. Painter follows a consistent strategy if the color given to a newly presented edge depends only on the current 2-colored components containing its endpoints (regardless of what has been played elsewhere).

Thm. If \mathcal{H} is an additive family (closed under disjoint unions), and \mathcal{A} is a Painter strategy on \mathcal{H}, then there is a consistent Painter strategy \mathcal{A}' on \mathcal{H} such that for any list E' presented by Builder, there is another list E such that $\mathcal{A}'(E') \subseteq \mathcal{A}(E)$ (as 2-colored graphs).

Cor. To prove that $\text{odr}(G) \leq k$, it suffices to show that Builder can win against any consistent Painter on S_k.

Pf. \forall Painter \mathcal{A}, \exists consistent Painter \mathcal{A}' s.t. Builder can force against \mathcal{A} whatever he can force against \mathcal{A}'.
Assume Builder plays on S_k and Painter is consistent.

Lem. Let F_1, F_2 be weighted graphs Builder can force in red, with vertices u_1, u_2. Form F from $F_1 + F_2$ by adding $u_1 u_2$ and increasing weights on u_1 and u_2 by 2. If q is even, then Builder can force a red F or a blue C_q.
Even Cycles

Assume Builder plays on S_k and Painter is consistent.

Lem. Let F_1, F_2 be weighted graphs Builder can force in red, with vertices u_1, u_2. Form F from $F_1 + F_2$ by adding u_1u_2 and increasing weights on u_1 and u_2 by 2. If q is even, then Builder can force a red F or a blue C_q.

Pf. Builder forces $q/2$ copies of F_1 and F_2 and then adds a cycle alternating between the copies of u_1 and u_2. ■
Consistent Painter makes the same monochromatic P_3 (with weights 2) in any isolated triangle; we may assume it is red. Painter wants to avoid a monochromatic C_q.
Consistent Painter makes the same monochromatic P_3 (with weights 2) in any isolated triangle; we may assume it is red. Painter wants to avoid a monochromatic C_q.
Trees for Even Cycles

Consistent Painter makes the same monochr. P_3 (with weights 2) in any isolated triangle; we may assume it is red. Painter wants to avoid a monochromatic C_q.

$q = 4$
Consistent Painter makes the same monochromatic P_3 (with weights 2) in any isolated triangle; we may assume it is red. Painter wants to avoid a monochromatic C_q.

$q = 8$
Consistent Painter makes the same monochromatic P_3 (with weights 2) in any isolated triangle; we may assume it is red. Painter wants to avoid a monochromatic C_q.

Extension by P_3 lengthens both sides by 2.
Extension by K_1 lengthens both sides by 1.
Special Case: C_6

Consistent Painter makes consistent triangles.

Case 1: monochromatic
Special Case: \(C_6 \)

Consistent Painter makes consistent triangles.

Case 1: monochromatic
Special Case: C_6

Consistent Painter makes consistent triangles.

Case 1: monochromatic
Special Case: C_6

Consistent Painter makes consistent triangles.

Case 1: monochromatic

Case 2: not monochromatic
Special Case: C_6

Consistent Painter makes consistent triangles.

Case 1: monochromatic

Case 2: not monochromatic
Special Case: C_6

Consistent Painter makes consistent triangles.

Case 1: monochromatic

Case 2: not monochromatic
Summary for Cycles

C_{10} done similarly.

Thm. For even n with $n \geq 4$, $\text{odr}(C_n) = 4$.
Summary for Cycles

C_{10} done similarly.

Thm. For even n with $n \geq 4$, $\text{odr}(C_n) = 4$.

Recall $\text{odr}(C_3) = 4$ by claw + triangle.
Summary for Cycles

\(C_{10} \) done similarly.

Thm. For even \(n \) with \(n \geq 4 \), \(\text{odr}(C_n) = 4 \).

Recall \(\text{odr}(C_3) = 4 \) by claw + triangle.

Thm. For all \(n \), \(\text{odr}(C_n) \leq 5 \).
Summary for Cycles

\(C_{10} \) done similarly.

Thm. For even \(n \) with \(n \geq 4 \), \(\text{odr}(C_n) = 4 \).

Recall \(\text{odr}(C_3) = 4 \) by claw + triangle.

Thm. For all \(n \), \(\text{odr}(C_n) \leq 5 \).

Thm. If \(337 \leq n \leq 514 \) or \(n \geq 689 \), then \(\text{odr}(C_n) = 4 \).
Summary for Cycles

C_{10} done similarly.

Thm. For even n with $n \geq 4$, $\text{odr}(C_n) = 4$.

Recall $\text{odr}(C_3) = 4$ by claw + triangle.

Thm. For all n, $\text{odr}(C_n) \leq 5$.

Thm. If $337 \leq n \leq 514$ or $n \geq 689$, then $\text{odr}(C_n) = 4$.

Ques. Can Builder win every (C_n, S_4)?
Summary for Cycles

C_{10} done similarly.

Thm. For even n with $n \geq 4$, $\text{odr}(C_n) = 4$.

Recall $\text{odr}(C_3) = 4$ by claw + triangle.

Thm. For all n, $\text{odr}(C_n) \leq 5$.

Thm. If $337 \leq n \leq 514$ or $n \geq 689$, then $\text{odr}(C_n) = 4$.

Ques. Can Builder win every (C_n, S_4)?

Ques. Does $\text{odr}(C_5)$ equal 4? (otherwise 5)
Lem. On S_k with $k \geq 4$ against a consistent Painter, if Builder can force red F or monochr. C_q (q odd), then Builder can force a red F' or a monochr. C_q, where $F' = \text{add pendant } uv$, increasing $c(u)$ by 2, set $c(v) = 2$.
Odd Cycles

Lem. On S_k with $k \geq 4$ against a consistent Painter, if Builder can force red F or monochr. C_q (q odd), then Builder can force a red F' or a monochr. C_q, where $F' = \text{add pendant } uv$, increasing $c(u)$ by 2, set $c(v) = 2$.

Thm. $\text{odr}(C_q) \leq 5$ when q is odd.
Lem. On S_k with $k \geq 4$ against a consistent Painter, if Builder can force red F or monochr. C_q (q odd), then Builder can force a red F' or a monochr. C_q, where $F' = \text{add pendant } uv$, increasing $c(u)$ by 2, set $c(v) = 2$.

Thm. $\text{odr}(C_q) \leq 5$ when q is odd.

Pf. Force monochr. P_q (say red) with weights 3.

\begin{center}
\begin{tikzpicture}
 \draw[red] (0,0) -- (11,0);
 \foreach \x in {0,1,2,3,4,5,6,7,8,9,10,11}
 \draw[fill=black] (\x,0) circle (2pt);
 \foreach \x in {0,1,2,3,4,5,6,7,8,9,10,11}
 \draw[red,thick] (\x,0) -- (\x+1,0);
 \end{tikzpicture}
\end{center}

\[3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \]
Odd Cycles

Lem. On S_k with $k \geq 4$ against a consistent Painter, if Builder can force red F or monochr. C_q (q odd), then Builder can force a red F' or a monochr. C_q, where $F' = \text{add pendant } uv$, increasing $c(u)$ by 2, set $c(v) = 2$.

Thm. $\text{oord}(C_q) \leq 5$ when q is odd.

Pf. Force monochr. P_q (say red) with weights 3. Grow pendant paths.

```
3 5 5 5 5 5 5 5 3
2 2 2 2 2 2 2
```
Odd Cycles

Lem. On S_k with $k \geq 4$ against a consistent Painter, if Builder can force red F or monochr. C_q (q odd), then Builder can force a red F' or a monochr. C_q, where $F' = \text{add pendant } uv$, increasing $c(u)$ by 2, set $c(v) = 2$.

Thm. $\text{odr}(C_q) \leq 5$ when q is odd.

Pf. Force monochr. P_q (say red) with weights 3. Grow pendant paths.

Leaf distances $q - 1$ (opposite halves or to middle). Cycle through the leaves is all blue or some red.
Ques. Does there exist a function f such that $\text{odr}(G) \leq f(\Delta(G))$ for every graph G?
Other Open Questions

Ques. Does there exist a function f such that $\text{odr}(G) \leq f(\Delta(G))$ for every graph G?

Ques. What is $\text{odr}(C_4 + e)$? (In $\{5, 6, 7\}$.)

What is $\text{odr}(K_{1,3} + e)$? (In $\{4, 5\}$.)

Lower bounds by maxmin degree argument.
Upper bounds by **Builder** strategy and case analysis.
Other Open Questions

Ques. Does there exist a function f such that $\text{odr}(G) \leq f(\Delta(G))$ for every graph G?

Ques. What is $\text{odr}(C_4 + e)$? (In \{5, 6, 7\}.)
What is $\text{odr}(K_{1,3} + e)$? (In \{4, 5\}.)

Lower bounds by maxmin degree argument.
Upper bounds by **Builder** strategy and case analysis.

Ques. For the double-star tree $G_{a,b}$ with central vertices of degrees a and b, the maxmin degree argument yields $\text{odr}(G_{a,b}) \geq a + b - 1$. Equality? Yes!
Other Open Questions

Ques. Does there exist a function f such that $\text{odr}(G) \leq f(\Delta(G))$ for every graph G?

Ques. What is $\text{odr}(C_4 + e)$? (In $\{5, 6, 7\}$.)
What is $\text{odr}(K_{1,3} + e)$? (In $\{4, 5\}$.)

Lower bounds by maxmin degree argument.
Upper bounds by **Builder** strategy and case analysis.

Ques. For the double-star tree $G_{a,b}$ with central vertices of degrees a and b, the maxmin degree argument yields $\text{odr}(G_{a,b}) \geq a + b - 1$. Equality? Yes!

Thm. If a tree T with $\Delta(T) = a$ has exactly one vertex of degree a, and all others have degree at most b (where $b \leq a$), then $\text{odr}(T) \leq a + b - 1$.

A Different Problem

Harder for Builder: play in S_k, but all edges at once.
A Different Problem

Harder for Builder: play in S_k, but all edges at once.

Def. degree Ramsey number $dr(G)$ (Milans)

$dr(G) = \min \{ k : H \to G \text{ for some } H \in S_k \}$.
A Different Problem

Harder for **Builder**: play in S_k, but all edges at once.

Def. degree Ramsey number $d_r(G)$ (Milans)

$\displaystyle d_r(G) = \min \{ k : H \rightarrow G \text{ for some } H \in S_k \}$.

Obs. $\text{odr}(G) \leq d_r(G) < R(G, G)$.
A Different Problem

Harder for Builder: play in S_k, but all edges at once.

Def. degree Ramsey number $dr(G)$ (Milans)

\[dr(G) = \min \{ k : H \to G \text{ for some } H \in S_k \}. \]

Obs. $odr(G) \leq dr(G) < R(G,G)$.

More general problem: allow more colors.

\[dr(G; s) = \min \{ k : H \overset{s}{\to} G \text{ for some } H \in S_k \}. \]
A Different Problem

Harder for Builder: play in S_k, but all edges at once.

Def. degree Ramsey number $\text{dr}(G)$ (Milans)

$\text{dr}(G) = \min\{k : H \to G \text{ for some } H \in S_k\}$.

Obs. $\text{odr}(G) \leq \text{dr}(G) < R(G, G)$.

More general problem: allow more colors.

$\text{dr}(G; s) = \min\{k : H \overset{s}{\to} G \text{ for some } H \in S_k\}$.

Like $\text{odr}(G)$, some results are known for $\text{dr}(G)$ when G is a path, star, cycle, or tree.
Degree Ramsey for Paths

Thm. Alon–Ding–Oporowski–Vertigan[2003] \(dr(P_n; s) \leq 2s \).
Degree Ramsey for Paths

Thm. Alon–Ding–Oporowski–Vertigan[2003] \(dr(P_n; s) \leq 2s \).

Pf. Let \(H \) be \(2s \)-regular with girth \(\geq n \). Let \(m = |V(H)| \).
Thm. Alon–Ding–Oporowski–Vertigan[2003] \(\text{dr}(P_n; s) \leq 2s \).

Pf. Let \(H \) be 2s-regular with girth \(\geq n \). Let \(m = |V(H)| \).

\(s \)-coloring \(sm \) edges puts \(\geq m \) in some color class. Since \(|V(H)| = m \), this subgraph has a cycle.

Since \(H \) has girth \(\geq n \), this color class contains \(P_n \). ■
Thm. Alon–Ding–Oporowski–Vertigan [2003] $\text{dr}(P_n; s) \leq 2s$.

Pf. Let H be $2s$-regular with girth $\geq n$. Let $m = |V(H)|$. s-coloring sm edges puts $\geq m$ in some color class. Since $|V(H)| = m$, this subgraph has a cycle. Since H has girth $\geq n$, this color class contains P_n.

Thm. Thomassen [1999] Every 3-regular graph has a 2-edge-coloring such that each monochromatic component is contained in P_6.

Degree Ramsey for Paths

Thm. Alon–Ding–Oporowski–Vertigan [2003] \(\text{dr}(P_n; s) \leq 2s \).

Pf. Let \(H \) be \(2s \)-regular with girth \(\geq n \). Let \(m = |V(H)| \).

An \(s \)-coloring of \(sm \) edges puts \(\geq m \) in some color class. Since \(|V(H)| = m \), this subgraph has a cycle. Since \(H \) has girth \(\geq n \), this color class contains \(P_n \).

Thm. Thomassen [1999] Every \(3 \)-regular graph has a 2-edge-coloring such that each monochromatic component is contained in \(P_6 \).

Cor. \(\text{dr}(P_n; 2) = 4 \) and \(\text{dr}(P_n; s) \geq 3s/2 \) for \(n > 6 \).
Thm. Alon–Ding–Oporowski–Vertigan [2003] $\text{dr}(P_n; s) \leq 2s$.

Pf. Let H be $2s$-regular with girth $\geq n$. Let $m = |V(H)|$. s-coloring sm edges puts $\geq m$ in some color class. Since $|V(H)| = m$, this subgraph has a cycle. Since H has girth $\geq n$, this color class contains P_n.

Thm. Thomassen [1999] Every 3-regular graph has a 2-edge-coloring such that each monochromatic component is contained in P_6.

Cor. $\text{dr}(P_n; 2) = 4$ and $\text{dr}(P_n; s) \geq 3s/2$ for $n > 6$.

Pf. If $\Delta(H) < 3s/2$, then H is $3s/2$-edge-colorable. Triples of colors form subgraphs with maxdeg 3. Use two colors on each subgraph.
Degree Ramsey for Cycles

Thm. If G is an odd cycle, then $dr(G) \geq 5$.
Thm. If G is an odd cycle, then $\text{dr}(G) \geq 5$.

Pf. K_5 does not arrow any fixed cycle.
Degree Ramsey for Cycles

Thm. If G is an odd cycle, then $\text{dr}(G) \geq 5$.

Pf. K_5 does not arrow any fixed cycle. By Brooks’ Theorem, every connected H in S_4 (other than K_5) has a proper 4-coloring f.
Thm. If G is an odd cycle, then $\text{dr}(G) \geq 5$.

Pf. K_5 does not arrow any fixed cycle. By Brooks’ Theorem, every connected H in S_4 (other than K_5) has a proper 4-coloring f. Painter 2-colors uv “odd” or “even” by whether $f(u) - f(v)$ is odd or even. Both classes bipartite. ■
Degree Ramsey for Cycles

Thm. If G is an odd cycle, then $\text{dr}(G) \geq 5$.

Pf. K_5 does not arrow any fixed cycle. By Brooks’ Theorem, every connected H in S_4 (other than K_5) has a proper 4-coloring f. Painter 2-colors uv “odd” or “even” by whether $f(u) - f(v)$ is odd or even. Both classes bipartite. ■

Cor. $\text{dr}(C_3) = 5$.
Degree Ramsey for Cycles

Thm. If G is an odd cycle, then $dr(G) \geq 5$.

Pf. K_5 does not arrow any fixed cycle. By Brooks’ Theorem, every connected H in S_4 (other than K_5) has a proper 4-coloring f. Painter 2-colors uv “odd” or “even” by whether $f(u) - f(v)$ is odd or even. Both classes bipartite.

Cor. $dr(C_3) = 5$.

Ques. Is $dr(C_n)$ bounded? (Maybe always 5?)
Thm. If G is an odd cycle, then $\text{dr}(G) \geq 5$.

Pf. K_5 does not arrow any fixed cycle. By Brooks’ Theorem, every connected H in S_4 (other than K_5) has a proper 4-coloring f. Painter 2-colors uv “odd” or “even” by whether $f(u) - f(v)$ is odd or even. Both classes bipartite.

Cor. $\text{dr}(C_3) = 5$.

Ques. Is $\text{dr}(C_n)$ bounded? (Maybe always 5?)

- If G is connected and $\text{dr}(G) \leq 4$, then G is a path or an even cycle.
Thm. If $\Delta(G) \geq 2k + 1$, then $dr(G) \geq 4k + 1$.
Degree Ramsey by Maximum Degree

Thm. If $\Delta(G) \geq 2k + 1$, then $\text{dr}(G) \geq 4k + 1$.

Pf. If $\Delta(H) \leq 4k$, then H lies in a $4k$-regular graph H'. By Petersen’s Theorem, H' decomposes into $2k$ spanning 2-regular subgraphs. Put k in each color to avoid degree $2k + 1$ in one color at any vertex.
Degree Ramsey by Maximum Degree

Thm. If $\Delta(G) \geq 2k + 1$, then $dr(G) \geq 4k + 1$.

Pf. If $\Delta(H) \leq 4k$, then H lies in a $4k$-regular graph H'. By Petersen’s Theorem, H' decomposes into $2k$ spanning 2-regular subgraphs. Put k in each color to avoid degree $2k + 1$ in one color at any vertex.

Cor. $dr(K_{1,2k+1};s) = 2sk + 1$.

Pf. Upper Bound: $K_{1,2sk+1} \xrightarrow{s} K_{1,2k+1}$.

Degree Ramsey by Maximum Degree

Thm. If $\Delta(G) \geq 2k + 1$, then $\text{dr}(G) \geq 4k + 1$.

Pf. If $\Delta(H) \leq 4k$, then H lies in a $4k$-regular graph H'. By Petersen’s Theorem, H' decomposes into $2k$ spanning 2-regular subgraphs. Put k in each color to avoid degree $2k + 1$ in one color at any vertex. □

Cor. $\text{dr}(K_{1,2k+1}; s) = 2sk + 1$.

Pf. Upper Bound: $K_{1,2sk+1} \rightarrow_s K_{1,2k+1}$. □

Thm. $\text{dr}(K_{1,2k}; s) \geq 2sk - s$, with equality for even s.
Degree Ramsey by Maximum Degree

Thm. If $\Delta(G) \geq 2k + 1$, then $dr(G) \geq 4k + 1$.

Pf. If $\Delta(H) \leq 4k$, then H lies in a $4k$-regular graph H'. By Petersen’s Theorem, H' decomposes into $2k$ spanning 2-regular subgraphs. Put k in each color to avoid degree $2k + 1$ in one color at any vertex.

Cor. $dr(K_{1,2k+1}; s) = 2sk + 1$.

Pf. Upper Bound: $K_{1,2sk+1} \rightarrow_s K_{1,2k+1}$.

Thm. $dr(K_{1,2k}; s) \geq 2sk - s$, with equality for even s.

Pf. Lower Bound: By Vizing’s Theorem, $\Delta(G) = 2sk - s - 1 \Rightarrow G$ is $s(2k - 1)$-edge-colorable. Put $2k - 1$ of these matchings into each color.
Degree Ramsey by Maximum Degree

Thm. If \(\Delta(G) \geq 2k + 1 \), then \(\text{dr}(G) \geq 4k + 1 \).

Pf. If \(\Delta(H) \leq 4k \), then \(H \) lies in a \(4k \)-regular graph \(H' \). By Petersen’s Theorem, \(H' \) decomposes into \(2k \) spanning \(2 \)-regular subgraphs. Put \(k \) in each color to avoid degree \(2k + 1 \) in one color at any vertex.

Cor. \(\text{dr}(K_{1,2k+1}; s) = 2sk + 1 \).

Pf. Upper Bound: \(K_{1,2sk+1} \xrightarrow{s} K_{1,2k+1} \).

Thm. \(\text{dr}(K_{1,2k}; s) \geq 2sk - s \), with equality for even \(s \).

Pf. Lower Bound: By Vizing’s Theorem,
\(\Delta(G) = 2sk - s - 1 \) \(\Rightarrow \) \(G \) is \(s(2k - 1) \)-edge-colorable.
Put \(2k - 1 \) of these matchings into each color.

Upper Bound: If \(G \) is \(s(2k - 1) \)-regular with odd order, then avoiding \(K_{1,2k} \) puts degree \(2k - 1 \) in each color at each vertex: regular \(w \) odd-degree & odd order.
Thm. (Jiang) If G is a tree, then $dr(G; s) \leq 2s\Delta(G)$.
Thm. (Jiang) If G is a tree, then $\text{dr}(G; s) \leq 2s\Delta(G)$.

Pf. Let H be $2s\Delta(G)$-regular with girth $> \text{diam}(G)$.
Thm. (Jiang) If G is a tree, then $dr(G; s) \leq 2s\Delta(G)$.

Pf. Let H be $2s\Delta(G)$-regular with girth $> \text{diam}(G)$. s-coloring $E(H)$ yields $\text{avgdeg} \geq 2\Delta(G)$ in some color. It has a subgraph with minimum degree $\geq \Delta(G)$.
Thm. (Jiang) If G is a tree, then $\text{dr}(G; s) \leq 2s\Delta(G)$.

Pf. Let H be $2s\Delta(G)$-regular with girth $> \text{diam}(G)$. s-coloring $E(H)$ yields $\text{avgdeg} \geq 2\Delta(G)$ in some color. It has a subgraph with minimum degree $\geq \Delta(G)$. In this color find G, since each vertex has $\Delta(G) - 1$ new children until depth $\text{radius}(G)$ is reached.
Thm. (Jiang) If G is a tree, then $\text{dr}(G; s) \leq 2s\Delta(G)$.

Pf. Let H be $2s\Delta(G)$-regular with girth $> \text{diam}(G)$. s-coloring $E(H)$ yields $\text{avgdeg} \geq 2\Delta(G)$ in some color. It has a subgraph with minimum degree $\geq \Delta(G)$. In this color find G, since each vertex has $\Delta(G) - 1$ new children until depth $\text{radius}(G)$ is reached.

Ques. Is $\text{dr}(G)$ bounded by a function of $\Delta(G)$? (Would imply the analogue for $\text{odr}(G)$.)
Thm. (Jiang) If G is a tree, then $\text{dr}(G; s) \leq 2s\Delta(G)$.

Pf. Let H be $2s\Delta(G)$-regular with girth $> \text{diam}(G)$. s-coloring $E(H)$ yields avgdeg $\geq 2\Delta(G)$ in some color. It has a subgraph with minimum degree $\geq \Delta(G)$. In this color find G, since each vertex has $\Delta(G) - 1$ new children until depth radius(G) is reached.

Ques. Is $\text{dr}(G)$ bounded by a function of $\Delta(G)$? (Would imply the analogue for $\text{odr}(G)$.)

Ques. Is $\text{dr}(G)$ bounded by a function of $\text{o dr}(G)$? (We still have no graph with $\text{dr}(G) > \text{o dr}(G) + 1$.)
Thm. (Jiang) If G is a tree, then $dr(G; s) \leq 2s\Delta(G)$.

Pf. Let H be $2s\Delta(G)$-regular with girth $> \text{diam}(G)$. s-coloring $E(H)$ yields $\text{avgdeg} \geq 2\Delta(G)$ in some color. It has a subgraph with minimum degree $\geq \Delta(G)$. In this color find G, since each vertex has $\Delta(G) - 1$ new children until depth $\text{radius}(G)$ is reached.

Ques. Is $dr(G)$ bounded by a function of $\Delta(G)$? (Would imply the analogue for $odr(G)$.)

Ques. Is $dr(G)$ bounded by a function of $odr(G)$? (We still have no graph with $dr(G) > odr(G) + 1$.)

Ques. What is $dr(C_n)$? What is $dr(K_{1,2k}; s)$ when s is odd?