On-line Size Ramsey Number for Ordered Tight Paths

Douglas B. West

Department of Mathematics
Zhejiang Normal University and
University of Illinois at Urbana-Champaign
west@math.uiuc.edu

slides available on DBW preprint page

Joint work with

Xavier Pérez-Giménez and Paweł Prałat

Ramsey Theory: $H \rightarrow_t G$ means every t-coloring of the elements of H contains a monochromatic copy of G.

Ramsey Theory: $H \rightarrow_t G$ means every t-coloring of the elements of H contains a monochromatic copy of G.

Ramsey's Theorem: $K_n^{(k)} \rightarrow_t G$ for large enough n.

Ramsey Theory: $H \rightarrow_t G$ means every t-coloring of the elements of H contains a monochromatic copy of G.

Ramsey's Theorem: $K_n^{(k)} \rightarrow_t G$ for large enough n.

Ramsey number: $R_t(G)$ = least such n.

Ramsey Theory: $H \rightarrow_t G$ means every t-coloring of the elements of H contains a monochromatic copy of G.

Ramsey's Theorem: $K_n^{(k)} \rightarrow_t G$ for large enough n.

Ramsey number: $R_t(G)$ = least such n.

Def. ordered hypergraph - a hypergraph on a linearly ordered vertex set.

Ramsey Theory: $H \rightarrow_t G$ means every t-coloring of the elements of H contains a monochromatic copy of G.

Ramsey's Theorem: $K_n^{(k)} \rightarrow_t G$ for large enough n.

Ramsey number: $R_t(G)$ = least such n.

Def. ordered hypergraph - a hypergraph on a linearly ordered vertex set. $G \subseteq H$ means there is a copy of G in H via an order-preserving vertex injection.

Ramsey Theory: $H \rightarrow_t G$ means every t-coloring of the elements of H contains a monochromatic copy of G.

Ramsey's Theorem: $K_n^{(k)} \rightarrow_t G$ for large enough n.

Ramsey number: $R_t(G)$ = least such n.

Def. ordered hypergraph - a hypergraph on a linearly ordered vertex set. $G \subseteq H$ means there is a copy of G in H via an order-preserving vertex injection.

By Ramsey's Theorem, $R_t(G)$ exists for every ordered k-uniform hypergraph G (since $K_{|V(G)|}^{(k)}$ can be forced).

Ramsey Theory: $H \rightarrow_t G$ means every t-coloring of the elements of H contains a monochromatic copy of G.

Ramsey's Theorem: $K_n^{(k)} \rightarrow_t G$ for large enough n.

Ramsey number: $R_t(G)$ = least such n.

Def. ordered hypergraph - a hypergraph on a linearly ordered vertex set. $G \subseteq H$ means there is a copy of G in H via an order-preserving vertex injection.

By Ramsey's Theorem, $R_t(G)$ exists for every ordered k-uniform hypergraph G (since $K_{|V(G)|}^{(k)}$ can be forced).

Def. size Ramsey number $\hat{R}_t(G) = \min\{|E(H)|: H \rightarrow_t G\}$.

(Other parameter Ramsey numbers have been studied, minimizing $\omega(H)$, $\chi(H)$, $\Delta(H)$, genus, etc.)

For Ramsey problems, Builder presents a hypergraph, Painter colors the edges using t colors. Builder wins if \exists monochromatic copy of G.

For Ramsey problems, Builder presents a hypergraph, Painter colors the edges using t colors. Builder wins if \exists monochromatic copy of G.

Def. on-line Ramsey theory - Builder is stronger, adding edges one by one; Painter colors immediately.

For Ramsey problems, Builder presents a hypergraph, Painter colors the edges using t colors. Builder wins if \exists monochromatic copy of G.

Def. on-line Ramsey theory - Builder is stronger, adding edges one by one; Painter colors immediately.

How many rounds can Painter survive? #edges is the natural parameter.

For Ramsey problems, Builder presents a hypergraph, Painter colors the edges using t colors.

Builder wins if \exists monochromatic copy of G.

Def. on-line Ramsey theory - Builder is stronger, adding edges one by one; Painter colors immediately.

How many rounds can Painter survive? #edges is the natural parameter.

Let \tilde{R}_t = on-line size Ramsey #; always $\tilde{R}_t(G) \leq \hat{R}_t(G)$.

For Ramsey problems, Builder presents a hypergraph, Painter colors the edges using t colors.

Builder wins if \exists monochromatic copy of G.

Def. on-line Ramsey theory - Builder is stronger, adding edges one by one; Painter colors immediately.

How many rounds can Painter survive? #edges is the natural parameter.

Let \tilde{R}_t = on-line size Ramsey #; always $\tilde{R}_t(G) \leq \hat{R}_t(G)$.

We study on-line size Ramsey number of ordered $P_r^{(k)}$.

For Ramsey problems, Builder presents a hypergraph, Painter colors the edges using t colors.

Builder wins if \exists monochromatic copy of G.

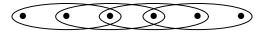
Def. on-line Ramsey theory - Builder is stronger, adding edges one by one; Painter colors immediately.

How many rounds can Painter survive? #edges is the natural parameter.

Let \tilde{R}_t = on-line size Ramsey #; always $\tilde{R}_t(G) \leq \hat{R}_t(G)$.

We study on-line size Ramsey number of ordered $P_r^{(k)}$.

The k-uniform ordered tight path $P_r^{(k)}$ has vertex set [r]; its edges are the sets of k consecutive vertices.



Why ordered tight paths?

Why ordered tight paths?

• (Duffus-Lefmann-Rödl [1995]) Lower bound on Ramsey numbers (in the language of "shift graphs")

Why ordered tight paths?

- (Duffus-Lefmann-Rödl [1995]) Lower bound on Ramsey numbers (in the language of "shift graphs")
- (Fox–Pach–Sudakov–Suk [2012]) Family of noncrossing convex bodies in \mathbb{R}^2 (Any family of $2^{n^2 \log n}$ noncrossing convex bodies in general position in the plane has n members with none in the convex hull of the others.)

Why ordered tight paths?

- (Duffus-Lefmann-Rödl [1995]) Lower bound on Ramsey numbers (in the language of "shift graphs")
- (Fox–Pach–Sudakov–Suk [2012]) Family of noncrossing convex bodies in \mathbb{R}^2 (Any family of $2^{n^2 \log n}$ noncrossing convex bodies in general position in the plane has n members with none in the convex hull of the others.)
- (Milans–Stolee–West [2015]) Track representations of graphs ($\Omega\left(\frac{\lg\lg n}{\lg\lg\lg n}\right) \le \tau(L(K_n)) \le O(\lg\lg n)$)

Why ordered tight paths?

- (Duffus-Lefmann-Rödl [1995]) Lower bound on Ramsey numbers (in the language of "shift graphs")
- (Fox–Pach–Sudakov–Suk [2012]) Family of noncrossing convex bodies in \mathbb{R}^2 (Any family of $2^{n^2 \log n}$ noncrossing convex bodies in general position in the plane has n members with none in the convex hull of the others.)
- (Milans–Stolee–West [2015]) Track representations of graphs ($\Omega\left(\frac{\lg\lg n}{\lg\lg\lg n}\right) \le \tau(L(K_n)) \le O(\lg\lg n)$)

These are applications of $R_t(P_r^{(k)})$ (number of vertices).

Ordinary graphs, two colors, classical Ramsey number:

 $R_2(P_n) \approx 3n/2$ (Gerencsér–Gyárfás [1967])

Ordinary graphs, two colors, classical Ramsey number: $R_2(P_n) \approx 3n/2$ (Gerencsér–Gyárfás [1967])

Ordinary graphs, two colors, size Ramsey number: For n sufficiently large, $\hat{R}_2(P_n)$ is bounded by 900n (Beck [1983]), 720n (Bollobás [2001]), 137n (Dudek–Prałat [2015]), 91n (Letzter [2016]), 74n (Dudek–Prałat [2016+]) (lower bound 2.5n).

Ordinary graphs, two colors, classical Ramsey number: $R_2(P_n) \approx 3n/2$ (Gerencsér–Gyárfás [1967])

Ordinary graphs, two colors, size Ramsey number: For n sufficiently large, $\hat{R}_2(P_n)$ is bounded by 900n (Beck [1983]), 720n (Bollobás [2001]), 137n (Dudek-Prałat [2015]), 91n (Letzter [2016]), 74n (Dudek-Prałat [2016+]) (lower bound 2.5n).

On-line problem: (Beck [1993], Kurek-Rucinski [2005])

Ordinary graphs, two colors, classical Ramsey number: $R_2(P_n) \approx 3n/2$ (Gerencsér–Gyárfás [1967])

Ordinary graphs, two colors, size Ramsey number: For n sufficiently large, $\hat{R}_2(P_n)$ is bounded by 900n (Beck [1983]), 720n (Bollobás [2001]), 137n (Dudek-Prałat [2015]), 91n (Letzter [2016]), 74n (Dudek-Prałat [2016+]) (lower bound 2.5n).

On-line problem: (Beck [1993], Kurek–Rucinski [2005]) $\tilde{R}_2(K_n) \le c^{-n} {R_2(K_n) \choose 2}$ infinitely often (Conlon [2009])

Ordinary graphs, two colors, classical Ramsey number: $R_2(P_n) \approx 3n/2$ (Gerencsér–Gyárfás [1967])

Ordinary graphs, two colors, size Ramsey number: For n sufficiently large, $\hat{R}_2(P_n)$ is bounded by 900n (Beck [1983]), 720n (Bollobás [2001]), 137n (Dudek–Prałat [2015]), 91n (Letzter [2016]), 74n (Dudek–Prałat [2016+]) (lower bound 2.5n).

On-line problem: (Beck [1993], Kurek–Rucinski [2005]) $\tilde{R}_2(K_n) \leq c^{-n} {\binom{R_2(K_n)}{2}} \text{ infinitely often (Conlon [2009])}$ $\tilde{R}_2(G) \geq \beta(G) \frac{\Delta(G)-1}{2} + |E(G)| \text{ (Grytczuk-Kierstead-Prałat ['08])}$

Ordinary graphs, two colors, classical Ramsey number: $R_2(P_n) \approx 3n/2$ (Gerencsér–Gyárfás [1967])

Ordinary graphs, two colors, size Ramsey number: For n sufficiently large, $\hat{R}_2(P_n)$ is bounded by 900n (Beck [1983]), 720n (Bollobás [2001]), 137n (Dudek-Prałat [2015]), 91n (Letzter [2016]), 74n (Dudek-Prałat [2016+]) (lower bound 2.5n).

On-line problem: (Beck [1993], Kurek–Rucinski [2005]) $\tilde{R}_2(K_n) \leq c^{-n} \binom{R_2(K_n)}{2} \text{ infinitely often (Conlon [2009])}$ $\tilde{R}_2(G) \geq \beta(G) \frac{\Delta(G)-1}{2} + |E(G)| \text{ (Grytczuk-Kierstead-Prałat ['08])}$ $2n-3 \leq \tilde{R}_2(P_n) \leq 4n-7 \text{ (GKP [2008])}$

Ordinary $R_t(P_3) = t + 2$, but ordered path $R_t(P_3) = 2^t + 1$. General ordered path $R_t(P_n) = (n-1)^t + 1$.

Let
$$tow_h(x) = \begin{cases} x & h = 0 \\ 2^{tow_{h-1}(x)} & h \ge 1 \end{cases}$$
.

Let
$$tow_h(x) = \begin{cases} x & h = 0 \\ 2^{tow_{h-1}(x)} & h \ge 1 \end{cases}$$
.

Thm. (Moshkovitz–Shapira [2014]) For $t \ge 2$, $k \ge 3$, and $m = r - k + 1 \ge 2$, the ordered tight path $P_r^{(k)}$ satisfies $tow_{k-2}(\frac{m^{t-1}}{2\sqrt{t}}) \le R_t(P_r^{(k)}) \le tow_{k-2}(2m^{t-1})$.

Let
$$tow_h(x) = \begin{cases} x & h = 0 \\ 2^{tow_{h-1}(x)} & h \ge 1 \end{cases}$$
.

Thm. (Moshkovitz–Shapira [2014]) For $t \ge 2$, $k \ge 3$, and $m = r - k + 1 \ge 2$, the ordered tight path $P_r^{(k)}$ satisfies $tow_{k-2}(\frac{m^{t-1}}{2\sqrt{t}}) \le R_t(P_r^{(k)}) \le tow_{k-2}(2m^{t-1})$.

In fact, they show $R_t(P_r^{(k)}) = |Q_k| + 1$, where Q_1, \ldots, Q_k is a certain inductive sequence of posets.

Let
$$tow_h(x) = \begin{cases} x & h = 0 \\ 2^{tow_{h-1}(x)} & h \ge 1 \end{cases}$$
.

Thm. (Moshkovitz–Shapira [2014]) For $t \ge 2$, $k \ge 3$, and $m = r - k + 1 \ge 2$, the ordered tight path $P_r^{(k)}$ satisfies $tow_{k-2}(\frac{m^{t-1}}{2\sqrt{t}}) \le R_t(P_r^{(k)}) \le tow_{k-2}(2m^{t-1})$.

In fact, they show $R_t(P_r^{(k)}) = |Q_k| + 1$, where Q_1, \ldots, Q_k is a certain inductive sequence of posets. We prove

Thm. (Pérez-Giménez-Prałat-West [2017+])
$$|Q_k|/(k \lg |Q_k|) \le \tilde{R}_t(P_r^{(k)}) \le |Q_k| \lg^{2+\epsilon}(|Q_k|).$$

Let
$$tow_h(x) = \begin{cases} x & h = 0 \\ 2^{tow_{h-1}(x)} & h \ge 1 \end{cases}$$
.

Thm. (Moshkovitz–Shapira [2014]) For $t \ge 2$, $k \ge 3$, and $m = r - k + 1 \ge 2$, the ordered tight path $P_r^{(k)}$ satisfies $tow_{k-2}(\frac{m^{t-1}}{2\sqrt{t}}) \le R_t(P_r^{(k)}) \le tow_{k-2}(2m^{t-1})$.

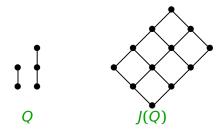
In fact, they show $R_t(P_r^{(k)}) = |Q_k| + 1$, where Q_1, \ldots, Q_k is a certain inductive sequence of posets. We prove

Thm. (Pérez-Giménez–Prałat–West [2017+])
$$|Q_k|/(k \lg |Q_k|) \le \tilde{R}_t(P_r^{(k)}) \le |Q_k| \lg^{2+\epsilon}(|Q_k|).$$

• Trivial upper bound $\binom{|Q_k|+1}{k}$.

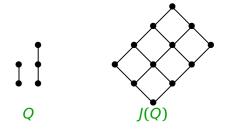
Enumerative Problem

Def. For any poset Q, the poset J(Q) is the set of all down-sets in Q, ordered by inclusion.



Enumerative Problem

Def. For any poset Q, the poset J(Q) is the set of all down-sets in Q, ordered by inclusion.

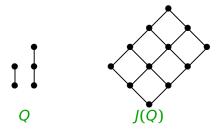


Thm. Fix $r_1, \ldots, r_t > k$. If Q_1 consists of disjoint chains of sizes $r_1 - k, \ldots, r_t - k$, and $Q_j = J(Q_{j-1})$ for j > 1, then

$$R_t(P_{r_1}^{(k)},\ldots,P_{r_t}^{(k)})=|Q_k|+1.$$

Enumerative Problem

Def. For any poset Q, the poset J(Q) is the set of all down-sets in Q, ordered by inclusion.



Thm. Fix $r_1, \ldots, r_t > k$. If Q_1 consists of disjoint chains of sizes $r_1 - k, \ldots, r_t - k$, and $Q_j = J(Q_{j-1})$ for j > 1, then

$$R_t(P_{r_1}^{(k)},\ldots,P_{r_t}^{(k)})=|Q_k|+1.$$

• This iteration leads to the upper and lower bounds.

Warmup: k = 2 Upper Bound

Thm. $\tilde{R}_t(P_{m+1}) \leq tm^{t+1}$ (ordered path with m edges).

Warmup: k = 2 Upper Bound

Thm. $\tilde{R}_t(P_{m+1}) \leq tm^{t+1}$ (ordered path with m edges).

Pf. Let $M = \{0, ..., m-1\}$. Builder uses $m^t + 1$ vertices.

At any time, vertex ν has label $\alpha(\nu) \in M^t$, where $\alpha_i(\nu)$ is the maxlength of an ordered path in color i ending at ν .

Warmup: k = 2 Upper Bound

Thm. $\tilde{R}_t(P_{m+1}) \leq tm^{t+1}$ (ordered path with m edges).

Pf. Let $M = \{0, ..., m-1\}$. Builder uses $m^t + 1$ vertices.

At any time, vertex v has label $a(v) \in M^t$, where $a_i(v)$ is the maxlength of an ordered path in color i ending at v.

Let $\Lambda = (m-1, ..., m-1)$. If $\alpha(v) = \Lambda$ for some vertex v before the last vertex w, then playing vw wins.

Thm. $\tilde{R}_t(P_{m+1}) \leq tm^{t+1}$ (ordered path with m edges).

Pf. Let $M = \{0, ..., m-1\}$. Builder uses $m^t + 1$ vertices.

At any time, vertex v has label $a(v) \in M^t$, where $a_i(v)$ is the maxlength of an ordered path in color i ending at v.

Let $\Lambda = (m-1, ..., m-1)$. If $\alpha(v) = \Lambda$ for some vertex v before the last vertex w, then playing vw wins.

If no two vertices among the first m^t have the same label, then all occur, including Λ .

Thm. $\tilde{R}_t(P_{m+1}) \leq tm^{t+1}$ (ordered path with m edges).

Pf. Let $M = \{0, ..., m-1\}$. Builder uses $m^t + 1$ vertices.

At any time, vertex v has label $a(v) \in M^t$, where $a_i(v)$ is the maxlength of an ordered path in color i ending at v.

Let $\Lambda = (m-1, ..., m-1)$. If $\alpha(v) = \Lambda$ for some vertex v before the last vertex w, then playing vw wins.

If no two vertices among the first m^t have the same label, then all occur, including Λ .

Else a(u) = a(v) with u before v. Builder plays uv. Painter gives some color i; this increases $a_i(v)$.

Thm. $\tilde{R}_t(P_{m+1}) \leq tm^{t+1}$ (ordered path with m edges).

Pf. Let $M = \{0, ..., m-1\}$. Builder uses $m^t + 1$ vertices.

At any time, vertex v has label $a(v) \in M^t$, where $a_i(v)$ is the maxlength of an ordered path in color i ending at v.

Let $\Lambda = (m-1, \dots, m-1)$. If $\alpha(\nu) = \Lambda$ for some vertex ν before the last vertex w, then playing νw wins.

If no two vertices among the first m^t have the same label, then all occur, including Λ .

Else a(u) = a(v) with u before v. Builder plays uv. Painter gives some color i; this increases $a_i(v)$.

To avoid Λ , labels increase fewer than (m-1)t times.

Thm. $\tilde{R}_t(P_{m+1}) \leq tm^{t+1}$ (ordered path with m edges).

Pf. Let $M = \{0, ..., m-1\}$. Builder uses $m^t + 1$ vertices.

At any time, vertex ν has label $a(\nu) \in M^t$, where $a_i(\nu)$ is the maxlength of an ordered path in color i ending at ν .

Let $\Lambda = (m-1, ..., m-1)$. If $\alpha(v) = \Lambda$ for some vertex v before the last vertex w, then playing vw wins.

If no two vertices among the first m^t have the same label, then all occur, including Λ .

Else a(u) = a(v) with u before v. Builder plays uv. Painter gives some color i; this increases $a_i(v)$.

To avoid Λ , labels increase fewer than (m-1)t times.

Hence in at most $(m^t - 1)[(m - 1)t - 1] + 1$ rounds some label reaches Λ , and the next play wins.

Thm. $m^{t-1}/(2t) \le \tilde{R}_t(P_{m+1}) \le tm^{t+1}$.

Thm. $m^{t-1}/(2t) \le \tilde{R}_t(P_{m+1}) \le tm^{t+1}$.

Pf. Let $B = \{ \alpha \in M^t : \sum \alpha_i = \lfloor (m-1)t/2 \rfloor . \}.$

Thm. $m^{t-1}/(2t) \le \tilde{R}_t(P_{m+1}) \le tm^{t+1}$.

Pf. Let $B = \{ \alpha \in M^t : \sum \alpha_i = \lfloor (m-1)t/2 \rfloor . \}.$

Until Builder uses more than |B| vertices, Painter gives permanent distinct labels from B to vertices.

Thm. $m^{t-1}/(2t) \le \tilde{R}_t(P_{m+1}) \le tm^{t+1}$.

Pf. Let $B = \{ \alpha \in M^t : \sum \alpha_i = \lfloor (m-1)t/2 \rfloor . \}.$

Until Builder uses more than |B| vertices, Painter gives permanent distinct labels from B to vertices.

When Builder plays edge uv with u before v, Painter uses a color i such that $a_i(v) > a_i(u)$. Such i exists, since $a(u) \neq a(v)$ and $\sum a_i(u) = \sum a_i(v)$.

Thm. $m^{t-1}/(2t) \le \tilde{R}_t(P_{m+1}) \le tm^{t+1}$.

Pf. Let $B = \{ \alpha \in M^t : \sum \alpha_i = \lfloor (m-1)t/2 \rfloor . \}.$

Until Builder uses more than |B| vertices, Painter gives permanent distinct labels from B to vertices.

When Builder plays edge uv with u before v, Painter uses a color i such that $a_i(v) > a_i(u)$. Such i exists, since $a(u) \neq a(v)$ and $\sum a_i(u) = \sum a_i(v)$.

An ordered path in color i ending at w has at most $a_i(w)$ edges, since along such a path a_i strictly increases.

Thm. $m^{t-1}/(2t) \le \tilde{R}_t(P_{m+1}) \le tm^{t+1}$.

Pf. Let $B = \{ a \in M^t : \sum a_i = \lfloor (m-1)t/2 \rfloor . \}.$

Until Builder uses more than |B| vertices, Painter gives permanent distinct labels from B to vertices.

When Builder plays edge uv with u before v, Painter uses a color i such that $a_i(v) > a_i(u)$. Such i exists, since $a(u) \neq a(v)$ and $\sum a_i(u) = \sum a_i(v)$.

An ordered path in color i ending at w has at most $a_i(w)$ edges, since along such a path a_i strictly increases.

Since $a(w) \in M^t$, no such path has m edges.

Thm. $m^{t-1}/(2t) \le \tilde{R}_t(P_{m+1}) \le tm^{t+1}$.

Pf. Let $B = \{a \in M^t : \sum a_i = \lfloor (m-1)t/2 \rfloor . \}.$

Until Builder uses more than |B| vertices, Painter gives permanent distinct labels from B to vertices.

When Builder plays edge uv with u before v, Painter uses a color i such that $a_i(v) > a_i(u)$. Such i exists, since $a(u) \neq a(v)$ and $\sum a_i(u) = \sum a_i(v)$.

An ordered path in color i ending at w has at most $a_i(w)$ edges, since along such a path a_i strictly increases.

Since $a(w) \in M^t$, no such path has m edges.

Since using more than |B| vertices requires more than |B|/2 edges, Painter survives at least |B|/2 rounds.

Thm. $m^{t-1}/(2t) \le \tilde{R}_t(P_{m+1}) \le tm^{t+1}$.

Pf. Let $B = \{a \in M^t : \sum a_i = \lfloor (m-1)t/2 \rfloor . \}.$

Until Builder uses more than |B| vertices, Painter gives permanent distinct labels from B to vertices.

When Builder plays edge uv with u before v, Painter uses a color i such that $a_i(v) > a_i(u)$. Such i exists, since $a(u) \neq a(v)$ and $\sum a_i(u) = \sum a_i(v)$.

An ordered path in color i ending at w has at most $a_i(w)$ edges, since along such a path a_i strictly increases.

Since $a(w) \in M^t$, no such path has m edges.

Since using more than |B| vertices requires more than |B|/2 edges, Painter survives at least |B|/2 rounds.

Since B is the middle (largest) level of a chain product with m^t elements and (m-1)t+1 levels, $|B| \ge m^{t-1}/t$.

• Using Chebyshev, $|B| \ge \frac{2}{3} \cdot \frac{m^{t-1}}{\sqrt{t}}$ (Mosh–Shap [2014])

- Using Chebyshev, $|B| \ge \frac{2}{3} \cdot \frac{m^{t-1}}{\sqrt{t}}$ (Mosh–Shap [2014])
- The same lower bound strategy works against a stronger Builder, presenting any digraph to force a directed P_{m+1} , instead of just low-to-high edges.

- Using Chebyshev, $|B| \ge \frac{2}{3} \cdot \frac{m^{t-1}}{\sqrt{t}}$ (Mosh–Shap [2014])
- The same lower bound strategy works against a stronger Builder, presenting any digraph to force a directed P_{m+1} , instead of just low-to-high edges.
- Fox–Pach–Sudakov–Suk [2012] studied a more restricted game: Builder adds a new highest vertex and edges joining it to earlier vertices. Hence their optimum $f_t(m) \ge \tilde{R}_t(P_{m+1})$. For fixed t, they proved $C_1 \frac{t}{\log t} m^t \log m \le f_t(m) \le C_2 t^2 m^t \log m$.

For fixed t and large m, their bounds are stronger, but our upper bound (stronger Builder) is lower for large t (this also holds for the k-uniform case).

- Using Chebyshev, $|B| \ge \frac{2}{3} \cdot \frac{m^{t-1}}{\sqrt{t}}$ (Mosh–Shap [2014])
- The same lower bound strategy works against a stronger Builder, presenting any digraph to force a directed P_{m+1} , instead of just low-to-high edges.
- Fox–Pach–Sudakov–Suk [2012] studied a more restricted game: Builder adds a new highest vertex and edges joining it to earlier vertices. Hence their optimum $f_t(m) \ge \tilde{R}_t(P_{m+1})$. For fixed t, they proved $C_1 \frac{t}{\log t} m^t \log m \le f_t(m) \le C_2 t^2 m^t \log m$.

For fixed t and large m, their bounds are stronger, but our upper bound (stronger Builder) is lower for large t (this also holds for the k-uniform case).

• When vertices enter only from left to right, Painter can use all of M^t as labels, via a linear extension, and the lower bound is $m^t/2$ even with edges anywhere.

 Q_1 is t chains of size m-1, and $Q_j = J(Q_{j-1})$ for j > 1.

 Q_1 is t chains of size m-1, and $Q_j = J(Q_{j-1})$ for j > 1.

G = current k -uniform hypergraph on vertex set [n].

 Q_1 is t chains of size m-1, and $Q_j = J(Q_{j-1})$ for j > 1. G = current k-uniform hypergraph on vertex set [n].

For $Y \subseteq [n]$, let $Y^+ = Y - \min Y$ and $Y^- = Y - \max Y$.

 Q_1 is t chains of size m-1, and $Q_j = J(Q_{j-1})$ for j > 1.

G = current k -uniform hypergraph on vertex set [n].

For $Y \subseteq [n]$, let $Y^+ = Y - \min Y$ and $Y^- = Y - \max Y$.

 $T_k = E(G);$ $T_j = {\binom{[n]}{i}} \text{ for } 1 \le j < k.$

 Q_1 is t chains of size m-1, and $Q_j = J(Q_{j-1})$ for j > 1.

G = current k -uniform hypergraph on vertex set [n].

For $Y \subseteq [n]$, let $Y^+ = Y - \min Y$ and $Y^- = Y - \max Y$.

 $T_k = E(G);$ $T_j = \binom{[n]}{j}$ for $1 \le j < k$.

Inductively define labeling functions g_1, \ldots, g_k such that $g_j \colon T_j \to Q_{k-j+1}$, starting with g_k .

 Q_1 is t chains of size m-1, and $Q_j = J(Q_{j-1})$ for j > 1.

G = current k -uniform hypergraph on vertex set [n].

For $Y \subseteq [n]$, let $Y^+ = Y - \min Y$ and $Y^- = Y - \max Y$.

$$T_k = E(G);$$
 $T_j = \binom{[n]}{j}$ for $1 \le j < k$.

Inductively define labeling functions g_1, \ldots, g_k such that $g_j \colon T_j \to Q_{k-j+1}$, starting with g_k .

Every $Y \in T_k$ is an edge. If Y has color i and the longest i-colored tight path with last edge Y has ℓ edges, then let $g_k(Y) = \text{element } \ell$ on the ith chain in Q_1 .

 Q_1 is t chains of size m-1, and $Q_j = J(Q_{j-1})$ for j > 1.

G = current k -uniform hypergraph on vertex set [n].

For $Y \subseteq [n]$, let $Y^+ = Y - \min Y$ and $Y^- = Y - \max Y$.

$$T_k = E(G);$$
 $T_j = \binom{[n]}{j}$ for $1 \le j < k$.

Inductively define labeling functions g_1, \ldots, g_k such that $g_j \colon T_j \to Q_{k-j+1}$, starting with g_k .

Every $Y \in T_k$ is an edge. If Y has color i and the longest i-colored tight path with last edge Y has ℓ edges, then let $g_k(Y)$ = element ℓ on the ith chain in Q_1 .

For j < k and $Y \in T_j$, let $\overleftarrow{Y} = \{Z \in T_{j+1} : Z^+ = Y\}$; these are the precursors of Y.

 Q_1 is t chains of size m-1, and $Q_j = J(Q_{j-1})$ for j > 1.

G = current k -uniform hypergraph on vertex set [n].

For $Y \subseteq [n]$, let $Y^+ = Y - \min Y$ and $Y^- = Y - \max Y$.

$$T_k = E(G);$$
 $T_j = \binom{[n]}{j}$ for $1 \le j < k$.

Inductively define labeling functions g_1, \ldots, g_k such that $g_j \colon T_j \to Q_{k-j+1}$, starting with g_k .

Every $Y \in T_k$ is an edge. If Y has color i and the longest i-colored tight path with last edge Y has ℓ edges, then let $g_k(Y)$ = element ℓ on the ith chain in Q_1 .

For j < k and $Y \in T_j$, let $\overleftarrow{Y} = \{Z \in T_{j+1} : Z^+ = Y\}$; these are the precursors of Y.

Let $g_j(Y)$ = the downset in Q_{k-j} gen. by $\{g_{j+1}(Z): Z \in Y\}$.

 Q_1 is t chains of size m-1, and $Q_j = J(Q_{j-1})$ for j > 1.

G = current k -uniform hypergraph on vertex set [n].

For $Y \subseteq [n]$, let $Y^+ = Y - \min Y$ and $Y^- = Y - \max Y$.

$$T_k = E(G);$$
 $T_j = \binom{[n]}{j}$ for $1 \le j < k$.

Inductively define labeling functions g_1, \ldots, g_k such that $g_j \colon T_j \to Q_{k-j+1}$, starting with g_k .

Every $Y \in T_k$ is an edge. If Y has color i and the longest i-colored tight path with last edge Y has ℓ edges, then let $g_k(Y) = \text{element } \ell$ on the ith chain in Q_1 .

For j < k and $Y \in T_j$, let $\overleftarrow{Y} = \{Z \in T_{j+1} : Z^+ = Y\}$; these are the precursors of Y.

Let $g_j(Y)$ = the downset in Q_{k-j} gen. by $\{g_{j+1}(Z): Z \in Y\}$.

Being a downset in Q_{k-j} , by definition $g_j(Y) \in Q_{k-j+1}$.

For $Y_1, Y_2 \in T_k$, say that Y_2 follows Y_1 if $Y_1^+ = Y_2^-$.

For $Y_1, Y_2 \in T_k$, say that Y_2 follows Y_1 if $Y_1^+ = Y_2^-$.

$$Y_1 \longrightarrow Y_2$$

For
$$j < k$$
 and $Y_1, Y_2 \in T_j$, say Y_2 follows Y_1 if
(A) $Y_1^+ = Y_2^-$,

For $Y_1, Y_2 \in T_k$, say that Y_2 follows Y_1 if $Y_1^+ = Y_2^-$.

$$Z_1$$
 Z_2 Y_2

For j < k and $Y_1, Y_2 \in T_j$, say Y_2 follows Y_1 if (A) $Y_1^+ = Y_2^-$, and (B) for each maximal elt $w \in g_j(Y_1)$, the set $Y_1 \cup Y_2$ follows a $Z_1 \in \overleftarrow{Y_1}$ with $g_{j+1}(Z_1) = w$.

For $Y_1, Y_2 \in T_k$, say that Y_2 follows Y_1 if $Y_1^+ = Y_2^-$.

$$Z_1$$
 Z_2 Y_2

For j < k and $Y_1, Y_2 \in T_j$, say Y_2 follows Y_1 if (A) $Y_1^+ = Y_2^-$, and (B) for each maximal elt $w \in g_j(Y_1)$, the set $Y_1 \cup Y_2$ follows a $Z_1 \in Y_1$ with $g_{j+1}(Z_1) = w$.

Lem. If Y_2 follows Y_1 in T_j , then $g_j(Y_1) \not\geq g_j(Y_2)$ in Q_{k-j+1} .

For $Y_1, Y_2 \in T_k$, say that Y_2 follows Y_1 if $Y_1^+ = Y_2^-$.

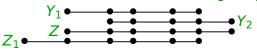
$$Z_1$$
 Z_2 Y_2

For j < k and $Y_1, Y_2 \in T_j$, say Y_2 follows Y_1 if (A) $Y_1^+ = Y_2^-$, and (B) for each maximal elt $w \in g_j(Y_1)$, the set $Y_1 \cup Y_2$ follows a $Z_1 \in \overleftarrow{Y_1}$ with $g_{j+1}(Z_1) = w$.

Lem. If Y_2 follows Y_1 in T_j , then $g_j(Y_1) \not\geq g_j(Y_2)$ in Q_{k-j+1} .

Pf. If Y_2 follows Y_1 in T_k , then they have same color and $g_k(Y_2) > g_k(Y_1)$, or different colors and $g_k(Y_1) || g_k(Y_2)$.

For $Y_1, Y_2 \in T_k$, say that Y_2 follows Y_1 if $Y_1^+ = Y_2^-$.



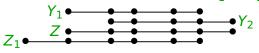
For j < k and $Y_1, Y_2 \in T_j$, say Y_2 follows Y_1 if (A) $Y_1^+ = Y_2^-$, and (B) for each maximal elt $w \in g_j(Y_1)$, the set $Y_1 \cup Y_2$ follows a $Z_1 \in \overleftarrow{Y_1}$ with $g_{j+1}(Z_1) = w$.

Lem. If Y_2 follows Y_1 in T_j , then $g_j(Y_1) \not\geq g_j(Y_2)$ in Q_{k-j+1} .

Pf. If Y_2 follows Y_1 in T_k , then they have same color and $g_k(Y_2) > g_k(Y_1)$, or different colors and $g_k(Y_1) || g_k(Y_2)$.

For j < k, $(Y_2 \text{ follows } Y_1) \Rightarrow \text{ for each maximal } w \in g_j(Y_1)$, $Z \text{ follows a } Z_1 \in \overleftarrow{Y_1} \text{ with label } w \text{, but } g_{j+1}(Z_1) \not \geq g_{j+1}(Z)$.

For $Y_1, Y_2 \in T_k$, say that Y_2 follows Y_1 if $Y_1^+ = Y_2^-$.



For j < k and $Y_1, Y_2 \in T_j$, say Y_2 follows Y_1 if (A) $Y_1^+ = Y_2^-$, and (B) for each maximal elt $w \in g_j(Y_1)$, the set $Y_1 \cup Y_2$ follows a $Z_1 \in Y_1$ with $g_{j+1}(Z_1) = w$.

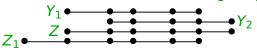
Lem. If Y_2 follows Y_1 in T_j , then $g_j(Y_1) \not\geq g_j(Y_2)$ in Q_{k-j+1} .

Pf. If Y_2 follows Y_1 in T_k , then they have same color and $g_k(Y_2) > g_k(Y_1)$, or different colors and $g_k(Y_1) || g_k(Y_2)$.

For j < k, $(Y_2 \text{ follows } Y_1) \Rightarrow \text{ for each maximal } w \in g_j(Y_1)$, $Z \text{ follows a } Z_1 \in \overleftarrow{Y_1} \text{ with label } w$, but $g_{j+1}(Z_1) \not\geq g_{j+1}(Z)$. Hence $g_{j+1}(Z) \not\in \text{downset}(\{g_{j+1}(Z_1) \colon Z_1 \in \overleftarrow{Y_1}\}) = g_i(Y_1)$.

Hence $g_{j+1}(Z) \notin \text{downset}(\{g_{j+1}(Z_1): Z_1 \in Y_1\}) = g_j(Y_1)$

For $Y_1, Y_2 \in T_k$, say that Y_2 follows Y_1 if $Y_1^+ = Y_2^-$.



For j < k and $Y_1, Y_2 \in T_j$, say Y_2 follows Y_1 if (A) $Y_1^+ = Y_2^-$, and (B) for each maximal elt $w \in g_j(Y_1)$, the set $Y_1 \cup Y_2$ follows a $Z_1 \in Y_1$ with $g_{j+1}(Z_1) = w$.

Lem. If Y_2 follows Y_1 in T_i , then $g_i(Y_1) \not\geq g_i(Y_2)$ in Q_{k-j+1} .

Pf. If Y_2 follows Y_1 in T_k , then they have same color and $g_k(Y_2) > g_k(Y_1)$, or different colors and $g_k(Y_1) || g_k(Y_2)$.

For j < k, $(Y_2 \text{ follows } Y_1) \Rightarrow \text{ for each maximal } w \in g_j(Y_1)$, $Z \text{ follows a } Z_1 \in \overleftarrow{Y_1} \text{ with label } w \text{, but } g_{j+1}(Z_1) \not \geq g_{j+1}(Z)$.

Hence $g_{j+1}(Z) \notin \text{downset}(\{g_{j+1}(Z_1): Z_1 \in \overleftarrow{Y_1}\}) = g_j(Y_1)$.

But $Z \in Y_2$, so $g_{j+1}(Z) \in g_j(Y_2)$. $\therefore g_j(Y_2) \not\subseteq g_j(Y_1)$ in Q_{k-j} .

"Follows", non-inductively

For a *j*-set *Y*, make a tree U(Y), with root $g_i(Y) \in Q_{k-j+1}$.

"Follows", non-inductively

For a *j*-set *Y*, make a tree U(Y), with root $g_j(Y) \in Q_{k-j+1}$.

A node $w \in Q_i$ is a downset in Q_{i-1} ; its children in U(Y) are the maximal elements of that downset.

"Follows", non-inductively

For a *j*-set *Y*, make a tree U(Y), with root $g_j(Y) \in Q_{k-j+1}$.

A node $w \in Q_i$ is a downset in Q_{i-1} ; its children in U(Y) are the maximal elements of that downset.

The leaves are elements of Q_1 (heights in colors).

For a *j*-set *Y*, make a tree U(Y), with root $g_j(Y) \in Q_{k-j+1}$.

A node $w \in Q_i$ is a downset in Q_{i-1} ; its children in U(Y) are the maximal elements of that downset.

The leaves are elements of Q_1 (heights in colors).

An instance of U(Y) assigns vertex sets in G to nodes.

For a *j*-set *Y*, make a tree U(Y), with root $g_j(Y) \in Q_{k-j+1}$.

A node $w \in Q_i$ is a downset in Q_{i-1} ; its children in U(Y) are the maximal elements of that downset.

The leaves are elements of Q_1 (heights in colors).

An instance of U(Y) assigns vertex sets in G to nodes. To the root, assign Y. To a non-root with label $w \in Q_i$ and parent with label Z assigned $Z \in T_{k-i}$, assign a precursor of Z with label W. (Exists by defin of g_{k-i} .)

For a *j*-set *Y*, make a tree U(Y), with root $g_j(Y) \in Q_{k-j+1}$.

A node $w \in Q_i$ is a downset in Q_{i-1} ; its children in U(Y) are the maximal elements of that downset.

The leaves are elements of Q_1 (heights in colors).

An instance of U(Y) assigns vertex sets in G to nodes. To the root, assign Y. To a non-root with label $w \in Q_i$ and parent with label Z assigned $Z \in T_{k-i}$, assign a precursor of Z with label W. (Exists by defin of q_{k-i} .)

Associated with leaves are edges! Inductively,...

For a *j*-set *Y*, make a tree U(Y), with root $g_i(Y) \in Q_{k-j+1}$.

A node $w \in Q_i$ is a downset in Q_{i-1} ; its children in U(Y) are the maximal elements of that downset.

The leaves are elements of Q_1 (heights in colors).

An instance of U(Y) assigns vertex sets in G to nodes.

To the root, assign Y. To a non-root with label $w \in Q_i$ and parent with label z assigned $Z \in T_{k-i}$, assign a precursor of Z with label w. (Exists by defn of g_{k-i} .)

Associated with leaves are edges! Inductively,...

Lem. A *j*-set Y_2 follows a *j*-set Y_1 if and only if $Y_1^+ = Y_2^-$ and there is an instance of $U(Y_1)$ such that for every edge W assigned to a leaf, replacing the first vertex of W with the last vertex of Y_2 yields an edge Z in G.

Thm. $\tilde{R}_t(P_r^{(k)}) \le |Q_k| (|g|Q_k|)^{2+\epsilon} \le \text{tow}_{k-2}(2^+ m^{t-1}).$

Thm. $\tilde{R}_t(P_r^{(k)}) \le |Q_k| (|g|Q_k|)^{2+\epsilon} \le \text{tow}_{k-2}(2^+ m^{t-1}).$

Pf. Builder plays on vertex set [n] with $n = |Q_k| + 1$.

Thm. $\tilde{R}_t(P_r^{(k)}) \le |Q_k| (|g|Q_k|)^{2+\epsilon} \le \text{tow}_{k-2}(2^+ m^{t-1}).$

Pf. Builder plays on vertex set [n] with $n = |Q_k| + 1$.

After each round, Builder updates functions g_k, \ldots, g_1 .

Thm. $\tilde{R}_t(P_r^{(k)}) \le |Q_k| (|g|Q_k|)^{2+\epsilon} \le \text{tow}_{k-2}(2^+ m^{t-1}).$

Pf. Builder plays on vertex set [n] with $n = |Q_k| + 1$.

After each round, Builder updates functions g_k, \ldots, g_1 .

Adding an edge cannot decrease the label of any edge.

Thm. $\tilde{R}_t(P_r^{(k)}) \le |Q_k| (|g|Q_k|)^{2+\epsilon} \le \text{tow}_{k-2}(2^+ m^{t-1}).$

Pf. Builder plays on vertex set [n] with $n = |Q_k| + 1$.

After each round, Builder updates functions g_k, \ldots, g_1 .

Adding an edge cannot decrease the label of any edge. Inductively the same holds for labels of sets of all sizes.

Thm. $\tilde{R}_t(P_r^{(k)}) \le |Q_k| (|g|Q_k|)^{2+\epsilon} \le \text{tow}_{k-2}(2^+ m^{t-1}).$

Pf. Builder plays on vertex set [n] with $n = |Q_k| + 1$.

After each round, Builder updates functions g_k, \ldots, g_1 .

Adding an edge cannot decrease the label of any edge. Inductively the same holds for labels of sets of all sizes.

Builder goal: a vertex $z \neq n$ with $g_1(z) = \Lambda_k = \text{top of } Q_k$.

Thm.
$$\tilde{R}_t(P_r^{(k)}) \le |Q_k| (|g|Q_k|)^{2+\epsilon} \le \text{tow}_{k-2}(2^+ m^{t-1}).$$

Pf. Builder plays on vertex set [n] with $n = |Q_k| + 1$.

After each round, Builder updates functions g_k, \ldots, g_1 .

Adding an edge cannot decrease the label of any edge. Inductively the same holds for labels of sets of all sizes.

Builder goal: a vertex $z \neq n$ with $g_1(z) = \Lambda_k = \text{top of } Q_k$. Such a vertex z has a precursor $\{y, z\}$ with label Λ_{k-1} .

Thm.
$$\tilde{R}_t(P_r^{(k)}) \le |Q_k| (|g|Q_k|)^{2+\epsilon} \le \text{tow}_{k-2}(2^+ m^{t-1}).$$

Pf. Builder plays on vertex set [n] with $n = |Q_k| + 1$.

After each round, Builder updates functions g_k, \ldots, g_1 .

Adding an edge cannot decrease the label of any edge. Inductively the same holds for labels of sets of all sizes.

Builder goal: a vertex $z \neq n$ with $g_1(z) = \Lambda_k = \text{top of } Q_k$. Such a vertex z has a precursor $\{y, z\}$ with label Λ_{k-1} . Continuing, some (k-1)-set Y ending at z has label Λ_2 .

Thm.
$$\tilde{R}_t(P_r^{(k)}) \le |Q_k| (|g|Q_k|)^{2+\epsilon} \le \text{tow}_{k-2}(2^+ m^{t-1}).$$

Pf. Builder plays on vertex set [n] with $n = |Q_k| + 1$.

After each round, Builder updates functions g_k, \ldots, g_1 .

Adding an edge cannot decrease the label of any edge. Inductively the same holds for labels of sets of all sizes.

Builder goal: a vertex $z \neq n$ with $g_1(z) = \Lambda_k = \text{top of } Q_k$.

Such a vertex z has a precursor $\{y, z\}$ with label Λ_{k-1} .

Continuing, some (k-1)-set Y ending at z has label Λ_2 .

Since $\Lambda_2 = (m-1, \dots, m-1)$, in each color some precursor of Y ends a path of m-1 edges.

Thm.
$$\tilde{R}_t(P_r^{(k)}) \le |Q_k| (|g|Q_k|)^{2+\epsilon} \le \text{tow}_{k-2}(2^+ m^{t-1}).$$

Pf. Builder plays on vertex set [n] with $n = |Q_k| + 1$.

After each round, Builder updates functions g_k, \ldots, g_1 .

Adding an edge cannot decrease the label of any edge. Inductively the same holds for labels of sets of all sizes.

Builder goal: a vertex $z \neq n$ with $g_1(z) = \Lambda_k = \text{top of } Q_k$.

Such a vertex z has a precursor $\{y, z\}$ with label Λ_{k-1} .

Continuing, some (k-1)-set Y ending at z has label Λ_2 .

Since $\Lambda_2 = (m-1, \dots, m-1)$, in each color some precursor of Y ends a path of m-1 edges.

Builder then plays $Y \cup \{n\}$ to win.

When |Y| = j < k and no precursor of Y has a label, $down(\overleftarrow{Y_1}) = \emptyset$, so $g_j(Y) = bottom$ element of Q_{k-j+1} .

When |Y| = j < k and no precursor of Y has a label, $down(\overleftarrow{Y_1}) = \emptyset$, so $g_j(Y) = bottom$ element of Q_{k-j+1} .

This holds always for (k-1)-sets whose precursors are not edges and for j-sets with least vertex 1.

When |Y| = j < k and no precursor of Y has a label, $down(\overleftarrow{Y_1}) = \emptyset$, so $g_j(Y) = bottom$ element of Q_{k-j+1} .

This holds always for (k-1)-sets whose precursors are not edges and for j-sets with least vertex 1.

Ranks 0 through j-2 of Q_j form one chain. For $i \le k-j$, the label of a j-set with least vertex i is

always the only element of rank i-1 in Q_{k-j+1} .

When |Y| = j < k and no precursor of Y has a label, $down(\overleftarrow{Y_1}) = \emptyset$, so $g_j(Y) = bottom$ element of Q_{k-j+1} .

This holds always for (k-1)-sets whose precursors are not edges and for j-sets with least vertex 1.

Ranks 0 through j - 2 of Q_j form one chain.

For $i \le k - j$, the label of a j-set with least vertex i is always the only element of rank i - 1 in Q_{k-j+1} .

The $|Q_k| - k + 2$ vertices after k - 2 and before n have labels above the bottom k - 2 elements in Q_k , always.

When |Y| = j < k and no precursor of Y has a label, $down(\overleftarrow{Y_1}) = \emptyset$, so $g_j(Y) = bottom$ element of Q_{k-j+1} .

This holds always for (k-1)-sets whose precursors are not edges and for j-sets with least vertex 1.

Ranks 0 through j - 2 of Q_i form one chain.

For $i \le k - j$, the label of a j-set with least vertex i is always the only element of rank i - 1 in Q_{k-j+1} .

The $|Q_k| - k + 2$ vertices after k - 2 and before n have labels above the bottom k - 2 elements in Q_k , always.

There are $|Q_k| - k + 1$ possible labels for them if Λ_k does not occur.

When |Y| = j < k and no precursor of Y has a label, $down(\overleftarrow{Y_1}) = \emptyset$, so $g_j(Y) = bottom$ element of Q_{k-j+1} .

This holds always for (k-1)-sets whose precursors are not edges and for j-sets with least vertex 1.

Ranks 0 through j - 2 of Q_i form one chain.

For $i \le k - j$, the label of a j-set with least vertex i is always the only element of rank i - 1 in Q_{k-j+1} .

The $|Q_k| - k + 2$ vertices after k - 2 and before n have labels above the bottom k - 2 elements in Q_k , always.

There are $|Q_k| - k + 1$ possible labels for them if Λ_k does not occur.

Pigeonhole!

When Λ_k is not the label of any vertex before n, some such x and y have the same label, by pigeonhole.

When Λ_k is not the label of any vertex before n, some such \mathbf{x} and \mathbf{y} have the same label, by pigeonhole.

Since $g_1(x) = g_1(y)$, by 1st Lemma y does not follow x.

When Λ_k is not the label of any vertex before n, some such x and y have the same label, by pigeonhole.

Since $g_1(x) = g_1(y)$, by 1st Lemma y does not follow x.

Builder plays edges to make y follow x. By 1st Lemma, this makes $g_1(y)$ go up in Q_k . How to make y follow x?

When Λ_k is not the label of any vertex before n, some such \mathbf{x} and \mathbf{y} have the same label, by pigeonhole.

Since $g_1(x) = g_1(y)$, by 1st Lemma y does not follow x.

Builder plays edges to make y follow x. By 1st Lemma, this makes $g_1(y)$ go up in Q_k . How to make y follow x?

In an instance of $U(\{x\})$, assigned to each leaf is an edge Z ending with x. By 2nd Lemma, it suffices that deleting $\min Z$ and adding y at the end yields an edge.

When Λ_k is not the label of any vertex before n, some such \mathbf{x} and \mathbf{y} have the same label, by pigeonhole.

Since $g_1(x) = g_1(y)$, by 1st Lemma y does not follow x.

Builder plays edges to make y follow x. By 1st Lemma, this makes $g_1(y)$ go up in Q_k . How to make y follow x?

In an instance of $U(\{x\})$, assigned to each leaf is an edge Z ending with x. By 2nd Lemma, it suffices that deleting $\min Z$ and adding y at the end yields an edge.

Builder plays all such edges not already present.

When Λ_k is not the label of any vertex before n, some such \mathbf{x} and \mathbf{y} have the same label, by pigeonhole.

Since $g_1(x) = g_1(y)$, by 1st Lemma y does not follow x.

Builder plays edges to make y follow x. By 1st Lemma, this makes $g_1(y)$ go up in Q_k . How to make y follow x?

In an instance of $U(\{x\})$, assigned to each leaf is an edge Z ending with x. By 2nd Lemma, it suffices that deleting $\min Z$ and adding y at the end yields an edge.

Builder plays all such edges not already present.

Since the children of each node form an antichain in the previous poset, $\#leaves \le \prod_{i=1}^{k-1} wid(Q_i)$.

When Λ_k is not the label of any vertex before n, some such \mathbf{x} and \mathbf{y} have the same label, by pigeonhole.

Since $g_1(x) = g_1(y)$, by 1st Lemma y does not follow x.

Builder plays edges to make y follow x. By 1st Lemma, this makes $g_1(y)$ go up in Q_k . How to make y follow x?

In an instance of $U(\{x\})$, assigned to each leaf is an edge Z ending with x. By 2nd Lemma, it suffices that deleting $\min Z$ and adding y at the end yields an edge.

Builder plays all such edges not already present.

Since the children of each node form an antichain in the previous poset, $\#leaves \leq \prod_{i=1}^{k-1} wid(Q_i)$.

#times a vertex rises before reaching Λ_k is $< ht(Q_k)$.

When Λ_k is not the label of any vertex before n, some such \mathbf{x} and \mathbf{y} have the same label, by pigeonhole.

Since $g_1(x) = g_1(y)$, by 1st Lemma y does not follow x.

Builder plays edges to make y follow x. By 1st Lemma, this makes $g_1(y)$ go up in Q_k . How to make y follow x?

In an instance of $U(\{x\})$, assigned to each leaf is an edge Z ending with x. By 2nd Lemma, it suffices that deleting $\min Z$ and adding y at the end yields an edge.

Builder plays all such edges not already present.

Since the children of each node form an antichain in the previous poset, $\#leaves \leq \prod_{i=1}^{k-1} wid(Q_i)$.

#times a vertex rises before reaching Λ_k is $< ht(Q_k)$.

Since $ht(Q_k) = |Q_{k-1}|$ and the posets grow by iterated exponentiation, #moves $\leq |Q_k|(\lg |Q_k|)^{2+\epsilon}$.

Lower Bound - Painter Strategy Thm. $\tilde{R}_t(P_r^{(k)}) \ge |Q_k|/(k \lg |Q_k|)$.

Thm. $\tilde{R}_t(P_r^{(k)}) \ge |Q_k|/(k \lg |Q_k|)$. roughly

Thm. $\tilde{R}_t(P_r^{(k)}) \ge |Q_k|/(k \lg |Q_k|)$. roughly

Pf. For $1 \le j \le k$, Painter assigns a label $f_j(Y) \in Q_{k-j+1}$ to each j-set Y of vertices; labels never change.

Thm. $\tilde{R}_t(P_r^{(k)}) \ge |Q_k|/(k \lg |Q_k|)$. roughly

Pf. For $1 \le j \le k$, Painter assigns a label $f_j(Y) \in Q_{k-j+1}$ to each j-set Y of vertices; labels never change.

Let A be a maximum-sized antichain in Q_k .

Thm. $\tilde{R}_t(P_r^{(k)}) \ge |Q_k|/(k \lg |Q_k|)$. roughly

Pf. For $1 \le j \le k$, Painter assigns a label $f_j(Y) \in Q_{k-j+1}$ to each j-set Y of vertices; labels never change.

Let A be a maximum-sized antichain in Q_k . Painter labels new vertices with unused elements of A; surviving at least |A|/k edges.

Thm. $\tilde{R}_t(P_r^{(k)}) \ge |Q_k|/(k \lg |Q_k|)$. roughly

Pf. For $1 \le j \le k$, Painter assigns a label $f_j(Y) \in Q_{k-j+1}$ to each j-set Y of vertices; labels never change.

Let A be a maximum-sized antichain in Q_k . Painter labels new vertices with unused elements of A; surviving at least |A|/k edges.

Recursive lower bd on |A| and upper bd on $|Q_k|$ are towers of height k-2, with previous tower in denominator of lower bd.

Thm. $\tilde{R}_t(P_r^{(k)}) \ge |Q_k|/(k \lg |Q_k|)$. roughly

Pf. For $1 \le j \le k$, Painter assigns a label $f_j(Y) \in Q_{k-j+1}$ to each j-set Y of vertices; labels never change.

Let A be a maximum-sized antichain in Q_k . Painter labels new vertices with unused elements of A; surviving at least |A|/k edges.

Recursive lower bd on |A| and upper bd on $|Q_k|$ are towers of height k-2, with previous tower in denominator of lower bd.

Key property: if Y_1 and Y_2 are j-sets with $Y_1^+ = Y_2^-$, then $f_j(Y_1) \not\geq f_j(Y_2)$.

Thm. $\tilde{R}_t(P_r^{(k)}) \ge |Q_k|/(k \lg |Q_k|)$. roughly

Pf. For $1 \le j \le k$, Painter assigns a label $f_j(Y) \in Q_{k-j+1}$ to each j-set Y of vertices; labels never change.

Let A be a maximum-sized antichain in Q_k . Painter labels new vertices with unused elements of A; surviving at least |A|/k edges.

Recursive lower bd on |A| and upper bd on $|Q_k|$ are towers of height k-2, with previous tower in denominator of lower bd.

Key property: if Y_1 and Y_2 are j-sets with $Y_1^+ = Y_2^-$, then $f_j(Y_1) \not\geq f_j(Y_2)$. This holds for j = 1 since A is an antichain in Q_k (vertex arrival order doesn't matter).

Thm. $\tilde{R}_t(P_r^{(k)}) \ge |Q_k|/(k \lg |Q_k|)$. roughly

Pf. For $1 \le j \le k$, Painter assigns a label $f_j(Y) \in Q_{k-j+1}$ to each j-set Y of vertices; labels never change.

Let A be a maximum-sized antichain in Q_k . Painter labels new vertices with unused elements of A; surviving at least |A|/k edges.

Recursive lower bd on |A| and upper bd on $|Q_k|$ are towers of height k-2, with previous tower in denominator of lower bd.

Key property: if Y_1 and Y_2 are j-sets with $Y_1^+ = Y_2^-$, then $f_j(Y_1) \not\geq f_j(Y_2)$. This holds for j = 1 since A is an antichain in Q_k (vertex arrival order doesn't matter).

For $1 \le j \le k-1$, we define f_{i+1} from f_i . Consider Y.

Thm. $\tilde{R}_t(P_r^{(k)}) \ge |Q_k|/(k \lg |Q_k|)$. roughly

Pf. For $1 \le j \le k$, Painter assigns a label $f_j(Y) \in Q_{k-j+1}$ to each j-set Y of vertices; labels never change.

Let A be a maximum-sized antichain in Q_k . Painter labels new vertices with unused elements of A; surviving at least |A|/k edges.

Recursive lower bd on |A| and upper bd on $|Q_k|$ are towers of height k-2, with previous tower in denominator of lower bd.

Key property: if Y_1 and Y_2 are j-sets with $Y_1^+ = Y_2^-$, then $f_j(Y_1) \not\geq f_j(Y_2)$. This holds for j = 1 since A is an antichain in Q_k (vertex arrival order doesn't matter).

For $1 \le j \le k-1$, we define f_{j+1} from f_j . Consider Y. Since $(Y^-)^+ = (Y^+)^-$, we defined f_j so $f_j(Y^-) \not\ge f_j(Y^+)$.

Thm. $\tilde{R}_t(P_r^{(k)}) \ge |Q_k|/(k \lg |Q_k|)$. roughly

Pf. For $1 \le j \le k$, Painter assigns a label $f_j(Y) \in Q_{k-j+1}$ to each j-set Y of vertices; labels never change.

Let A be a maximum-sized antichain in Q_k . Painter labels new vertices with unused elements of A; surviving at least |A|/k edges.

Recursive lower bd on |A| and upper bd on $|Q_k|$ are towers of height k-2, with previous tower in denominator of lower bd.

Key property: if Y_1 and Y_2 are j-sets with $Y_1^+ = Y_2^-$, then $f_j(Y_1) \not\geq f_j(Y_2)$. This holds for j = 1 since A is an antichain in Q_k (vertex arrival order doesn't matter).

For $1 \le j \le k-1$, we define f_{j+1} from f_j . Consider Y. Since $(Y^-)^+ = (Y^+)^-$, we defined f_j so $f_j(Y^-) \not\ge f_j(Y^+)$. \therefore \exists elt of $f_j(Y^+)$ not in $f_j(Y^-)$ (as downsets in Q_{k-j}).

Thm. $\tilde{R}_t(P_r^{(k)}) \ge |Q_k|/(k \lg |Q_k|)$. roughly

Pf. For $1 \le j \le k$, Painter assigns a label $f_j(Y) \in Q_{k-j+1}$ to each j-set Y of vertices; labels never change.

Let A be a maximum-sized antichain in Q_k . Painter labels new vertices with unused elements of A; surviving at least |A|/k edges.

Recursive lower bd on |A| and upper bd on $|Q_k|$ are towers of height k-2, with previous tower in denominator of lower bd.

Key property: if Y_1 and Y_2 are j-sets with $Y_1^+ = Y_2^-$, then $f_j(Y_1) \not\geq f_j(Y_2)$. This holds for j = 1 since A is an antichain in Q_k (vertex arrival order doesn't matter).

For $1 \le j \le k-1$, we define f_{j+1} from f_j . Consider Y. Since $(Y^-)^+ = (Y^+)^-$, we defined f_j so $f_j(Y^-) \not\ge f_j(Y^+)$. \therefore \exists elt of $f_j(Y^+)$ not in $f_j(Y^-)$ (as downsets in Q_{k-j}). Painter chooses any such element as the label $f_{j+1}(Y)$.

Key prop?: Consider (j + 1)-sets Y_1 and Y_2 with $Y_1^+ = Y_2^-$.

Key prop?: Consider (j+1)-sets Y_1 and Y_2 with $Y_1^+ = Y_2^-$. Both $f_j(Y_2^+)$ and $f_j(Y_2^-)$ are downsets in Q_{k-j} .

Key prop?: Consider (j+1)-sets Y_1 and Y_2 with $Y_1^+ = Y_2^-$. Both $f_j(Y_2^+)$ and $f_j(Y_2^-)$ are downsets in Q_{k-j} . We chose $f_{j+1}(Y_2) \in f_j(Y_2^+) - f_j(Y_2^-)$.

Key prop?: Consider (j + 1)-sets Y_1 and Y_2 with $Y_1^+ = Y_2^-$. Both $f_j(Y_2^+)$ and $f_j(Y_2^-)$ are downsets in Q_{k-j} . We chose $f_{j+1}(Y_2) \in f_j(Y_2^+) - f_j(Y_2^-)$.

Hence $f_{j+1}(Y_2)$ is not below anything in the downset $f_j(Y_2^-)$, including $f_{j+1}(Y_1) \in f_j(Y_1^+) = f_j(Y_2^-)$.

Key prop?: Consider (j + 1)-sets Y_1 and Y_2 with $Y_1^+ = Y_2^-$. Both $f_i(Y_2^+)$ and $f_i(Y_2^-)$ are downsets in Q_{k-j} .

We chose $f_{j+1}(Y_2) \in f_j(Y_2^+) - f_j(Y_2^-)$.

Hence $f_{j+1}(Y_2)$ is not below anything in the downset $f_j(Y_2^-)$, including $f_{j+1}(Y_1) \in f_j(Y_1^+) = f_j(Y_2^-)$.

This means $f_{j+1}(Y_1) \not\geq f_{j+1}(Y_2)$, as needed.

Key prop?: Consider (j + 1)-sets Y_1 and Y_2 with $Y_1^+ = Y_2^-$. Both $f_j(Y_2^+)$ and $f_j(Y_2^-)$ are downsets in Q_{k-j} .

We chose $f_{j+1}(Y_2) \in f_j(Y_2^+) - f_j(Y_2^-)$.

Hence $f_{j+1}(Y_2)$ is not below anything in the downset $f_j(Y_2^-)$, including $f_{j+1}(Y_1) \in f_j(Y_1^+) = f_j(Y_2^-)$.

This means $f_{j+1}(Y_1) \not\geq f_{j+1}(Y_2)$, as needed.

We have defined labels for all sets of at most k vertices.

Key prop?: Consider (j + 1)-sets Y_1 and Y_2 with $Y_1^+ = Y_2^-$. Both $f_j(Y_2^+)$ and $f_j(Y_2^-)$ are downsets in Q_{k-j} . We chose $f_{j+1}(Y_2) \in f_j(Y_2^+) - f_j(Y_2^-)$.

Hence $f_{j+1}(Y_2)$ is not below anything in the downset $f_j(Y_2^-)$, including $f_{j+1}(Y_1) \in f_j(Y_1^+) = f_j(Y_2^-)$.

This means $f_{j+1}(Y_1) \not\geq f_{j+1}(Y_2)$, as needed.

We have defined labels for all sets of at most k vertices. Being in Q_1 , labels of k-sets are colors with heights.

Key prop?: Consider (j+1)-sets Y_1 and Y_2 with $Y_1^+ = Y_2^-$. Both $f_j(Y_2^+)$ and $f_j(Y_2^-)$ are downsets in Q_{k-j} . We chose $f_{j+1}(Y_2) \in f_j(Y_2^+) - f_j(Y_2^-)$.

Hence $f_{j+1}(Y_2)$ is not below anything in the downset $f_j(Y_2^-)$, including $f_{j+1}(Y_1) \in f_j(Y_1^+) = f_j(Y_2^-)$.

This means $f_{j+1}(Y_1) \not\geq f_{j+1}(Y_2)$, as needed.

We have defined labels for all sets of at most k vertices. Being in Q_1 , labels of k-sets are colors with heights. When Builder plays a k-set, Painter uses that color.

Key prop?: Consider (j+1)-sets Y_1 and Y_2 with $Y_1^+ = Y_2^-$. Both $f_j(Y_2^+)$ and $f_j(Y_2^-)$ are downsets in Q_{k-j} . We chose $f_{j+1}(Y_2) \in f_j(Y_2^+) - f_j(Y_2^-)$.

Hence $f_{j+1}(Y_2)$ is not below anything in the downset $f_j(Y_2^-)$, including $f_{j+1}(Y_1) \in f_j(Y_1^+) = f_j(Y_2^-)$.

This means $f_{j+1}(Y_1) \not\geq f_{j+1}(Y_2)$, as needed.

We have defined labels for all sets of at most k vertices. Being in Q_1 , labels of k-sets are colors with heights. When Builder plays a k-set, Painter uses that color.

If edges Y_1 and Y_2 are consecutive in a tight path in color i, then $Y_1^+ = Y_2^-$. Both labels are heights on chain i.

Key prop?: Consider (j+1)-sets Y_1 and Y_2 with $Y_1^+ = Y_2^-$. Both $f_j(Y_2^+)$ and $f_j(Y_2^-)$ are downsets in Q_{k-j} . We chose $f_{j+1}(Y_2) \in f_j(Y_2^+) - f_j(Y_2^-)$.

Hence $f_{j+1}(Y_2)$ is not below anything in the downset $f_j(Y_2^-)$, including $f_{j+1}(Y_1) \in f_j(Y_1^+) = f_j(Y_2^-)$.

This means $f_{j+1}(Y_1) \not\geq f_{j+1}(Y_2)$, as needed.

We have defined labels for all sets of at most k vertices. Being in Q_1 , labels of k-sets are colors with heights. When Builder plays a k-set, Painter uses that color.

If edges Y_1 and Y_2 are consecutive in a tight path in color i, then $Y_1^+ = Y_2^-$. Both labels are heights on chain i.

Since $f_k(Y_1) \not\geq f_k(Y_2)$, the height on chain *i* increases.

Key prop?: Consider (j+1)-sets Y_1 and Y_2 with $Y_1^+ = Y_2^-$. Both $f_j(Y_2^+)$ and $f_j(Y_2^-)$ are downsets in Q_{k-j} . We chose $f_{j+1}(Y_2) \in f_j(Y_2^+) - f_j(Y_2^-)$.

Hence $f_{j+1}(Y_2)$ is not below anything in the downset $f_j(Y_2^-)$, including $f_{j+1}(Y_1) \in f_j(Y_1^+) = f_j(Y_2^-)$.

This means $f_{j+1}(Y_1) \not\geq f_{j+1}(Y_2)$, as needed.

We have defined labels for all sets of at most k vertices. Being in Q_1 , labels of k-sets are colors with heights. When Builder plays a k-set, Painter uses that color.

If edges Y_1 and Y_2 are consecutive in a tight path in color i, then $Y_1^+ = Y_2^-$. Both labels are heights on chain i.

Since $f_k(Y_1) \not\geq f_k(Y_2)$, the height on chain i increases.

Since chains have only m-1 elements, no $P_r^{(k)}$ occurs.

• Vertex labels are from an antichain since Builder can add vertices anywhere, and we need the Key Property.

- Vertex labels are from an antichain since Builder can add vertices anywhere, and we need the Key Property.
- If Builder only adds vertices at the right, as in the Fox–Pach–Sudakov–Suk game, then Painter can use all of Q_k as labels, ordered by a linear extension.

- Vertex labels are from an antichain since Builder can add vertices anywhere, and we need the Key Property.
- If Builder only adds vertices at the right, as in the Fox–Pach–Sudakov–Suk game, then Painter can use all of Q_k as labels, ordered by a linear extension. The rest of the proof is the same, yielding $> |Q_k|/k$.

- Vertex labels are from an antichain since Builder can add vertices anywhere, and we need the Key Property.
- If Builder only adds vertices at the right, as in the Fox–Pach–Sudakov–Suk game, then Painter can use all of Q_k as labels, ordered by a linear extension. The rest of the proof is the same, yielding $> |Q_k|/k$.
- In fact, using all of Q_k as labels proves $R_t(P_r^{(k)}) > |Q_k|$, the lower bound in the theorem of Moshkovitz–Shapira.

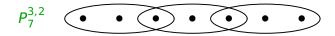
- Vertex labels are from an antichain since Builder can add vertices anywhere, and we need the Key Property.
- If Builder only adds vertices at the right, as in the Fox–Pach–Sudakov–Suk game, then Painter can use all of Q_k as labels, ordered by a linear extension. The rest of the proof is the same, yielding $> |Q_k|/k$.
- In fact, using all of Q_k as labels proves $R_t(P_r^{(k)}) > |Q_k|$, the lower bound in the theorem of Moshkovitz–Shapira.
- Adding all edges on $[|Q_k|]$ in any order and using the Builder labels shows that also $R_t(P_r^{(k)}) \le |Q_k| + 1$.

- Vertex labels are from an antichain since Builder can add vertices anywhere, and we need the Key Property.
- If Builder only adds vertices at the right, as in the Fox–Pach–Sudakov–Suk game, then Painter can use all of Q_k as labels, ordered by a linear extension. The rest of the proof is the same, yielding $> |Q_k|/k$.
- In fact, using all of Q_k as labels proves $R_t(P_r^{(k)}) > |Q_k|$, the lower bound in the theorem of Moshkovitz–Shapira.
- Adding all edges on $[|Q_k|]$ in any order and using the Builder labels shows that also $R_t(P_r^{(k)}) \leq |Q_k| + 1$. (If Λ_k does not occur, some x and y have the same label, so y can't follow x, but playing all edges makes y follow x.)

- Vertex labels are from an antichain since Builder can add vertices anywhere, and we need the Key Property.
- If Builder only adds vertices at the right, as in the Fox–Pach–Sudakov–Suk game, then Painter can use all of Q_k as labels, ordered by a linear extension. The rest of the proof is the same, yielding $> |Q_k|/k$.
- In fact, using all of Q_k as labels proves $R_t(P_r^{(k)}) > |Q_k|$, the lower bound in the theorem of Moshkovitz–Shapira.
- Adding all edges on $[|Q_k|]$ in any order and using the Builder labels shows that also $R_t(P_r^{(k)}) \leq |Q_k| + 1$. (If Λ_k does not occur, some x and y have the same label, so y can't follow x, but playing all edges makes y follow x.)
- Similar ideas for digraph Ramsey problems yield some slight improvements to bounds on size Ramsey numbers in Ben-Eliezer-Krivelevich-Sudakov [2012].

A Generalization

Def. In the ℓ -loose k-uniform monotone path $P_r^{k,\ell}$, each edge consists of k consecutive vertices, but each edge starts ℓ vertices after the start of the previous edge. (Note $P_r^{k,1} = P_r^{(k)}$.)



A Generalization

Def. In the ℓ -loose k-uniform monotone path $P_r^{k,\ell}$, each edge consists of k consecutive vertices, but each edge starts ℓ vertices after the start of the previous edge. (Note $P_r^{k,1} = P_r^{(k)}$.)



Generalizing to $P_r^{k,\ell}$ is not hard. The off-line value $R_t(P_r^{k,\ell})$ was first obtained in Cox–Stolee [2016].

A Generalization

Def. In the ℓ -loose k-uniform monotone path $P_r^{k,\ell}$, each edge consists of k consecutive vertices, but each edge starts ℓ vertices after the start of the previous edge. (Note $P_r^{k,1} = P_r^{(k)}$.)



Generalizing to $P_r^{k,\ell}$ is not hard. The off-line value $R_t(P_r^{k,\ell})$ was first obtained in Cox–Stolee [2016].

Thm. For $k, \ell, r, t \in \mathbb{N}$, let $h = \lceil k/\ell \rceil$ and $s = k - (h - 1)\ell$. With Q_1, \ldots, Q_h defined using k, r, t as before,

$$R_t(P_r^{k,\ell}) = \ell |Q_h| + s$$
 and $|Q_h|/(k \lg |Q_h|) \le \tilde{R}_t(P_r^{k,\ell}) \le \ell |Q_h|(\lg |Q_h|)^{2+\epsilon}$ (given fixed ϵ and large $t(r-k)$).

One can study ordered Ramsey numbers for many specific graphs (k = 2), starting with two colors.

One can study ordered Ramsey numbers for many specific graphs (k = 2), starting with two colors.

Ex. Alternating path P_n^{alt}

One can study ordered Ramsey numbers for many specific graphs (k = 2), starting with two colors.

Ex. Alternating path P_n^{alt}

Thm. (Balko–Cibulka–Kra'l–Kynčl [2015]) For n > 2, $\frac{5}{2}n - 7 \le R_2(P_n^{\text{alt}}) \le (2 + \sqrt{2})n + o(n)$.

One can study ordered Ramsey numbers for many specific graphs (k = 2), starting with two colors.

Ex. Alternating path P_n^{alt}

Thm. (Balko–Cibulka–Kra'l–Kynčl [2015]) For n > 2, $\frac{5}{2}n - 7 \le R_2(P_n^{\text{alt}}) \le (2 + \sqrt{2})n + o(n)$.

(Uses Füredi–Hajnal [1992] on Turán problems for matrices.)

One can study ordered Ramsey numbers for many specific graphs (k = 2), starting with two colors.

Ex. Alternating path P_n^{alt}

Thm. (Balko–Cibulka–Kra'l–Kynčl [2015]) For n > 2, $\frac{5}{2}n - 7 \le R_2(P_n^{\text{alt}}) \le (2 + \sqrt{2})n + o(n)$.

(Uses Füredi-Hajnal [1992] on Turán problems for matrices.)

Ex. Monotone cycle \vec{C}_n .

One can study ordered Ramsey numbers for many specific graphs (k = 2), starting with two colors.

Ex. Alternating path P_n^{alt}

Thm. (Balko–Cibulka–Kra'l–Kynčl [2015]) For n > 2, $\frac{5}{2}n - 7 \le R_2(P_n^{\text{alt}}) \le (2 + \sqrt{2})n + o(n)$.

(Uses Füredi-Hajnal [1992] on Turán problems for matrices.)

Ex. Monotone cycle \vec{C}_n .

Thm. (BCKK [2015])
$$R(\vec{C}_r, \vec{C}_s) = (r-1)(s-1) + (r-2)(s-2) + 1.$$