On-line Size Ramsey Number
for Ordered Tight Paths

Douglas B. West

Department of Mathematics
Zhejiang Normal University and
University of lllinois at Urbana-Champaign
west@math.uiuc.edu

slides available on DBW preprint page

Joint work with
Xavier Pérez-Giménez and Pawet Pratat



Background

Ramsey Theory: H —; G means every t-coloring of the
elements of H contains a monochromatic copy of G.



Background

Ramsey Theory: H —; G means every t-coloring of the
elements of H contains a monochromatic copy of G.

Ramsey’s Theorem: KX) —; G for large enough n.



Background
Ramsey Theory: H —; G means every t-coloring of the
elements of H contains a monochromatic copy of G.
Ramsey’s Theorem: KX) —; G for large enough n.

Ramsey number: R¢(G) = least such n.



Background

Ramsey Theory: H —; G means every t-coloring of the
elements of H contains a monochromatic copy of G.

Ramsey’s Theorem: KX) —; G for large enough n.

Ramsey number: R¢(G) = least such n.

Def. ordered hypergraph - a hypergraph on a linearly
ordered vertex set.



Background
Ramsey Theory: H —; G means every t-coloring of the
elements of H contains a monochromatic copy of G.
Ramsey’s Theorem: K(*) —; G for large enough n.
Ramsey number: R¢(G) = least such n.
Def. ordered hypergraph - a hypergraph on a linearly

ordered vertex set. G € H means there is a copy of
G in H via an order-preserving vertex injection.



Background
Ramsey Theory: H —; G means every t-coloring of the

elements of H contains a monochromatic copy of G.
Ramsey’s Theorem: K(*) —; G for large enough n.
Ramsey number: R¢(G) = least such n.

Def. ordered hypergraph - a hypergraph on a linearly

ordered vertex set. G € H means there is a copy of
G in H via an order-preserving vertex injection.

By Ramsey’s Theorem, R:(G) exists for every ordered
k-uniform hypergraph G (since KI(\I;()G)l can be forced).



Background

Ramsey Theory: H —; G means every t-coloring of the
elements of H contains a monochromatic copy of G.

Ramsey’s Theorem: K(*) —; G for large enough n.

Ramsey number: R¢(G) = least such n.

Def. ordered hypergraph - a hypergraph on a linearly
ordered vertex set. G € H means there is a copy of
G in H via an order-preserving vertex injection.

By Ramsey’s Theorem, R:(G) exists for every ordered
k-uniform hypergraph G (since KI(\I;()G)l can be forced).

Def. size Ramsey number R:(G) =min{|E(H)|: H—:G}.

(Other parameter Ramsey numbers have been studied,
minimizing w(H), x(H), A(H), genus, etc.)
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On-line Ramsey theory

For Ramsey problems, Builder presents a hypergraph,
Painter colors the edges using t colors.
Builder wins if 3 monochromatic copy of G.

Def. on-line Ramsey theory - Builder is stronger,
adding edges one by one; Painter colors immediately.

How many rounds can Painter survive?
#edges is the natural parameter.

Let R;= on-line size Ramsey #; always R:(G) < R:(G).
We study on-line size Ramsey number of ordered P,

The k-uniform ordered tight path PEk) has vertex set [r];
its edges are the sets of k consecutive vertices.




Applications

Why ordered tight paths?



Applications

Why ordered tight paths?

e (Duffus-Lefmann-Rodl [1995]) Lower bound on
Ramsey numbers (in the language of “shift graphs”)



Applications

Why ordered tight paths?

e (Duffus-Lefmann-Rodl [1995]) Lower bound on
Ramsey numbers (in the language of “shift graphs”)

e (Fox-Pach-Sudakov-Suk [2012]) Family of
noncrossing convex bodies in R?

(Any family of 2nlogn noncrossing convex bodies in
general position in the plane has n members with none
in the convex hull of the others.)



Applications

Why ordered tight paths?

e (Duffus-Lefmann-Rodl [1995]) Lower bound on
Ramsey numbers (in the language of “shift graphs”)

e (Fox-Pach-Sudakov-Suk [2012]) Family of
noncrossing convex bodies in R?

(Any family of 2nlogn noncrossing convex bodies in
general position in the plane has n members with none
in the convex hull of the others.)

o (Milans-Stolee-West [2015]) Track representations of

graphs (Q (lé?;?;n) < 7(L(Kn)) < O(lglgn))




Applications

Why ordered tight paths?

e (Duffus-Lefmann-Rodl [1995]) Lower bound on
Ramsey numbers (in the language of “shift graphs”)

e (Fox-Pach-Sudakov-Suk [2012]) Family of
noncrossing convex bodies in R?

(Any family of 2nlogn noncrossing convex bodies in
general position in the plane has n members with none
in the convex hull of the others.)

o (Milans-Stolee-West [2015]) Track representations of

graphs (Q (gh3% ) < (L(K)) < O(Iglgn)

These are applications of R¢(P)) (number of vertices).
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Ordinary graphs, two colors, classical Ramsey number:
R>(Pn) =~ 3n/2 (Gerencsér-Gyarfas [1967])

Ordinary graphs, two colors, size Ramsey number:
For n sufficiently large, R»(P,) is bounded by
900n (Beck [1983]), 720n (Bollobas [2001]),
137n (Dudek-Pratat [2015]), 91n (Letzter [2016]),
74n (Dudek-Pratat [2016+]) (lower bound 2.5n).

On-line problem: (Beck [1993], Kurek-Rucinski [2005])
R(Kp) < ¢ (2 infinitely often (Conlon [2009])
R2(G) = B(G)XY=L + |E(G)| (Grytczuk-Kierstead-Pratat ['08])
2n —3 < Ry(P,) <4n—7 (GKP [2008])

Ordinary R¢(P3) = t+ 2, but ordered path R¢(P3) = 2{+ 1.
General ordered path R¢(P,) = (n— 1)t + 1.
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X h=0

Let towp(x) = {ZtOWh—l(X) h>1"

Thm. (Moshkovitz-Shapira [2014]) Fort> 2, k > 3, and
m=r—k+1>2, the ordered tight path PU) satisfies

t-1
tOWk—z(rg—ﬁ) < Re(PX)) < towg—2(2mt1).

In fact, they show Rt(Pﬁk)) = |Qk| + 1, where Qq, ..., Q«k
is a certain inductive sequence of posets. We prove

Thm. (Pérez-GiméneNz—Pranat—West [2017+])
|Qkl/(k1g1Qk]) < Re(PK)) < 1Qkl1g°+(1Qk ).

(|Ok|+1)'

e Trivial upper bound /<
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Enumerative Problem

Def. For any poset O, the poset J(Q) is the set of all
down-sets in Q, ordered by inclusion.

8

Q J(Q)

Thm. Fixrq,..., re > k. If Q1 consists of disjoint chains
of sizesri1—k,...,r—k, and Q; =J(Q;-1) for j > 1, then

Re(PY, ..., PU9) = Qx| + 1.

e This iteration leads to the upper and lower bounds.
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Thm. R:(Py41) < tmt*t! (ordered path with m edges).

Pf. Let M = {0, ..., m —1}. Builder uses mt + 1 vertices.

At any time, vertex v has label a(v) € M, where a;(v) is
the maxlength of an ordered path in color i ending at v.

LetA=(m-1,...,m-—1). If a(v) = A\ for some vertex v
before the last vertex w, then playing vw wins.

If no two vertices among the first m‘ have the same
label, then all occur, including A.

Else a(u) = a(v) with u before v. Builder plays uv.
Painter gives some color (; this increases a;(v).

To avoid A\, labels increase fewer than (m — 1)t times.

Hence in at most (mt —1)[(m — 1)t — 1]+ 1 rounds
some label reaches A, and the next play wins. [
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Thm. mt=1/(2t) < Re(Pmy1) < tmttl,
Pf. Let B={aeM': > a;=|(m-1)t/2].}.

Until Builder uses more than |B| vertices, Painter gives
permanent distinct labels from B to vertices.

When Builder plays edge uv with u before v,
Painter uses a color i such that a;(v) > a;(u).
Such i exists, since a(u) # a(v) and > a;(u) = > a;(v).

An ordered path in color i ending at w has at most a;(w)
edges, since along such a path q; strictly increases.

Since a(w) € Mt, no such path has m edges.

Since using more than |B| vertices requires more than
|B|/2 edges, Painter survives at least |B|/2 rounds.

Since B is the middle (largest) level of a chain product
with mt elements and (m—-1)t+1 levels, |B| > mt~1/t. n
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Comments on k =2
e Using Chebyshev, [B| > 2. ’"7 (Mosh-Shap [2014])

e The same lower bound strategy works against a
stronger Builder, presenting any digraph to force a
directed P,,+1, instead of just low-to-high edges.

e Fox-Pach-Sudakov-Suk [2012] studied a more
restricted game: Builder adds a new highest vertex and
edges joining it to earlier vertices. Hence their optimum
fr(m) > R¢(Pm41). For fixed t, they proved

C1@mtlogm < fy(m) < Cat?mtlogm.

For fixed t and large m, their bounds are stronger, but
our upper bound (stronger Builder) is lower for large t
(this also holds for the k-uniform case).

e When vertices enter only from left to right, Painter
can use all of M! as labels, via a linear extension, and
the lower bound is m’/2 even with edges anywhere.
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ForYC[n],letYt =Y —-minYand Y~ =Y —maxY.
Te=EG); Tj=(")fori<j<k.

Inductively define labeling functions g1, ..., gx such
that g;: T; — Ok_j;1, starting with gi.

Every Y € T is an edge. If Y has color i and the longest
-colored tight path with last edge Y has / edges, then
let gk(Y) = element £ on the ith chain in Q;.

Forj<kandY €T, Iet?: {ZeTj1: ZT =Y}, these
are the precursors of Y.

Let g;j(Y) = the downset in Qx_; gen. by {gj+1(Z):Ze(7}.
Being a downset in Qk_;, by definition g;(Y) € Ok_j;1.
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Forj<kand Yy, Y, €T}, say Y, follows Yy if
YIr = Y2‘, and for each maximal elt weg;(Y1),
the set Y, U Y> follows a Z; e)(’_l with gj11(Z1)=w.

Lem. If Y5 follows Y1 in T}, then g;(Y1) Z9;(Y2) in Qk_j;1.
Pf. If Y5 follows Y7 in Ty, then they have same color and
9k(Y2) > gr(Y1), or different colors and g« (Y1)l|lgk(Y>2).
Forj <k, (Y, follows Y1) = for each maximal weg;(Y1),
Z follows a Z; € (Y_l with label w, but g;11(Z1) 2 9j+1(2).
Hence g;.1(2) ¢ downset({g},1(Z1): Z1 € Y1}) = g;(Y1).
But Z&Y2, 50 gj+1(2)€g;(Y2). = gj(Y2) £g;(Y1) in Q. m
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“Follows”, non-inductively
For a j-set Y, make a tree U(Y), with root g;(Y) € Ox_j;1.

A node w € Q; is a downset in Q;_1; its children in U(Y)
are the maximal elements of that downset.

The leaves are elements of Q; (heights in colors).

An instance of U(Y) assigns vertex sets in G to nodes.

To the root, assign Y. To a non-root with label w € Q;
and parent with label z assigned Z € T,_;, assign a
precursor of Z with label w. (Exists by defn of g_;.)

Associated with leaves are edges! Inductively,...

Lem. A j-set Y, follows a j-set Y7 if and only if Yf =Y
and there is an instance of U(Y1) such that for every
edge W assigned to a leaf, replacing the first vertex of
W with the last vertex of Y, yields an edge Z in G.
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Upper Bound - Builder Goal
Thm. R:(P%)) < |Qk|(IgQk|)>™€ < towk_»(2tmt=1).

Pf. Builder plays on vertex set [n] with n = |Qx| + 1.
After each round, Builder updates functions g, ..., g1.
Adding an edge cannot decrease the label of any edge.
Inductively the same holds for labels of sets of all sizes.
Builder goal: a vertex z # n with g1(z) = Ax = top of Q.
Such a vertex z has a precursor {y, z} with label A¢_1.
Continuing, some (k — 1)-set Y ending at z has label A;.

Since N, =(m-1,..., m —1), in each color some
precursor of Y ends a path of m — 1 edges.

Builder then plays YU {n} to win.
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Upper Bound - Idea behind Strategy

When |Y| =/ < k and no precursor of Y has a label,
down((Y_l) =@, s0 g;(Y) = bottom element of Qx_j+1.

This holds always for (k — 1)-sets whose precursors are
not edges and for j-sets with least vertex 1.

Ranks 0 through j — 2 of Q; form one chain.

For i < k —J, the label of a j-set with least vertex i is
always the only element of rank i — 1 in Qk_j41.

The |Qk| — k + 2 vertices after kK — 2 and before n have
labels the bottom k — 2 elements in Qy, always.

There are |Qk| — k + 1 possible labels for them if Ax does
not occur.

Pigeonhole!
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Upper Bound Completed

When Ay is not the label of any vertex before n, some
such x and y have the same label, by pigeonhole.

Since g1(x) =g1(y), by 1st Lemma y does not follow x.

Builder plays edges to make y follow x. By 1st Lemma,
this makes g1(y) go up in Q. How to make y follow x?

In an instance of U({x}), assignhed to each leaf is an
edge Z ending with x. By 2nd Lemma, it suffices that
deleting minZ and adding y at the end yields an edge.

Builder plays all such edges not already present.

Since the children of each node form an antichain in the
previous poset, #leaves < ]‘[f.:ll wid(Q;).

#times a vertex rises before reaching N\x is < ht(Qk).

Since ht(Qk) = |Qk-1| and the posets grow by iterated
exponentiation, #moves < |Qx|(1g |Qk|)?*€. u
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Pf. For 1 <j <k, Painter assigns a label fj(Y) € Ox_j;1 to
each j-set Y of vertices; labels never change.

Let A be a maximum-sized antichain in Q.
Painter labels new vertices with unused elements of A;
surviving at least |A|/k edges.

Recursive lower bd on |A| and upper bd on |Qk| are towers of
height k—2, with previous tower in denominator of lower bd.

Key property: if Y1 and Y, are j-sets with Y;f =Y,
then (Y1) 2 fi(Y2). This holds for j =1 since A is an
antichain in Q (vertex arrival order doesn’t matter).

For 1 <j<k -1, we define fj;1 from f;. Consider Y.
Since (Y7)* = (Y*)~, we defined f; so f;(Y ™) 2 f;(Y™T).

3 elt of fi(Y*) notin f;(Y~) (as downsets in Q_)).
Painter chooses any such element as the label fj;1(Y).
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Lower Bound Completed

Key prop?: Consider (j + 1)-sets Y1 and Y3 with Y} =Y.
Both f)‘(Y;) and fj(Yz‘) are downsets in Qy_;.
We chose fj;1(Y2) € f}'(Y;) - fi(Y3).

Hence 7;.1(Y>) is not below anything in the downset
fi(Y3), including fj41(Y1) € f,-(YIF) = fi(Y3).

This means fj+1(Y1) Z fi+1(Y2), as needed.
We have defined labels for all sets of at most k vertices.

Being in Q1, labels of k-sets are colors with heights.
When Builder plays a k-set, Painter uses that color.

If edges Y71 and Y, are consecutive in a tight path in
color i, then Y;f =Y. Both labels are heights on chain i.

Since f(Y1) 2 fk(Y2), the height on chain i increases.

Since chains have only m—1 elements, no P) occurs. u
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Comments

e \ertex labels are from an antichain since Builder can
add vertices anywhere, and we need the Key Property.

e If Builder only adds vertices at the right, as in the
Fox-Pach-Sudakov-Suk game, then Painter can use all
of Q as labels, ordered by a linear extension.

The rest of the proof is the same, yielding > |Qk|/k.

e In fact, using all of Q¢ as labels proves Rt(PEk)) > |Qkl,
the lower bound in the theorem of Moshkovitz-Shapira.

e Adding all edges on [|Qk|] in any order and using the
Builder labels shows that also R¢(P)) < Qx| + 1.

(If Ax does not occur, some x and y have the same label, so
y can’t follow x, but playing all edges makes y follow x.)

e Similar ideas for Ramsey problems yield
some slight improvements to bounds on size Ramsey
numbers in Ben-Eliezer-Krivelevich-Sudakov [2012].
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A Generalization

Def. In the /-loose k-uniform monotone path P’r("l, each
edge consists of kK consecutive vertices, but each edge
starts / vertices after the start of the previous edge.
(Note Pkt = ptk).)

T

Generalizing to P’:'f is not hard. The off-line value
Rt(P’;'f) was first obtained in Cox-Stolee [2016].

Thm. Fork,l,r,teN,leth=[k/llands=k—(h-1)..
With Q4, ..., Qp defined using k, r, t as before,
Re(PK*) = 2|0p| + s and

|Qnl/(k1g1Qnl) < Re(PX!) < £10sl(1g |Qn])2 T
(given fixed € and large t(r — k)).
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Further Directions

One can study ordered Ramsey numbers for many
specific graphs (k = 2), starting with two colors.

Ex. Alternating path Pt

e

Thm. (Balko-Cibulka-Kra'l-Kyn¢l [2015]) For n > 2,
2n =7 < R(PU") < (2 + V2)n + o(n).

(Uses Flredi-Hajnal [1992] on Turan problems for matrices.)

Ex. Monotone cycle C,.

e

Thm. (BCKK[2015])
R(C,,CH=(r-1)(s=D)+(r-2)(s-=2)+1.



