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elements of H contains a monochromatic copy of G.

Ramsey’s Theorem: K (k)
n
→t G for large enough n.

Ramsey number: Rt(G) = least such n.

Def. ordered hypergraph - a hypergraph on a linearly
ordered vertex set. G ⊆ H means there is a copy of
G in H via an order-preserving vertex injection.

By Ramsey’s Theorem, Rt(G) exists for every ordered

k-uniform hypergraph G (since K
(k)

|V(G)| can be forced).

Def. size Ramsey number R̂t(G)=min{|E(H)|:H→tG}.

(Other parameter Ramsey numbers have been studied,
minimizing ω(H), χ(H), Δ(H), genus, etc.)
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On-line Ramsey theory

For Ramsey problems, Builder presents a hypergraph,
Painter colors the edges using t colors.
Builder wins if ∃ monochromatic copy of G.

Def. on-line Ramsey theory - Builder is stronger,
adding edges one by one; Painter colors immediately.

How many rounds can Painter survive?
#edges is the natural parameter.

Let R̃t= on-line size Ramsey #; always R̃t(G) ≤ R̂t(G).

We study on-line size Ramsey number of ordered P(k)
r
.

The k-uniform ordered tight path P(k)
r

has vertex set [r];
its edges are the sets of k consecutive vertices.

• • • • • •
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Applications

Why ordered tight paths?

• (Duffus–Lefmann–Rödl [1995]) Lower bound on
Ramsey numbers (in the language of “shift graphs”)

• (Fox–Pach–Sudakov–Suk [2012]) Family of
noncrossing convex bodies in R

2

(Any family of 2n
2 logn noncrossing convex bodies in

general position in the plane has n members with none
in the convex hull of the others.)

• (Milans–Stolee–West [2015]) Track representations of

graphs (Ω
�

lg lgn

lg lg lgn

�

≤ τ(L(Kn)) ≤ O(lg lgn))

These are applications of Rt(P
(k)
r
) (number of vertices).
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Ordinary graphs, two colors, classical Ramsey number:
R2(Pn) ≈ 3n/2 (Gerencsér–Gyárfás [1967])

Ordinary graphs, two colors, size Ramsey number:
For n sufficiently large, R̂2(Pn) is bounded by
900n (Beck [1983]), 720n (Bollobás [2001]),
137n (Dudek–Prałat [2015]), 91n (Letzter [2016]),
74n (Dudek–Prałat [2016+]) (lower bound 2.5n).

On-line problem: (Beck [1993], Kurek–Rucinski [2005])

R̃2(Kn) ≤ c−n
�R2(Kn)

2

�

infinitely often (Conlon [2009])

R̃2(G) ≥ β(G)Δ(G)−12
+ |E(G)| (Grytczuk-Kierstead-Prałat [’08])

2n− 3 ≤ R̃2(Pn) ≤ 4n− 7 (GKP [2008])

Ordinary Rt(P3) = t+2, but ordered path Rt(P3) = 2t+1.
General ordered path Rt(Pn) = (n− 1)t + 1.
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In fact, they show Rt(P
(k)
r
) = |Qk|+ 1, where Q1, . . . , Qk

is a certain inductive sequence of posets. We prove

Thm. (Pérez-Giménez–Prałat–West [2017+])
|Qk|/(k lg |Qk|) ≤ R̃t(P(k)r

) ≤ |Qk| lg2+ε(|Qk |).

• Trivial upper bound
�|Qk |+1

k

�

.
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Thm. Fix r1, . . . , rt > k. If Q1 consists of disjoint chains
of sizes r1−k, . . . , rt−k, and Qj = J(Qj−1) for j > 1, then

Rt(P
(k)
r1
, . . . , P(k)

rt
) = |Qk|+ 1.

• This iteration leads to the upper and lower bounds.
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Else () = () with  before . Builder plays .
Painter gives some color ; this increases ().

To avoid Λ, labels increase fewer than (m− 1)t times.
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some label reaches Λ, and the next play wins.
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Since () ∈ Mt, no such path has m edges.

Since using more than |B| vertices requires more than
|B|/2 edges, Painter survives at least |B|/2 rounds.

Since B is the middle (largest) level of a chain product
with mt elements and (m−1)t+1 levels, |B| ≥mt−1/ t.
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Comments on k = 2

• Using Chebyshev, |B| ≥ 2
3
· mt−1
p
t
(Mosh–Shap [2014])

• The same lower bound strategy works against a
stronger Builder, presenting any digraph to force a
directed Pm+1, instead of just low-to-high edges.

• Fox–Pach–Sudakov–Suk [2012] studied a more
restricted game: Builder adds a new highest vertex and
edges joining it to earlier vertices. Hence their optimum
ft(m) ≥ R̃t(Pm+1). For fixed t, they proved

C1
t

log t
mt logm ≤ ft(m) ≤ C2t

2mt logm.

For fixed t and large m, their bounds are stronger, but
our upper bound (stronger Builder) is lower for large t
(this also holds for the k-uniform case).

• When vertices enter only from left to right, Painter
can use all of Mt as labels, via a linear extension, and
the lower bound is mt/2 even with edges anywhere.



General k: Labeling functions (for upper bound)

Q1 is t chains of size m− 1, and Qj = J(Qj−1) for j > 1.



General k: Labeling functions (for upper bound)

Q1 is t chains of size m− 1, and Qj = J(Qj−1) for j > 1.

G = current k-uniform hypergraph on vertex set [n].



General k: Labeling functions (for upper bound)

Q1 is t chains of size m− 1, and Qj = J(Qj−1) for j > 1.

G = current k-uniform hypergraph on vertex set [n].

For Y ⊆ [n], let Y+ = Y −minY and Y− = Y −mxY.



General k: Labeling functions (for upper bound)

Q1 is t chains of size m− 1, and Qj = J(Qj−1) for j > 1.

G = current k-uniform hypergraph on vertex set [n].

For Y ⊆ [n], let Y+ = Y −minY and Y− = Y −mxY.

Tk = E(G); Tj =
�[n]

j

�

for 1 ≤ j < k.



General k: Labeling functions (for upper bound)

Q1 is t chains of size m− 1, and Qj = J(Qj−1) for j > 1.

G = current k-uniform hypergraph on vertex set [n].

For Y ⊆ [n], let Y+ = Y −minY and Y− = Y −mxY.

Tk = E(G); Tj =
�[n]

j

�

for 1 ≤ j < k.

Inductively define labeling functions g1, . . . , gk such
that gj : Tj → Qk−j+1, starting with gk.



General k: Labeling functions (for upper bound)

Q1 is t chains of size m− 1, and Qj = J(Qj−1) for j > 1.

G = current k-uniform hypergraph on vertex set [n].

For Y ⊆ [n], let Y+ = Y −minY and Y− = Y −mxY.

Tk = E(G); Tj =
�[n]

j

�

for 1 ≤ j < k.

Inductively define labeling functions g1, . . . , gk such
that gj : Tj → Qk−j+1, starting with gk.

Every Y ∈ Tk is an edge. If Y has color  and the longest
-colored tight path with last edge Y has ℓ edges, then
let gk(Y) = element ℓ on the  th chain in Q1.



General k: Labeling functions (for upper bound)

Q1 is t chains of size m− 1, and Qj = J(Qj−1) for j > 1.

G = current k-uniform hypergraph on vertex set [n].

For Y ⊆ [n], let Y+ = Y −minY and Y− = Y −mxY.

Tk = E(G); Tj =
�[n]

j

�

for 1 ≤ j < k.

Inductively define labeling functions g1, . . . , gk such
that gj : Tj → Qk−j+1, starting with gk.

Every Y ∈ Tk is an edge. If Y has color  and the longest
-colored tight path with last edge Y has ℓ edges, then
let gk(Y) = element ℓ on the  th chain in Q1.

For j < k and Y ∈ Tj, let
←−
Y = {Z ∈ Tj+1 : Z+ = Y}; these

are the precursors of Y.



General k: Labeling functions (for upper bound)

Q1 is t chains of size m− 1, and Qj = J(Qj−1) for j > 1.

G = current k-uniform hypergraph on vertex set [n].

For Y ⊆ [n], let Y+ = Y −minY and Y− = Y −mxY.

Tk = E(G); Tj =
�[n]

j

�

for 1 ≤ j < k.

Inductively define labeling functions g1, . . . , gk such
that gj : Tj → Qk−j+1, starting with gk.

Every Y ∈ Tk is an edge. If Y has color  and the longest
-colored tight path with last edge Y has ℓ edges, then
let gk(Y) = element ℓ on the  th chain in Q1.

For j < k and Y ∈ Tj, let
←−
Y = {Z ∈ Tj+1 : Z+ = Y}; these

are the precursors of Y.

Let gj(Y) = the downset in Qk−j gen. by {gj+1(Z) :Z∈
←−
Y}.



General k: Labeling functions (for upper bound)

Q1 is t chains of size m− 1, and Qj = J(Qj−1) for j > 1.

G = current k-uniform hypergraph on vertex set [n].

For Y ⊆ [n], let Y+ = Y −minY and Y− = Y −mxY.

Tk = E(G); Tj =
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for 1 ≤ j < k.

Inductively define labeling functions g1, . . . , gk such
that gj : Tj → Qk−j+1, starting with gk.

Every Y ∈ Tk is an edge. If Y has color  and the longest
-colored tight path with last edge Y has ℓ edges, then
let gk(Y) = element ℓ on the  th chain in Q1.

For j < k and Y ∈ Tj, let
←−
Y = {Z ∈ Tj+1 : Z+ = Y}; these

are the precursors of Y.

Let gj(Y) = the downset in Qk−j gen. by {gj+1(Z) :Z∈
←−
Y}.

Being a downset in Qk−j, by definition gj(Y) ∈ Qk−j+1.
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For a j-set Y, make a tree U(Y), with root gj(Y) ∈ Qk−j+1.

A node  ∈ Q is a downset in Q−1; its children in U(Y)
are the maximal elements of that downset.

The leaves are elements of Q1 (heights in colors).

An instance of U(Y) assigns vertex sets in G to nodes.

To the root, assign Y. To a non-root with label  ∈ Q

and parent with label z assigned Z ∈ Tk−, assign a
precursor of Z with label . (Exists by defn of gk−.)

Associated with leaves are edges! Inductively,. . .

Lem. A j-set Y2 follows a j-set Y1 if and only if Y+
1
= Y−

2
and there is an instance of U(Y1) such that for every
edge W assigned to a leaf, replacing the first vertex of
W with the last vertex of Y2 yields an edge Z in G.
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Pf. Builder plays on vertex set [n] with n = |Qk|+ 1.

After each round, Builder updates functions gk, . . . , g1.

Adding an edge cannot decrease the label of any edge.
Inductively the same holds for labels of sets of all sizes.

Builder goal: a vertex z 6= n with g1(z) = Λk = top of Qk.

Such a vertex z has a precursor {y, z} with label Λk−1.

Continuing, some (k − 1)-set Y ending at z has label Λ2.

Since Λ2 = (m− 1, . . . ,m− 1), in each color some
precursor of Y ends a path of m− 1 edges.

Builder then plays Y ∪ {n} to win.
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Y1) = ∅, so gj(Y) = bottom element of Qk−j+1.
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Ranks 0 through j− 2 of Qj form one chain.

For  ≤ k − j, the label of a j-set with least vertex  is
always the only element of rank − 1 in Qk−j+1.

The |Qk| − k + 2 vertices after k − 2 and before n have
labels above the bottom k − 2 elements in Qk, always.

There are |Qk | − k+ 1 possible labels for them if Λk does
not occur.

Pigeonhole!
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deleting minZ and adding y at the end yields an edge.

Builder plays all such edges not already present.

Since the children of each node form an antichain in the
previous poset, #leaves ≤

∏k−1
=1

wid(Q).

#times a vertex rises before reaching Λk is < ht(Qk).

Since ht(Qk) = |Qk−1| and the posets grow by iterated
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Painter chooses any such element as the label fj+1(Y).
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Being in Q1, labels of k-sets are colors with heights.
When Builder plays a k-set, Painter uses that color.

If edges Y1 and Y2 are consecutive in a tight path in
color , then Y+

1
= Y−

2
. Both labels are heights on chain .

Since fk(Y1) 6≥ fk(Y2), the height on chain  increases.

Since chains have only m−1 elements, no P(k)
r

occurs.
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Comments

• Vertex labels are from an antichain since Builder can
add vertices anywhere, and we need the Key Property.

• If Builder only adds vertices at the right, as in the
Fox–Pach–Sudakov–Suk game, then Painter can use all
of Qk as labels, ordered by a linear extension.
The rest of the proof is the same, yielding > |Qk|/k.
• In fact, using all of Qk as labels proves Rt(P

(k)
r
) > |Qk|,

the lower bound in the theorem of Moshkovitz–Shapira.

• Adding all edges on [|Qk|] in any order and using the
Builder labels shows that also Rt(P

(k)
r
) ≤ |Qk|+ 1.

(If Λk does not occur, some  and y have the same label, so

y can’t follow , but playing all edges makes y follow .)

• Similar ideas for digraph Ramsey problems yield
some slight improvements to bounds on size Ramsey
numbers in Ben-Eliezer–Krivelevich–Sudakov [2012].
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Generalizing to Pk,ℓ
r

is not hard. The off-line value

Rt(P
k,ℓ
r
) was first obtained in Cox–Stolee [2016].

Thm. For k, ℓ, r, t ∈ N, let h = ⌈k/ℓ⌉ and s = k − (h− 1)ℓ.
With Q1, . . . , Qh defined using k, r, t as before,

Rt(P
k,ℓ
r
) = ℓ|Qh|+ s and

|Qh|/(k lg |Qh|) ≤ R̃t(Pk,ℓr ) ≤ ℓ|Qh|(lg |Qh|)2+ε
(given fixed ε and large t(r − k)).
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One can study ordered Ramsey numbers for many
specific graphs (k = 2), starting with two colors.

Ex. Alternating path Plt
n
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Thm. (Balko–Cibulka–Kra’l–Kynčl [2015]) For n > 2,
5
2
n− 7 ≤ R2(P

lt
n
) ≤ (2+

p
2)n+ o(n).

(Uses Füredi–Hajnal [1992] on Turán problems for matrices.)

Ex. Monotone cycle ~Cn.

• • • • •

Thm. (BCKK [2015])
R( ~Cr , ~Cs) = (r − 1)(s − 1) + (r − 2)(s− 2) + 1.


