Beyond Ohba’s Conjecture: A bound on the choice number of k-chromatic graphs with n vertices

Douglas B. West

Department of Mathematics
Zhejiang Normal University and
University of Illinois at Urbana-Champaign
west@math.uiuc.edu

slides available on DBW preprint page

Joint work with
Jonathan A. Noel, Hehui Wu, and Xuding Zhu
Def. A list assignment L assigns each $v \in V(G)$ a list $L(v)$ of available colors.
List Coloring and Choosability

Def. A list assignment L assigns each $v \in V(G)$ a list $L(v)$ of available colors.

An L-coloring is a proper coloring f with $f(v) \in L(v)$ $\forall v$.
List Coloring and Choosability

Def. A list assignment L assigns each $v \in V(G)$ a list $L(v)$ of available colors.

An L-coloring is a proper coloring f with $f(v) \in L(v)$ $\forall v$.

k-choosable: G has L-coloring whenever $|L(v)| \geq k$ $\forall v$.
List Coloring and Choosability

Def. A list assignment L assigns each $v \in V(G)$ a list $L(v)$ of available colors.

An L-coloring is a proper coloring f with $f(v) \in L(v)$ $\forall v$.

k-choosable: G has L-coloring whenever $|L(v)| \geq k$ $\forall v$.

The least such k is the choice number $\text{ch}(G)$.
List Coloring and Choosability

Def. A list assignment \(L \) assigns each \(v \in V(G) \) a list \(L(v) \) of available colors.

An \(L \)-coloring is a proper coloring \(f \) with \(f(v) \in L(v) \ \forall \ v \).

k-choosable: \(G \) has \(L \)-coloring whenever \(|L(v)| \geq k \ \forall \ v \).

The least such \(k \) is the **choice number** \(ch(G) \).

- Since lists may be equal at all vertices, \(ch(G) \geq \chi(G) \).
List Coloring and Choosability

Def. A list assignment L assigns each $v \in V(G)$ a list $L(v)$ of available colors.

An L-coloring is a proper coloring f with $f(v) \in L(v)$ $\forall v$.

k-choosable: G has L-coloring whenever $|L(v)| \geq k \forall v$.

The least such k is the choice number $\text{ch}(G)$.

- Since lists may be equal at all vertices, $\text{ch}(G) \geq \chi(G)$.

Ex. $\text{ch}(K_{4,2}) > 2 = \chi(K_{4,2})$.

\[
\begin{array}{c}
\{1,2\} & \{3,4\} \\
\{1,3\} & \{1,4\} & \{2,3\} & \{2,4\}
\end{array}
\]
Background

Background

$\text{ch}(G)$ is unbounded for $\chi(G) = 2$, but always $\text{ch}(G) \leq n$.
Background

\(\text{ch}(G) \) is unbounded for \(\chi(G) = 2 \), but always \(\text{ch}(G) \leq n \).

Ques. What is the maximum of \(\text{ch}(G) \) among \(k \)-chromatic graphs with \(n \) vertices?

\[\text{ch}(G) \text{ is unbounded for } \chi(G) = 2, \text{ but always } \text{ch}(G) \leq n. \]

Ques. What is the maximum of \(\text{ch}(G) \) among \(k \)-chromatic graphs with \(n \) vertices?

Conj. Ohba [2002] If \(n \leq 2\chi(G)+1 \), then \(\text{ch}(G)=\chi(G) \).
Background

\(\text{ch}(G) \) is unbounded for \(\chi(G) = 2 \), but always \(\text{ch}(G) \leq n \).

Ques. What is the maximum of \(\text{ch}(G) \) among \(k \)-chromatic graphs with \(n \) vertices?

** Conj. ** Ohba [2002] If \(n \leq 2\chi(G)+1 \), then \(\text{ch}(G)=\chi(G) \).

Thm. Noel–Reed–Wu [2012+] Ohba’s Conjecture is true.
Background

\(\text{ch}(G)\) is unbounded for \(\chi(G) = 2\), but always \(\text{ch}(G) \leq n\).

Ques. What is the maximum of \(\text{ch}(G)\) among \(k\)-chromatic graphs with \(n\) vertices?

** Conj.** Ohba [2002] If \(n \leq 2\chi(G)+1\), then \(\text{ch}(G) = \chi(G)\).

Thm. Noel–Reed–Wu [2012+] Ohba’s Conjecture is true.

It suffices to study complete \(k\)-partite graphs.
Background

\(\text{ch}(G) \) is unbounded for \(\chi(G) = 2 \), but always \(\text{ch}(G) \leq n \).

Ques. What is the maximum of \(\text{ch}(G) \) among \(k \)-chromatic graphs with \(n \) vertices?

** Conj.** Ohba [2002] If \(n \leq 2\chi(G)+1 \), then \(\text{ch}(G) = \chi(G) \).

Thm. Noel–Reed–Wu [2012+] Ohba’s Conjecture is true. It suffices to study complete \(k \)-partite graphs. Let \(K_{1^*k_1,2^*k_2,...} \) denote the one with \(k_i \) parts of size \(i \).
Background

\(\text{ch}(G) \) is unbounded for \(\chi(G) = 2 \), but always \(\text{ch}(G) \leq n \).

Ques. What is the maximum of \(\text{ch}(G) \) among \(k \)-chromatic graphs with \(n \) vertices?

Conj. Ohba [2002] If \(n \leq 2\chi(G)+1 \), then \(\text{ch}(G) = \chi(G) \).

Thm. Noel–Reed–Wu [2012+] Ohba’s Conjecture is true.

It suffices to study complete \(k \)-partite graphs.
Let \(K_{1\ast k_1, 2\ast k_2, \ldots} \) denote the one with \(k_i \) parts of size \(i \).

Sharpness for Ohba’s Conjecture: When \(k \) is even, \(K_{2\ast(k-1), 4\ast1} \) and \(K_{1\ast \left(\frac{k}{2}-1\right), 3\ast \left(\frac{k}{2}+1\right)} \) are not \(k \)-choosable.
Background

\(\text{ch}(G) \) is unbounded for \(\chi(G) = 2 \), but always \(\text{ch}(G) \leq n \).

Ques. What is the maximum of \(\text{ch}(G) \) among \(k \)-chromatic graphs with \(n \) vertices?

Conj. Ohba [2002] If \(n \leq 2\chi(G)+1 \), then \(\text{ch}(G)=\chi(G) \).

Thm. Noel–Reed–Wu [2012+] Ohba’s Conjecture is true. It suffices to study complete \(k \)-partite graphs. Let \(K_{1*1,k_1,2*1,k_2,...} \) denote the one with \(k_i \) parts of size \(i \).

Sharpness for Ohba’s Conjecture: When \(k \) is even, \(K_{2*(k-1),4*1} \) and \(K_{1*(\frac{k}{2}-1),3*(\frac{k}{2}+1)} \) are not \(k \)-choosable.

Always \(K_{2*(k-1),5*1} \) is not \(k \)-choosable (EOOS [2002]).
Beyond $2k + 2$ Vertices

Thm. (Kierstead [2000]) $\text{ch}(K_{3 \ast k}) = \left\lceil \frac{4k-1}{3} \right\rceil$.
Beyond $2k + 2$ Vertices

Thm. (Kierstead [2000]) $\text{ch}(K_{3\ast k}) = \left\lceil \frac{4k-1}{3} \right\rceil$.

Thm. (Ohba [2004]) $\text{ch}(K_{1\ast k_1, 3\ast k_3}) = \max \left\{ k, \left\lceil \frac{n+k-1}{3} \right\rceil \right\}$, where $k = k_1 + k_3$ and $n = k_1 + 3k_3$.
Beyond $2k + 2$ Vertices

Thm. (Kierstead [2000]) $\text{ch}(K_3 \ast_k) = \left\lceil \frac{4k-1}{3} \right\rceil$.

Thm. (Ohba [2004]) $\text{ch}(K_{1 \ast k_1,3 \ast k_3}) = \max \{ k, \left\lceil \frac{n+k-1}{3} \right\rceil \}$, where $k = k_1 + k_3$ and $n = k_1 + 3k_3$.

Thm. (N–W–W–Z [2013+]) If G has n vertices and chromatic number k, then $\text{ch}(G) \leq \max \{ k, \left\lceil \frac{n+k-1}{3} \right\rceil \}$.
Beyond $2k + 2$ Vertices

Thm. (Kierstead [2000]) $\text{ch}(K_{3*k}) = \left\lceil \frac{4k-1}{3} \right\rceil$.

Thm. (Ohba [2004]) $\text{ch}(K_{1*k_1,3*k_3}) = \max \{ k, \left\lceil \frac{n+k-1}{3} \right\rceil \}$, where $k = k_1 + k_3$ and $n = k_1 + 3k_3$.

Thm. (N–W–W–Z [2013+]) If G has n vertices and chromatic number k, then $\text{ch}(G) \leq \max \{ k, \left\lceil \frac{n+k-1}{3} \right\rceil \}$.

Sharp for $n \leq 3k$, **useful** for K_{m*k} when m is small.
Beyond $2k + 2$ Vertices

Thm. (Kierstead [2000]) \(\text{ch}(K_{3 \times k}) = \left\lceil \frac{4k-1}{3} \right\rceil \).

Thm. (Ohba [2004]) \(\text{ch}(K_{1 \times k_1, 3 \times k_3}) = \max \{ k, \left\lceil \frac{n+k-1}{3} \right\rceil \} \), where \(k = k_1 + k_3 \) and \(n = k_1 + 3k_3 \).

Thm. (N–W–W–Z [2013+]) If \(G \) has \(n \) vertices and chromatic number \(k \), then \(\text{ch}(G) \leq \max \{ k, \left\lceil \frac{n+k-1}{3} \right\rceil \} \).

Sharp for \(n \leq 3k \), *useful* for \(K_{m \times k} \) when \(m \) is small.

Thm. (Yang [2003]) \(\left\lfloor \frac{3k}{2} \right\rfloor \leq \text{ch}(K_{4 \times k}) \leq \left\lceil \frac{7k}{4} \right\rceil \).
Beyond $2k + 2$ Vertices

Thm. (Kierstead [2000]) $\text{ch}(K_{3*}k) = \left\lceil \frac{4k-1}{3} \right\rceil$.

Thm. (Ohba [2004]) $\text{ch}(K_{1*k1,3*k3}) = \max\{k, \left\lceil \frac{n+k-1}{3} \right\rceil\}$, where $k = k_1 + k_3$ and $n = k_1 + 3k_3$.

Thm. (N–W–W–Z [2013+]) If G has n vertices and chromatic number k, then $\text{ch}(G) \leq \max\{k, \left\lceil \frac{n+k-1}{3} \right\rceil\}$.

Sharp for $n \leq 3k$, **useful** for K_{m*k} when m is small.

Thm. (Yang [2003]) $\left\lceil \frac{3k}{2} \right\rceil \leq \text{ch}(K_{4*}k) \leq \left\lceil \frac{7k}{4} \right\rceil$.

Our result improves this to $\text{ch}(K_{4*}k) \leq \left\lceil \frac{5k-1}{3} \right\rceil$.
Beyond \(2k + 2\) Vertices

Thm. (Kierstead [2000]) \(\text{ch}(K_{3*k}) = \left\lceil \frac{4k-1}{3} \right\rceil \).

Thm. (Ohba [2004]) \(\text{ch}(K_{1*k_1,3*k_3}) = \max \{ k, \left\lceil \frac{n+k-1}{3} \right\rceil \} \), where \(k = k_1 + k_3 \) and \(n = k_1 + 3k_3 \).

Thm. (N–W–W–Z [2013+]) If \(G \) has \(n \) vertices and chromatic number \(k \), then \(\text{ch}(G) \leq \max \{ k, \left\lceil \frac{n+k-1}{3} \right\rceil \} \).

Sharp for \(n \leq 3k \), **useful** for \(K_{m*k} \) when \(m \) is small.

Thm. (Yang [2003]) \(\left\lfloor \frac{3k}{2} \right\rfloor \leq \text{ch}(K_{4*k}) \leq \left\lceil \frac{7k}{4} \right\rceil \).

Our result improves this to \(\text{ch}(K_{4*k}) \leq \left\lceil \frac{5k-1}{3} \right\rceil \).

Also, \(\left\lfloor \frac{8k}{5} \right\rfloor \leq \text{ch}(K_{5*k}) \leq 2k \) and \(\left\lfloor \frac{5k}{3} \right\rfloor \leq \text{ch}(K_{6*k}) \leq \left\lceil \frac{7k-1}{3} \right\rceil \).
Lower Bound Constructions for $\text{ch}(K_{m^*k})$

Constr 1: Split $2k - 1$ colors into X_1, \ldots, X_m. Assign all but X_i to the ith vertex in each part. L-coloring uses at least two colors on each part, in disjoint pairs. Hence it uses $2k$ colors, but only $2k - 1$ exist. The list sizes are at least $\left\lceil \frac{m-1}{m} \cdot 2k \right\rceil$. ■
Lower Bound Constructions for $\text{ch}(K_{m^*k})$

Constr 1: Split $2k - 1$ colors into X_1, \ldots, X_m. Assign all but X_i to the ith vertex in each part. L-coloring uses at least two colors on each part, in disjoint pairs. Hence it uses $2k$ colors, but only $2k - 1$ exist. The list sizes are at least $\left\lfloor \frac{m-1}{m} 2k \right\rfloor$.

This lower bound never exceeds $2k$, and our upper bound is $\frac{m+1}{3} k$; both are weak for large m.
Lower Bound Constructions for $\text{ch}(K_{m^*k})$

Constr 1: Split $2k - 1$ colors into X_1, \ldots, X_m. Assign all but X_i to the ith vertex in each part. L-coloring uses at least two colors on each part, in disjoint pairs. Hence it uses $2k$ colors, but only $2k - 1$ exist. The list sizes are at least $\left\lfloor \frac{m-1}{m} 2k \right\rfloor$.

This lower bound never exceeds $2k$, and our upper bound is $\frac{m+1}{3} k$; both are weak for large m.

Constr 2: Let $m = \binom{k-1}{(k-1)j}$. Assign all $(k-1)j$-sets from $kj - 1$ colors as lists on each part. Any $j - 1$ colors avoid some list, so j colors must be used on each part. Thus kj colors needed, but only $kj - 1$ exist. The list sizes are about $c \frac{k}{\log k} \log m$.

■
Lower Bound Constructions for $\text{ch}(K_{m \times k})$

Constr 1: Split $2k - 1$ colors into X_1, \ldots, X_m. Assign all but X_i to the ith vertex in each part. L-coloring uses at least two colors on each part, in disjoint pairs. Hence it uses $2k$ colors, but only $2k - 1$ exist. The list sizes are at least $\left\lceil \frac{m - 1}{m} 2k \right\rceil$.

This lower bound never exceeds $2k$, and our upper bound is $\frac{m+1}{3} k$; both are weak for large m.

Constr 2: Let $m = (\frac{k^j - 1}{(k-1)^j})$. Assign all $(k - 1)j$-sets from $kj - 1$ colors as lists on each part. Any $j - 1$ colors avoid some list, so j colors must be used on each part. Thus kj colors needed, but only $kj - 1$ exist. The list sizes are about $c \frac{k}{\log k} \log m$.

Thm. (Alon [1992]) $\text{ch}(K_{m \times k}) = \Theta(k \log m)$.
Lower Bound Constructions for $\text{ch}(K_{m \ast k})$

Constr 1: Split $2k - 1$ colors into X_1, \ldots, X_m. Assign all but X_i to the ith vertex in each part. L-coloring uses at least two colors on each part, in disjoint pairs. Hence it uses $2k$ colors, but only $2k - 1$ exist. The list sizes are at least $\left\lfloor \frac{m-1}{m} 2k \right\rfloor$.

This lower bound never exceeds $2k$, and our upper bound is $\frac{m+1}{3} k$; both are weak for large m.

Constr 2: Let $m = \binom{kj-1}{(k-1)j}$. Assign all $(k-1)j$-sets from $kj - 1$ colors as lists on each part. Any $j - 1$ colors avoid some list, so j colors must be used on each part. Thus kj colors needed, but only $kj - 1$ exist. The list sizes are about $c \frac{k}{\log k} \log m$.

Thm. (Alon [1992]) $\text{ch}(K_{m \ast k}) = \Theta(k \log m)$.

Conj. (Noel [2012]) $K_{m \ast k}$ has largest choice number among graphs with $\chi(G) = k$ and $n \leq mk$.

Thm. (N–W–W–Z [2013+]) If G has n vertices and chromatic number k, then $\text{ch}(G) \leq \max \left\{ k, \left\lceil \frac{n+k-1}{3} \right\rceil \right\}$.
Thm. (N–W–W–Z [2013+]) If G has n vertices and chromatic number k, then $\text{ch}(G) \leq \max \left\{ k, \left\lceil \frac{n+k-1}{3} \right\rceil \right\}$.

• We may assume G is a complete k-partite graph.
Outline

Thm. (N–W–W–Z [2013+]) If G has n vertices and chromatic number k, then $\chi(G) \leq \max \left\{ k, \left\lceil \frac{n+k-1}{3} \right\rceil \right\}$.

- We may assume G is a complete k-partite graph.
- Noel–Reed–Wu handled $n \leq 2k + 1$ (hardest range).
Thm. (N–W–W–Z [2013+]) If G has n vertices and chromatic number k, then $\text{ch}(G) \leq \max \left\{ k, \left\lceil \frac{n+k-1}{3} \right\rceil \right\}$.

- We may assume G is a complete k-partite graph.
- Noel–Reed–Wu handled $n \leq 2k + 1$ (hardest range). With $n \geq 2k + 2$, the desired bound is $\geq k + 1$.
Thm. (N–W–W–Z [2013+]) If G has n vertices and chromatic number k, then $\text{ch}(G) \leq \max \left\{ k, \left\lceil \frac{n+k-1}{3} \right\rceil \right\}$.

- We may assume G is a complete k-partite graph.

- Noel–Reed–Wu handled $n \leq 2k + 1$ (hardest range). With $n \geq 2k + 2$, the desired bound is $\geq k + 1$.

- Properties of a minimal counterexample (G, L):
 1. The union of all lists has size less than n.
 2. All parts have size at most 4.
 3. Each color is in at most two lists in each part.
Thm. (N–W–W–Z [2013+]) If \(G \) has \(n \) vertices and chromatic number \(k \), then \(\text{ch}(G) \leq \max\{k, \left\lceil \frac{n+k-1}{3} \right\rceil \} \).

- We may assume \(G \) is a complete \(k \)-partite graph.

- Noel–Reed–Wu handled \(n \leq 2k + 1 \) (hardest range). With \(n \geq 2k + 2 \), the desired bound is \(\geq k + 1 \).

- Properties of a minimal counterexample \((G, L)\):
 1. The union of all lists has size less than \(n \).
 2. All parts have size at most 4.
 3. Each color is in at most two lists in each part.

- Coloring procedure:
 1. Break \(V(G) \) into stable sets of size at most 2 by splitting some parts.
 2. Produce an \(L \)-coloring whose color classes are these sets.
First Reduction

Lem. (Kierstead [2000], Reed–Sudakov [2002]) If G is not r-choosable, then G has no L-coloring for some r-uniform list assignment L with $|\bigcup_v L(v)| < |V(G)|$.
First Reduction

Lem. (Kierstead [2000], Reed–Sudakov [2002]) If G is not r-choosable, then G has no L-coloring for some r-uniform list assignment L with $|\bigcup_v L(v)| < |V(G)|$.

Pf. Choose L with smallest union such that G has no L-coloring. Suppose $|L(V(G))| \geq |V(G)|$.

First Reduction

Lem. (Kierstead [2000], Reed–Sudakov [2002]) If \(G \) is not \(r \)-choosable, then \(G \) has no \(L \)-coloring for some \(r \)-uniform list assignment \(L \) with \(|\bigcup_{v} L(v)| < |V(G)| \).

Pf. Choose \(L \) with smallest union such that \(G \) has no \(L \)-coloring. Suppose \(|L(V(G))| \geq |V(G)| \).

If \(|L(X)| \geq |X| \ \forall \ X \subseteq V(G) \), then Hall’s Theorem yields distinct colors for vertices. Pick \(X \) maximal with \(|L(X)| < |X| \).
First Reduction

Lem. (Kierstead [2000], Reed–Sudakov [2002]) If G is not r-choosable, then G has no L-coloring for some r-uniform list assignment L with $\left| \bigcup_{\nu} L(\nu) \right| < |V(G)|$.

Pf. Choose L with smallest union such that G has no L-coloring. Suppose $|L(V(G))| \geq |V(G)|$.

If $|L(X)| \geq |X|$ for all $X \subseteq V(G)$, then Hall’s Theorem yields distinct colors for vertices. Pick X maximal with $|L(X)| < |X|$.

Let $L'(\nu) = L(\nu)$ for $\nu \in X$ and $L'(\nu) \subseteq L(X)$ for $\nu \notin X$.

By construction, $|L'(V(G))| = |L(X)| < |X| < |V(G)|$.

Now G is L'-colorable; restricts to L-coloring of $G[X]$.

First Reduction

Lem. (Kierstead [2000], Reed–Sudakov [2002]) If G is not r-choosable, then G has no L-coloring for some r-uniform list assignment L with $|\bigcup_v L(v)| < |V(G)|$.

Pf. Choose L with smallest union such that G has no L-coloring. Suppose $|L(V(G))| \geq |V(G)|$.

If $|L(X)| \geq |X|$ \forall $X \subseteq V(G)$, then Hall’s Theorem yields distinct colors for vertices. Pick X maximal with $|L(X)| < |X|$.

Let $L'(v) = L(v)$ for $v \in X$ and $L'(v) \subseteq L(X)$ for $v \notin X$.

By construction, $|L'(V(G))| = |L(X)| < |X| < |V(G)|$.

Now G is L'-colorable; restricts to L-coloring of $G[X]$.

Aim: Extend this to an L-coloring of G.
First Reduction

Lem. (Kierstead [2000], Reed–Sudakov [2002]) If G is not r-choosable, then G has no L-coloring for some r-uniform list assignment L with $|\bigcup_v L(v)| < |V(G)|$.

Pf. Choose L with smallest union such that G has no L-coloring. Suppose $|L(V(G))| \geq |V(G)|$.

If $|L(X)| \geq |X|$ \forall $X \subseteq V(G)$, then Hall’s Theorem yields distinct colors for vertices. Pick X maximal with $|L(X)| < |X|$.

Let $L'(v) = L(v)$ for $v \in X$ and $L'(v) \subseteq L(X)$ for $v \notin X$.

By construction, $|L'(V(G))| = |L(X)| < |X| < |V(G)|$.

Now G is L'-colorable; restricts to L-coloring of $G[X]$.

Aim: Extend this to an L-coloring of G.

For $Y \subseteq V(G) - X$, choice of X yields $|L(X \cup Y)| \geq |X \cup Y|$.

Hence $|L(X \cup Y) - L(X)| > |X \cup Y| - |X| = |Y|$.
First Reduction

Lem. (Kierstead [2000], Reed–Sudakov [2002]) If G is not r-choosable, then G has no L-coloring for some r-uniform list assignment L with $|\bigcup_v L(v)| < |V(G)|$.

Pf. Choose L with smallest union such that G has no L-coloring. Suppose $|L(V(G))| \geq |V(G)|$.

If $|L(X)| \geq |X|$ \forall $X \subseteq V(G)$, then Hall’s Theorem yields distinct colors for vertices. Pick X maximal with $|L(X)| < |X|$.

Let $L'(v) = L(v)$ for $v \in X$ and $L'(v) \subseteq L(X)$ for $v \notin X$.

By construction, $|L'(V(G))| = |L(X)| < |X| < |V(G)|$.

Now G is L'-colorable; restricts to L-coloring of $G[X]$.

Aim: Extend this to an L-coloring of G.

For $Y \subseteq V(G) - X$, choice of X yields $|L(X \cup Y)| \geq |X \cup Y|$. Hence $|L(X \cup Y) - L(X)| > |X \cup Y| - |X| = |Y|$.

Hall’s Theorem picks distinct colors for the vertices outside X using colors outside $L(X)$. \hfill ∎
Reductions (for minimal c/ex \((G, L)\))

Prop. If \(A\) is a stable set in \(G\) having common color \(c\) in lists, then
\[
\left\lfloor \frac{|V(G')| + \chi(G') - 1}{3} \right\rfloor = \left\lfloor \frac{n + k - 1}{3} \right\rfloor,
\]
where \(G' = G - A\).
Reductions (for minimal c/ex \((G, L)\))

Prop. If \(A\) is a stable set in \(G\) having common color \(c\) in lists, then \[
\left\lceil \frac{|V(G')| + \chi(G') - 1}{3} \right\rceil = \left\lceil \frac{n+k-1}{3} \right\rceil,
\]
where \(G' = G - A\).

Pf. Form \(L'\) on \(G'\) by deleting \(c\) from each list in \(L\). Since \(|L(v)| \geq k + 1\), we have \(|L'(v)| \geq k \geq \chi(G')\) for \(v \in V(G')\).
Reductions (for minimal c/ex \((G, L)\))

Prop. If \(A\) is a stable set in \(G\) having common color \(c\) in lists, then \[\left\lfloor \frac{|V(G')| + \chi(G') - 1}{3} \right\rfloor = \left\lfloor \frac{n+k-1}{3} \right\rfloor,\] where \(G' = G - A\).

Pf. Form \(L'\) on \(G'\) by deleting \(c\) from each list in \(L\). Since \(|L(v)| \geq k + 1\), we have \(|L'(v)| \geq k \geq \chi(G')\) for \(v \in V(G')\).

If \[\left\lfloor \frac{|V(G')| + \chi(G') - 1}{3} \right\rfloor < \left\lfloor \frac{n+k-1}{3} \right\rfloor,\] then \(|L'(v)| \geq \left\lfloor \frac{|V(G')| + \chi(G') - 1}{3} \right\rfloor\).
Reductions (for minimal c/ex \((G, L)\))

Prop. If \(A\) is a stable set in \(G\) having common color \(c\) in lists, then \(\left\lceil \frac{|V(G')| + \chi(G') - 1}{3} \right\rceil = \left\lceil \frac{n+k-1}{3} \right\rceil\), where \(G' = G - A\).

Pf. Form \(L'\) on \(G'\) by deleting \(c\) from each list in \(L\). Since \(|L(v)| \geq k + 1\), we have \(|L'(v)| \geq k \geq \chi(G')\) for \(v \in V(G')\).

If \(\left\lceil \frac{|V(G')| + \chi(G') - 1}{3} \right\rceil < \left\lceil \frac{n+k-1}{3} \right\rceil\), then \(|L'(v)| \geq \left\lceil \frac{|V(G')| + \chi(G') - 1}{3} \right\rceil\).

Minimality of \(G\) yields \(L'\)-coloring of \(G'\), which extends to \(L\)-coloring of \(G\) by using \(c\) on \(A\). \(\blacksquare\)
Reductions (for minimal c/ex \((G, L)\))

Prop. If \(A\) is a stable set in \(G\) having common color \(c\) in lists, then \(\left\lceil \frac{|V(G')| + \chi(G') - 1}{3} \right\rceil = \left\lceil \frac{n+k-1}{3} \right\rceil\), where \(G' = G - A\).

Pf. Form \(L'\) on \(G'\) by deleting \(c\) from each list in \(L\). Since \(|L(v)| \geq k + 1\), we have \(|L'(v)| \geq k \geq \chi(G')\) for \(v \in V(G')\).

If \(\left\lceil \frac{|V(G')| + \chi(G') - 1}{3} \right\rceil < \left\lceil \frac{n+k-1}{3} \right\rceil\), then \(|L'(v)| \geq \left\lceil \frac{|V(G')| + \chi(G') - 1}{3} \right\rceil\).

Minimality of \(G\) yields \(L'\)-coloring of \(G'\), which extends to \(L\)-coloring of \(G\) by using \(c\) on \(A\).

Cor. The lists on a part of size 2 are disjoint.
Reductions (for minimal c/ex \((G, L)\))

Prop. If \(A\) is a stable set in \(G\) having common color \(c\) in lists, then \[
\left\lceil \frac{|V(G')| + \chi(G') - 1}{3} \right\rceil = \left\lceil \frac{n+k-1}{3} \right\rceil,
\]
where \(G' = G - A\).

Pf. Form \(L'\) on \(G'\) by deleting \(c\) from each list in \(L\). Since \(|L(v)| \geq k + 1\), we have \(|L'(v)| \geq k \geq \chi(G')\) for \(v \in V(G')\).

If \[
\left\lceil \frac{|V(G')| + \chi(G') - 1}{3} \right\rceil < \left\lceil \frac{n+k-1}{3} \right\rceil,
\]
then \(|L'(v)| \geq \left\lceil \frac{|V(G')| + \chi(G') - 1}{3} \right\rceil\).

Minimality of \(G\) yields \(L'\)-coloring of \(G'\), which extends to \(L\)-coloring of \(G\) by using \(c\) on \(A\).

Cor. The lists on a part of size 2 are disjoint.

Pf. If not, \[
\left\lceil \frac{|V(G')| + \chi(G') - 1}{3} \right\rceil = \left\lceil \frac{(n-2)+(k-1)-1}{3} \right\rceil < \left\lceil \frac{n+k-1}{3} \right\rceil.
\]
Reductions (for minimal c/ex (G, L))

Prop. If A is a stable set in G having common color c in lists, then \[\left\lceil \frac{|V(G')| + \chi(G') - 1}{3} \right\rceil = \left\lceil \frac{n + k - 1}{3} \right\rceil, \] where $G' = G - A$.

Pf. Form L' on G' by deleting c from each list in L. Since $|L(v)| \geq k + 1$, we have $|L'(v)| \geq k \geq \chi(G')$ for $v \in V(G')$.

If \[\left\lceil \frac{|V(G')| + \chi(G') - 1}{3} \right\rceil < \left\lceil \frac{n + k - 1}{3} \right\rceil, \] then $|L'(v)| \geq \left\lceil \frac{|V(G')| + \chi(G') - 1}{3} \right\rceil$.

Minimality of G yields L'-coloring of G', which extends to L-coloring of G by using c on A.

Cor. The lists on a part of size 2 are disjoint.

Pf. If not, \[\left\lceil \frac{V(G') + \chi(G') - 1}{3} \right\rceil = \left\lceil \frac{(n-2) + (k-1) - 1}{3} \right\rceil < \left\lceil \frac{n + k - 1}{3} \right\rceil. \]

Cor. L assigns each color at most twice in each part.
Reductions (for minimal c/ex \((G, L)\))

Prop. If \(A\) is a stable set in \(G\) having common color \(c\) in lists, then \(\left\lceil \frac{|V(G)|+\chi(G')-1}{3} \right\rceil = \left\lfloor \frac{n+k-1}{3} \right\rfloor \), where \(G' = G - A\).

Pf. Form \(L'\) on \(G'\) by deleting \(c\) from each list in \(L\). Since \(|L(\nu)| \geq k + 1\), we have \(|L'(\nu)| \geq k \geq \chi(G')\) for \(\nu \in V(G')\).

If \(\left\lceil \frac{|V(G')|+\chi(G')-1}{3} \right\rceil < \left\lfloor \frac{n+k-1}{3} \right\rfloor \), then \(|L'(\nu)| \geq \left\lceil \frac{|V(G')|+\chi(G')-1}{3} \right\rceil \).

Minimality of \(G\) yields \(L'\)-coloring of \(G'\), which extends to \(L\)-coloring of \(G\) by using \(c\) on \(A\).

Cor. The lists on a part of size 2 are disjoint.

Pf. If not, \(\left\lceil \frac{|V(G')|+\chi(G')-1}{3} \right\rceil = \left\lfloor \frac{(n-2)+(k-1)-1}{3} \right\rfloor < \left\lfloor \frac{n+k-1}{3} \right\rfloor \).

Cor. \(L\) assigns each color at most twice in each part.

Pf. If not, \(\left\lceil \frac{|V(G')|+\chi(G')-1}{3} \right\rceil \leq \left\lfloor \frac{(n-3)+k-1}{3} \right\rfloor < \left\lfloor \frac{n+k-1}{3} \right\rfloor \).
Another Reduction

Lem. Each part A in G has size at most 4.

Pf. Since each color appears at most twice on A,

$$|A| \left\lceil \frac{n+k-1}{3} \right\rceil = \sum_{v \in A} |L(v)| \leq 2|\bigcup_{v} L(v)| \leq 2(n - 1).$$
Another Reduction

Lem. Each part A in G has size at most 4.

Pf. Since each color appears at most twice on A,

$$|A|\left\lceil \frac{n+k-1}{3} \right\rceil = \sum_{v \in A} |L(v)| \leq 2|\bigcup_{v} L(v)| \leq 2(n - 1).$$

Thus $|A| \leq 6 \frac{n-1}{n+k-1}$, which yields $|A| \leq 5$. If $|A| = 5$, then $n \geq 5k + 1$, which requires a part of size at least 6. ■
Another Reduction

Lem. Each part A in G has size at most 4.

Pf. Since each color appears at most twice on A,

$$|A| \left\lceil \frac{n+k-1}{3} \right\rceil = \sum_{v \in A} |L(v)| \leq 2|\bigcup_v L(v)| \leq 2(n - 1).$$

Thus $|A| \leq 6 \frac{n-1}{n+k-1}$, which yields $|A| \leq 5$. If $|A| = 5$, then $n \geq 5k + 1$, which requires a part of size at least 6.

Summary: (properties of minimal counterexample)
Another Reduction

Lem. Each part A in G has size at most 4.

Pf. Since each color appears at most twice on A,

$$|A| \left\lceil \frac{n+k-1}{3} \right\rceil = \sum_{v \in A} |L(v)| \leq 2|\bigcup_{v} L(v)| \leq 2(n - 1).$$

Thus $|A| \leq 6 \frac{n-1}{n+k-1}$, which yields $|A| \leq 5$. If $|A| = 5$, then $n \geq 5k + 1$, which requires a part of size at least 6.

Summary: (properties of minimal counterexample)

Obs. G is a complete multipartite graph.

Thm. (Noel–Reed–Wu) $n \geq 2k + 2$, so $|L(v)| = \left\lceil \frac{n+k-1}{3} \right\rceil$.

Lem. (Kierstead) $|\bigcup_{v} L(v)| < n$.

Cor. Parts of size 2 have disjoint lists.

Cor. Colors appear in at most two lists in each part.

Lem. Parts have size at most 4.
The Merging Idea

Since each color appears at most twice in each part, color classes in an L-coloring will have size at most 2.
The Merging Idea

Since each color appears at most twice in each part, color classes in an L-coloring will have size at most 2.

Def. Merging u and v in a part means replacing them by a single vertex w with $L(w) = L(u) \cap L(v)$.
The Merging Idea

Since each color appears at most twice in each part, color classes in an L-coloring will have size at most 2.

Def. Merging u and v in a part means replacing them by a single vertex w with $L(w) = L(u) \cap L(v)$.

We want to merge some pairs so that the resulting color lists have an SDR; it will be an L-coloring of G.
The Merging Idea

Since each color appears at most twice in each part, color classes in an L-coloring will have size at most 2.

Def. Merging u and v in a part means replacing them by a single vertex w with $L(w) = L(u) \cap L(v)$.

We want to merge some pairs so that the resulting color lists have an SDR; it will be an L-coloring of G.

Idea: To make the SDR likely, merge vertices only when $L(w)$ is large; $|L(V(G))| < n$ creates large overlaps.
The Merging Idea

Since each color appears at most twice in each part, color classes in an L-coloring will have size at most 2.

Def. Merging u and v in a part means replacing them by a single vertex w with $L(w) = L(u) \cap L(v)$.

We want to merge some pairs so that the resulting color lists have an SDR; it will be an L-coloring of G.

Idea: To make the SDR likely, merge vertices only when $L(w)$ is large; $|L(V(G))| < n$ creates large overlaps.

(1) Obtain conditions that are sufficient for Hall’s Theorem to guarantee the SDR.
The Merging Idea

Since each color appears at most twice in each part, color classes in an L-coloring will have size at most 2.

Def. Merging u and v in a part means replacing them by a single vertex w with $L(w) = L(u) \cap L(v)$.

We want to merge some pairs so that the resulting color lists have an SDR; it will be an L-coloring of G.

Idea: To make the SDR likely, merge vertices only when $L(w)$ is large; $|L(V(G))| < n$ creates large overlaps.

(1) Obtain conditions that are sufficient for Hall’s Theorem to guarantee the SDR.

(2) Define a procedure to make merges that guarantee these conditions.
A Sufficient Condition

Def. Let G have k_i parts of size i, for $i \in \{1, 2, 3, 4\}$. Let A^* be what remains of part A after the merges. Let Z_3 be a fixed set of $\left\lfloor \frac{2}{3}k_3 \right\rfloor$ 3-parts. Let Z_4 be a fixed set of $\max\{0, \frac{k_4+k_1-k_3+1}{3}\}$ 4-parts.
A Sufficient Condition

Def. Let G have k_i parts of size i, for $i \in \{1, 2, 3, 4\}$. Let A^* be what remains of part A after the merges. Let Z_3 be a fixed set of $\left\lfloor \frac{2}{3}k_3 \right\rfloor$ 3-parts. Let Z_4 be a fixed set of $\max\{0, \frac{k_4+k_1-k_3+1}{3}\}$ 4-parts.

A set of merges is good if:
A Sufficient Condition

Def. Let G have k_i parts of size i, for $i \in \{1, 2, 3, 4\}$. Let A^* be what remains of part A after the merges. Let Z_3 be a fixed set of $\left\lfloor \frac{2}{3} k_3 \right\rfloor$ 3-parts. Let Z_4 be a fixed set of $\max\{0, \frac{k_4+k_1-k_3+1}{3}\}$ 4-parts.

A set of merges is **good** if:

(P1) $t_3 \geq \lceil k_3/3 \rceil$, where $t_3 = \# 3$-parts having merges.
(P2) Every 4-part has at least one merge.
A Sufficient Condition

Def. Let G have k_i parts of size i, for $i \in \{1, 2, 3, 4\}$. Let A^* be what remains of part A after the merges. Let Z_3 be a fixed set of $\left\lfloor \frac{2}{3}k_3 \right\rfloor$ 3-parts. Let Z_4 be a fixed set of $\max\{0, \frac{k_4+k_1-k_3+1}{3}\}$ 4-parts.

A set of merges is **good** if:

(P1) $t_3 \geq \lceil k_3/3 \rceil$, where $t_3 = \# 3$-parts having merges.
(P2) Every 4-part has at least one merge.
(P3) $x, y, z \in A^*$ distinct $\Rightarrow |L(x) \cup L(y) \cup L(z)| \geq n - t_3 - k_4$.
(P4) $|A^*| = |A| = 3$ and $x, y \in A^*$ $\Rightarrow |L(x) \cup L(y)| \geq k + k_3 + k_4$.
(P5) $A \in Z_3$ and $x, y \in A^*$ $\Rightarrow |L(x) \cup L(y)| \geq k + t_3 + k_4$.
(P6) $|A| = 3$ and $x, y \in A^*$ $\Rightarrow |L(x) \cup L(y)| \geq k + \left\lceil \frac{k_3}{3} \right\rceil + k_4$.
(P7) $A \in Z_4$ and $x, y \in A^*$ $\Rightarrow |L(x) \cup L(y)| \geq k + k_4$.
A Sufficient Condition

Def. Let G have k_i parts of size i, for $i \in \{1, 2, 3, 4\}$. Let A^* be what remains of part A after the merges. Let Z_3 be a fixed set of $\left\lceil \frac{2}{3}k_3 \right\rceil$ 3-parts. Let Z_4 be a fixed set of $\max \{0, \frac{k_4 + k_1 - k_3 + 1}{3} \}$ 4-parts.

A set of merges is **good** if:

(P1) $t_3 \geq \lceil k_3/3 \rceil$, where $t_3 = \# \text{ 3-parts having merges}$.
(P2) Every 4-part has at least one merge.

(P3) $x, y, z \in A^*$ distinct $\Rightarrow |L(x) \cup L(y) \cup L(z)| \geq n - t_3 - k_4$.
(P4) $|A^*| = |A| = 3$ and $x, y \in A^*$ $\Rightarrow |L(x) \cup L(y)| \geq k + k_3 + k_4$.
(P5) $A \in Z_3$ and $x, y \in A^*$ $\Rightarrow |L(x) \cup L(y)| \geq k + t_3 + k_4$.
(P6) $|A| = 3$ and $x, y \in A^*$ $\Rightarrow |L(x) \cup L(y)| \geq k + \left\lceil \frac{k_3}{3} \right\rceil + k_4$.
(P7) $A \in Z_4$ and $x, y \in A^*$ $\Rightarrow |L(x) \cup L(y)| \geq k + k_4$.

(P8) The set of lists of merged vertices has an SDR.
Sufficiency

Lem. The lists left after good merges have an SDR.

Pf. We check $|L(S)| \geq |S|$ for each set S of vertices.
Sufficiency

Lem. The lists left after good merges have an SDR.

Pf. We check $|L(S)| \geq |S|$ for each set S of vertices.

(P1,P2) $\Rightarrow |S| \leq n - t_3 - k_4$.
Sufficiency

Lem. The lists left after good merges have an SDR.

Pf. We check $|L(S)| \geq |S|$ for each set S of vertices.

$(P1, P2) \Rightarrow |S| \leq n - t_3 - k_4$.

If S has three vertices from one part, then

$(P3) \Rightarrow |L(S)| \geq n - t_3 - k_4$. $\therefore |S| \leq 2k$.
Sufficiency

Lem. The lists left after good merges have an SDR.

Pf. We check $|L(S)| \geq |S|$ for each set S of vertices.

(P1,P2) $\Rightarrow |S| \leq n - t_3 - k_4$.

If S has three vertices from one part, then

(P3) $\Rightarrow |L(S)| \geq n - t_3 - k_4$. $\therefore |S| \leq 2k$.

Two from a 2-part $\Rightarrow |L(S)| \geq 2k + 2$. $\therefore |S| \leq k + k_3 + k_4$.
Sufficiency

Lem. The lists left after good merges have an SDR.

Pf. We check $|L(S)| \geq |S|$ for each set S of vertices.

(P1,P2) \Rightarrow $|S| \leq n - t_3 - k_4$.

If S has three vertices from one part, then
(P3) \Rightarrow $|L(S)| \geq n - t_3 - k_4$. $\therefore |S| \leq 2k$.

Two from a 2-part \Rightarrow $|L(S)| \geq 2k + 2$. $\therefore |S| \leq k + k_3 + k_4$.

If two unmerged vertices from a 3-part, then
(P4) \Rightarrow $|L(S)| \geq k + k_3 + k_4$. $\therefore |S| \leq k + t_3 + k_4$.

If two vertices from a part in Z_3, then
(P5) \Rightarrow $|L(S)| \geq k + t_3 + k_4$. $\therefore |S| \leq k + \lceil k_3/3 \rceil + k_4$.

If two vertices from any 3-part, then
(P6) \Rightarrow $|L(S)| \geq k + \lceil k_3/3 \rceil + k_4$. $\therefore |S| \leq k + k_4$.

If two vertices from a part in Z_4, then
(P7) \Rightarrow $|L(S)| \geq k + k_4$. $\therefore |S| \leq k + k_4 - |Z_4| = \left\lceil \frac{n + k - 1}{3} \right\rceil$.
Sufficiency

Lem. The lists left after good merges have an SDR.

Pf. We check $|L(S)| \geq |S|$ for each set S of vertices.

(P1,P2) $\Rightarrow |S| \leq n - t_3 - k_4.$

If S has three vertices from one part, then

(P3) $\Rightarrow |L(S)| \geq n - t_3 - k_4. \quad \therefore |S| \leq 2k.$

Two from a 2-part $\Rightarrow |L(S)| \geq 2k + 2. \quad \therefore |S| \leq k + k_3 + k_4.$

If two unmerged vertices from a 3-part, then

(P4) $\Rightarrow |L(S)| \geq k + k_3 + k_4. \quad \therefore |S| \leq k + t_3 + k_4.$

If two vertices from a part in Z_3, then

(P5) $\Rightarrow |L(S)| \geq k + t_3 + k_4. \quad \therefore |S| \leq k + \lceil k_3/3 \rceil + k_4.$

If two vertices from any 3-part, then

(P6) $\Rightarrow |L(S)| \geq k + \lceil k_3/3 \rceil + k_4. \quad \therefore |S| \leq k + k_4.$

If two vertices from a part in Z_4, then

(P7) $\Rightarrow |L(S)| \geq k + k_4. \quad \therefore |S| \leq k + k_4 - |Z_4| = \left\lceil \frac{n+k-1}{3} \right\rceil.$

If S has any unmerged vertex, then $|L(S)| \geq \left\lceil \frac{n+k-1}{3} \right\rceil \geq |S|.$
Sufficiency

Lem. The lists left after good merges have an SDR.

Pf. We check $|L(S)| \geq |S|$ for each set S of vertices.

(P1,P2) \Rightarrow $|S| \leq n - t_3 - k_4$.

If S has three vertices from one part, then

(P3) \Rightarrow $|L(S)| \geq n - t_3 - k_4$. \therefore $|S| \leq 2k$.

Two from a 2-part \Rightarrow $|L(S)| \geq 2k+2$. \therefore $|S| \leq k+k_3+k_4$.

If two unmerged vertices from a 3-part, then

(P4) \Rightarrow $|L(S)| \geq k + k_3 + k_4$. \therefore $|S| \leq k + t_3 + k_4$.

If two vertices from a part in Z_3, then

(P5) \Rightarrow $|L(S)| \geq k + t_3 + k_4$. \therefore $|S| \leq k + \lceil k_3/3 \rceil + k_4$.

If two vertices from any 3-part, then

(P6) \Rightarrow $|L(S)| \geq k + \lceil k_3/3 \rceil + k_4$. \therefore $|S| \leq k + k_4$.

If two vertices from a part in Z_4, then

(P7) \Rightarrow $|L(S)| \geq k + k_4$. \therefore $|S| \leq k + k_4 - |Z_4| = \left\lceil \frac{n+k-1}{3} \right\rceil$.

If S has any unmerged vertex, then $|L(S)| \geq \left\lceil \frac{n+k-1}{3} \right\rceil \geq |S|$.

Now S is restricted to merged vertices, and (P8) suffices. ■
Merges in \mathbb{Z}_3 and \mathbb{Z}_4

Idea: Merge vertices with many common colors in lists.
Merges in \mathbb{Z}_3 and \mathbb{Z}_4

Idea: Merge vertices with many common colors in lists.

Def. $\ell(A) = \max_{u, v \in \binom{A}{2}} |L(u) \cap L(v)|$.
Merges in Z_3 and Z_4

Idea: Merge vertices with many common colors in lists.

Def. $\ell(A) = \max_{u,v \in \binom{A}{2}} |L(u) \cap L(v)|$.

Construction: Z_3 is a set of $\lfloor 2k_3/3 \rfloor$ 3-parts.
Merges in Z_3 and Z_4

Idea: Merge vertices with many common colors in lists.

Def. $\ell(A) = \max_{u, v \in \binom{A}{2}} |L(u) \cap L(v)|$.

Construction: Z_3 is a set of $\lfloor 2k_3/3 \rfloor$ 3-parts. Let t_3 be the largest integer such that $\ell(A) \geq \left\lfloor \frac{k + t_3 - 1}{3} \right\rfloor$ for at least $t_3 - \lceil k_3/3 \rceil$ parts in Z_3.
Merges in \mathbb{Z}_3 and \mathbb{Z}_4

Idea: Merge vertices with many common colors in lists.

Def. $\ell(A) = \max_{u, v \in \binom{A}{2}} |L(u) \cap L(v)|$.

Construction: \mathbb{Z}_3 is a set of $\lfloor 2k_3/3 \rfloor$ 3-parts. Let t_3 be the largest integer such that $\ell(A) \geq \left\lceil \frac{k+t_3-1}{3} \right\rceil$ for at least $t_3 - \lfloor k_3/3 \rfloor$ parts in \mathbb{Z}_3. (Note $t_3 \geq \lfloor k_3/3 \rfloor$.)
Merges in Z_3 and Z_4

Idea: Merge vertices with many common colors in lists.

Def. $\ell(A) = \max_{u, v \in \binom{A}{2}} |L(u) \cap L(v)|$.

Construction: Z_3 is a set of $\lceil 2k_3/3 \rceil$ 3-parts. Let t_3 be the largest integer such that $\ell(A) \geq \left\lceil \frac{k + t_3 - 1}{3} \right\rceil$ for at least $t_3 - \lceil k_3/3 \rceil$ parts in Z_3. (Note $t_3 \geq \lceil k_3/3 \rceil$.) Merge a pair achieving $\ell(A)$ in each of these parts.
Merges in \mathbb{Z}_3 and \mathbb{Z}_4

Idea: Merge vertices with many common colors in lists.

Def. $\ell(A) = \max_{u, v \in \choose A 2} |L(u) \cap L(v)|$.

Construction: \mathbb{Z}_3 is a set of $\lfloor 2k_3/3 \rfloor$ 3-parts. Let t_3 be the largest integer such that $\ell(A) \geq \left[\frac{k+t_3-1}{3} \right]$ for at least $t_3 - \lceil k_3/3 \rceil$ parts in \mathbb{Z}_3. (Note $t_3 \geq \lceil k_3/3 \rceil$.) Merge a pair achieving $\ell(A)$ in each of these parts.

Construction: \mathbb{Z}_4 is a set of $\max\{0, \frac{k_4+k_1-k_3+1}{3}\}$ 4-parts.
Merges in Z_3 and Z_4

Idea: Merge vertices with many common colors in lists.

Def. $\ell(A) = \max_{u,v \in \binom{A}{2}} |L(u) \cap L(v)|$.

Construction: Z_3 is a set of $\lceil 2k_3/3 \rceil$ 3-parts. Let t_3 be the largest integer such that $\ell(A) \geq \left\lceil \frac{k+t_3-1}{3} \right\rceil$ for at least $t_3 - \lceil k_3/3 \rceil$ parts in Z_3. (Note $t_3 \geq \lceil k_3/3 \rceil$.) Merge a pair achieving $\ell(A)$ in each of these parts.

Construction: Z_4 is a set of $\max\{0, \frac{k_4+k_1-k_3+1}{3}\}$ 4-parts. For $A \in Z_4$, merge a pair $\{u, v\}$ achieving $\ell(A)$.
Merges in Z_3 and Z_4

Idea: Merge vertices with many common colors in lists.

Def. $\ell(A) = \max_{u,v \in \binom{A}{2}} |L(u) \cap L(v)|$.

Construction: Z_3 is a set of $\lceil 2k_3/3 \rceil$ 3-parts.
Let t_3 be the largest integer such that $\ell(A) \geq \left\lceil \frac{k+t_3-1}{3} \right\rceil$ for at least $t_3 - \lceil k_3/3 \rceil$ parts in Z_3. (Note $t_3 \geq \lceil k_3/3 \rceil$.)
Merge a pair achieving $\ell(A)$ in each of these parts.

Construction: Z_4 is a set of $\max\{0, \frac{k_4+k_1-k_3+1}{3}\} 4$-parts.
For $A \in Z_4$, merge a pair $\{u, v\}$ achieving $\ell(A)$.
Also merge $\{x, y\} \in A$ if $|L(x) \cap L(y)| \geq \frac{k_1+3k_2+5k_3+4k_4+1}{3}$.
Merges in Z_3 and Z_4

Idea: Merge vertices with many common colors in lists.

Def. $\ell(A) = \max_{u,v \in \binom{A}{2}} |L(u) \cap L(v)|$.

Construction: Z_3 is a set of $\lceil 2k_3/3 \rceil$ 3-parts. Let t_3 be the largest integer such that $\ell(A) \geq \left\lceil \frac{k+t_3-1}{3} \right\rceil$ for at least $t_3 - \lfloor k_3/3 \rfloor$ parts in Z_3. (Note $t_3 \geq \lceil k_3/3 \rceil$.) Merge a pair achieving $\ell(A)$ in each of these parts.

Construction: Z_4 is a set of $\max \{0, \frac{k_4+k_1-k_3+1}{3} \}$ 4-parts. For $A \in Z_4$, merge a pair $\{u, v\}$ achieving $\ell(A)$. Also merge $\{x, y\} \in A$ if $|L(x) \cap L(y)| \geq \frac{k_1+3k_2+5k_3+4k_4+1}{3}$.

Lem. These merges guarantee (P1)-(P7) if also each 3-part and each 4-part outside $Z_3 \cup Z_4$ has one merge.

SDR for the Merged Vertices (Property P8)

Idea: For the set Y of 3- and 4-parts outside $Z_3 \cup Z_4$, choose a merge in each part so that the SDR exists!
SDR for the Merged Vertices (Property P8)

Idea: For the set Y of 3- and 4-parts outside $Z_3 \cup Z_4$, choose a merge in each part so that the SDR exists!

Def. A pair $\{u, v\}$ is a good pair for part A if

$|A| = \{u, v, w\}$ and $|L(u) \cap L(v)| \geq \left\lceil \frac{k_1+k_4+1}{3} \right\rceil$, or

$|A| = \{u, v, x, y\}$ and $|L(u) \cap L(v)| \geq |L(x) \cap L(y)|$.

SDR for the Merged Vertices (Property P8)

Idea: For the set Y of 3- and 4-parts outside $Z_3 \cup Z_4$, choose a merge in each part so that the SDR exists!

Def. A pair \{u, v\} is a good pair for part A if
- $|A| = \{u, v, w\}$ and $|L(u) \cap L(v)| \geq \left \lceil \frac{k_1 + k_4 + 1}{3} \right \rceil$, or
- $|A| = \{u, v, x, y\}$ and $|L(u) \cap L(v)| \geq |L(x) \cap L(y)|$.

Def. For $A \in Y$, let L_A be the set of all colors c such that $c \in L(u) \cap L(v)$ for some good pair \{u, v\} $\subseteq A$.
SDR for the Merged Vertices (Property P8)

Idea: For the set Y of 3- and 4-parts outside $Z_3 \cup Z_4$, choose a merge in each part so that the SDR exists!

Def. A pair $\{u, v\}$ is a good pair for part A if $|A| = \{u, v, w\}$ and $|L(u) \cap L(v)| \geq \left\lceil \frac{k_1+k_4+1}{3} \right\rceil$, or $|A| = \{u, v, x, y\}$ and $|L(u) \cap L(v)| \geq |L(x) \cap L(y)|$.

Def. For $A \in Y$, let L_A be the set of all colors c such that $c \in L(u) \cap L(v)$ for some good pair $\{u, v\} \subseteq A$.

Lem. If $A \in Y$ and $|A| = 3$, then $|L_A| \geq k_3 + \left\lceil \frac{k_1+k_4}{3} \right\rceil$.

Lem. If $A \in Y$ and $|A| = 4$, then $|L_A| \geq k_3 + k_4$.

SDR for the Merged Vertices (Property P8)

Idea: For the set Y of 3- and 4-parts outside $Z_3 \cup Z_4$, choose a merge in each part so that the SDR exists!

Def. A pair $\{u, v\}$ is a **good pair** for part A if $|A| = \{u, v, w\}$ and $|L(u) \cap L(v)| \geq \left\lceil \frac{k_1 + k_4 + 1}{3} \right\rceil$, or $|A| = \{u, v, x, y\}$ and $|L(u) \cap L(v)| \geq |L(x) \cap L(y)|$.

Def. For $A \in Y$, let L_A be the set of all colors c such that $c \in L(u) \cap L(v)$ for some good pair $\{u, v\} \subseteq A$.

Lem. If $A \in Y$ and $|A| = 3$, then $|L_A| \geq k_3 + \left\lceil \frac{k_1 + k_4}{3} \right\rceil$.

Lem. If $A \in Y$ and $|A| = 4$, then $|L_A| \geq k_3 + k_4$.

Lem. There is an SDR for the family consisting of L_A for $A \in Y$ and the lists of merged vertices in $Z_3 \cup Z_4$.
SDR for the Merged Vertices (Property P8)

Idea: For the set Y of 3- and 4-parts outside $Z_3 \cup Z_4$, choose a merge in each part so that the SDR exists!

Def. A pair $\{u, v\}$ is a good pair for part A if $|A| = \{u, v, w\}$ and $|L(u) \cap L(v)| \geq \left\lceil \frac{k_1+k_4+1}{3} \right\rceil$, or $|A| = \{u, v, x, y\}$ and $|L(u) \cap L(v)| \geq |L(x) \cap L(y)|$.

Def. For $A \in Y$, let L_A be the set of all colors c such that $c \in L(u) \cap L(v)$ for some good pair $\{u, v\} \subseteq A$.

Lem. If $A \in Y$ and $|A| = 3$, then $|L_A| \geq k_3 + \left\lceil \frac{k_1+k_4}{3} \right\rceil$.

Lem. If $A \in Y$ and $|A| = 4$, then $|L_A| \geq k_3 + k_4$.

Lem. There is an SDR for the family consisting of L_A for $A \in Y$ and the lists of merged vertices in $Z_3 \cup Z_4$.

Pf. $|S| \leq k_3+k_4+|Z_4|$. Restrict S to ensure $|L(S)| \geq |S|$.
SDR for the Merged Vertices (Property P8)

Idea: For the set \(Y \) of 3- and 4-parts outside \(Z_3 \cup Z_4 \), choose a merge in each part so that the SDR exists!

Def. A pair \(\{u, v\} \) is a good pair for part \(A \) if
\[|A| = \{u, v, w\} \text{ and } |L(u) \cap L(v)| \geq \left\lfloor \frac{k_1+k_4+1}{3} \right\rfloor, \text{ or } \]
\[|A| = \{u, v, x, y\} \text{ and } |L(u) \cap L(v)| \geq |L(x) \cap L(y)|. \]

Def. For \(A \in Y \), let \(L_A \) be the set of all colors \(c \) such that \(c \in L(u) \cap L(v) \) for some good pair \(\{u, v\} \subseteq A \).

Lem. If \(A \in Y \) and \(|A| = 3 \), then \(|L_A| \geq k_3 + \left\lfloor \frac{k_1+k_4}{3} \right\rfloor. \)

Lem. If \(A \in Y \) and \(|A| = 4 \), then \(|L_A| \geq k_3 + k_4. \)

Lem. There is an SDR for the family consisting of \(L_A \) for \(A \in Y \) and the lists of merged vertices in \(Z_3 \cup Z_4 \).

Pf. \(|S| \leq k_3+k_4+|Z_4| \). Restrict \(S \) to ensure \(|L(S)| \geq |S| \).
If \(S \) has two for \(A \), then \(A \in Z_4; \) (P7) \(\Rightarrow |L(S)| \geq k+k_4 \geq |S|. \)
SDR for the Merged Vertices (Property P8)

Idea: For the set Y of 3- and 4-parts outside $Z_3 \cup Z_4$, choose a merge in each part so that the SDR exists!

Def. A pair \{u, v\} is a **good pair** for part A if $|A| = \{u, v, w\}$ and $|L(u) \cap L(v)| \geq \left\lceil \frac{k_1+k_4+1}{3} \right\rceil$, or $|A| = \{u, v, x, y\}$ and $|L(u) \cap L(v)| \geq |L(x) \cap L(y)|$.

Def. For $A \in Y$, let L_A be the set of all colors c such that $c \in L(u) \cap L(v)$ for some good pair \{u, v\} $\subseteq A$.

Lem. If $A \in Y$ and $|A| = 3$, then $|L_A| \geq k_3 + \left\lceil \frac{k_1+k_4}{3} \right\rceil$.

Lem. If $A \in Y$ and $|A| = 4$, then $|L_A| \geq k_3 + k_4$.

Lem. There is an SDR for the family consisting of L_A for $A \in Y$ and the lists of merged vertices in $Z_3 \cup Z_4$.

Pf. $|S| \leq k_3+k_4+|Z_4|$. Restrict S to ensure $|L(S)| \geq |S|$. If S has two for A, then $A \in Z_4$; (P7) \Rightarrow $|L(S)| \geq k+k_4 \geq |S|$. If S has L_A with $|A|=4$, then Lem \Rightarrow $|S| \leq k_3+|Z_4|$. ...