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Def. coloring of G: assigns each vertex a label (color).
proper coloring c:  ∈ E(G) ⇒ c() 6= c().
G is k-colorable if ∃ proper coloring using ≤ k colors.
chromatic number χ(G) = min{k : G is k-colorable}.

Ex. How many time slots are needed to schedule
Senate committees?

• common members ⇒ different time slots

Let V(G) = {committees}
E(G) = {pairs of vertices w. common members}.

min #time slots = χ(G).

Here χ(G) = 4 •
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List Coloring Vizing [1976], Erdős–Rubin–Taylor [1979]

Some committees can’t meet at certain times.

Def. list assignment: L() = color set available at .

L-coloring: proper coloring s.t. c() ∈ L() ∀  ∈ V(G).

k-choosable G: ∃ L-coloring whenever all |L()| ≥ k.

list chromatic number (or choosability)
χℓ(G) = min{k : G is k-choosable}.

Prop. χ(G) ≤ χℓ(G) ≤ Δ(G) + 1.

Pf. Lower bound: The lists may be identical.

Upper bound: Lists of size Δ(G) + 1 ⇒ a color is
available for each successive vertex in any order.

• d() = degree of vertex ; Δ(G) = mx∈V(G)d().
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Y
y1 ym

X
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< k colors on X ⇒ some vertex of X left uncolored.

k colors on X ⇒ vertex of Y w. that list is uncolorable.
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Planar Graphs

Conj. (Vizing [1976]
E–R–T [1979]

) mx{χℓ(G) : G is planar} = 5.

Ex. Non 4-choosable:
Voigt [1993] 238 vertices

Mirzakhani [1996] 63 vertices

Thm. (Thomassen [1994]) χℓ(G) ≤ 5 if G is planar.

Pf. Idea: Prove stronger result (by induction).
Coloring still choosable if |L()| = 3 for outer vertices,
except |L()| = 1 for two adjacent outer vertices.

We may assume that all bounded faces are triangles
and the outer face is a cycle.

Basis step:
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Let [1, . . . , p] be the outer cycle C in order,
with |L(1)| = |L(p)| = 1.
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Induction Step

Let [1, . . . , p] be the outer cycle C in order,
with |L(1)| = |L(p)| = 1.
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G− 2

1 m

Case 1: Choose L-coloring on G1, then L
′-coloring on G2

using the colors chosen from L for  and j.

Case 2: L(1) = {}. Pick , y ∈ L(2)− {}.
Delete  and y from each L(). Choose L-coloring on
G− 2. Extend to 2 using  or y.
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Alon–Tarsi: A tool for upper bounds on χℓ(G)

Def. circulation C in a digraph D = a subdigraph s.t.
indegree d−

C
() = outdegree d+

C
() at each  ∈ V(D).

diff(D) = #circulations of even size in D
− #circulations of odd size in D

Thm. (Alon–Tarsi [1992]) If G has an orientation D
such that diff(D) 6= 0, then G has an L-coloring
whenever |L()| > d+

D
() for all  ∈ V(G).

Ex. even cycle Ex. odd cycle
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2 even, 0 odd 1 even, 1 odd 1 even, 0 odd
χℓ(C2k) ≤ 2 no info χℓ(C2k+1) ≤ 3
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Def. matching = a set of pairwise disjoint edges.
X,Y-bigraph = bipartite graph with partite sets X and Y.
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Thm. (P. Hall [1935]) TONCAS An X,Y-bigraph G
has a matching covering X ⇔ |N(S)| ≥ |S| for all S ⊆ X.

Pf. Nec.: Observed above. Suff.: Induction on |X|.

Case 1: |N(S)| > |S| for all S with ∅ ⊂ S ⊂ X.
Match one vertex arbitrarily, delete that pair,
apply induction hypothesis.

Case 2: |N(S)| = |S| for some S with ∅ ⊂ S ⊂ X.
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Let G′ = subgraph induced by S ∪N(S).
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To prove H satisfies H.C., compute
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Case 2 for Hall’s Theorem

Case 2: |N(S)| = |S| for some S with ∅ ⊂ S ⊂ X.

Let G′ = subgraph induced by S ∪N(S).
S′ ⊆ S ⇒ |NG′(S

′)| = |NG(S
′)| ≥ |S′|, so G′ satisfies H.C.

Y

X

N(S)

S T

N′(T)

G′ H

• • • • • •

• • • • •

Let H = subgraph induced by (X − S) ∪ (Y −N(S)).
To prove H satisfies H.C., compute
|NH(T)| = |N(T ∪ S)| − |N(S)| ≥ |T ∪ S| − |S| = |T |.

Use matchings from G′ and H (induction hypothesis).
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Lem. (Tarsi) Every graph G has an orientation D such

that Δ+(D) ≤mxH⊆G
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Pf. Let ρ =mxH⊆G
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. Form X,Y-bigraph from G.

j
X = E(G) Y = V(G) × [ρ]
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Orient  → j in D when j matched to k

.

∃ matching covering X⇔ ∃ orientn. D with Δ+(D) ≤ ρ.

For S ⊆ X, ∃ H ⊆ G with S = E(H) and N(S) = V(H) × [ρ].
Compute |N(S)| = |V(H)| · ρ ≥ |E(H)| = |S|.

∴ Hall’s Theorem ⇒ ∃ matching covering X.
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Choosability of Planar Bipartite Graphs

Thm. (Alon–Tarsi [1992]) Every bipartite planar graph
is 3-choosable.

Pf. Euler’s Formula: For a connected plane graph,
#vertices n − #edges m + #faces f = 2.

Bipartite planar H ⇒ Every face has length at least 4,
so 2m ≥ 4f , so Euler’s Formula ⇒ m ≤ 2n− 4.

∴ ρ ≤ 2, and ∃ orientation D with Δ+(D) ≤ 2.

Every circulation D′ in D decomposes into cycles.
Every cycle in G has even length ⇒ |E(D′)| is even.

∴ diff(D) 6= 0.
∴ Alon–Tarsi Theorem ⇒ G is 3-choosable.
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Hypergraphs

Def. hypergraph: a vertex set V(H) and edge set E(H),
with each edge being any subset of V(H).

A hypergraph is k-uniform if every edge has size k.

Def. For hypergraphs, the definitions of

coloring list assignment
proper coloring L-coloring
k-colorable k-choosable
chromatic number list chromatic number

are exactly the same as for the special case of graphs,
except that we must rephrase one:

A proper coloring is a coloring with no
monochromatic edge.
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The Probabilistic Method

• Idea: The Existence Argument.

Build an object by a random experiment in which a
desired property corresponds to some event A.

If Prob(A) > 0, then in some outcome A occurs,
so some object has the desired property.

Thm. Every k-uniform hypergraph with fewer than
2k−1 edges is 2-colorable.

Pf. Color randomly, giving color 0 or 1 to each vertex
with probability 1/2 each, independently.

Prob(a given edge is monochromatic) = 1/2k−1.

Prob(some edge is monochromatic) ≤ #edges/2k−1 < 1.

∃ coloring with no monochromatic edge.



Application to Bipartite Choosability

Cor. If G is an n-vertex X,Y-bigraph, then
χℓ(G) ≤ 1+ dlgne.



Application to Bipartite Choosability

Cor. If G is an n-vertex X,Y-bigraph, then
χℓ(G) ≤ 1+ dlgne.

Pf. Show that G is k-choosable when k > 1+ lgn.



Application to Bipartite Choosability

Cor. If G is an n-vertex X,Y-bigraph, then
χℓ(G) ≤ 1+ dlgne.

Pf. Show that G is k-choosable when k > 1+ lgn.

Given list assignment L on G with each |L()| = k,
form hypergraph H with V(H) =

⋃

∈V(G) L().

Let E(H) have one edge for each vertex in G: its list!



Application to Bipartite Choosability

Cor. If G is an n-vertex X,Y-bigraph, then
χℓ(G) ≤ 1+ dlgne.

Pf. Show that G is k-choosable when k > 1+ lgn.
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Application to Bipartite Choosability

Cor. If G is an n-vertex X,Y-bigraph, then
χℓ(G) ≤ 1+ dlgne.

Pf. Show that G is k-choosable when k > 1+ lgn.

Given list assignment L on G with each |L()| = k,
form hypergraph H with V(H) =

⋃

∈V(G) L().

Let E(H) have one edge for each vertex in G: its list!

If n < 2k−1 (that is, k > 1+ lgn), then H is 2-colorable.
Call the two colors “X” and “Y”.

This restricts colors in V(H) to usage on X or Y in G.

For each  ∈ V(G), we must choose a color from L().

When  ∈ X, choose a color restricted to X.
When  ∈ Y, choose a color restricted to Y.
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Face Hypergraphs of Planar Graphs

Def. face hypergraph of a plane graph G = hypergr. H
with V(H) = V(G) and E(H) ={vertex sets of faces of G}
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z E(H) = {y,yz,yz}•
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Thm. (Ramamurthi [2001]) The face hypergraph H of
any plane graph G is 3-choosable.

Pf. May assume all faces of G are triangles.
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Given 3-lists at vertices, choose a proper coloring of H.
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Face Hypergraphs, continued

Need to choose colors from lists s.t. ≥ 2 on each face.

Add A and B to each list to make lists of size 5.
5-choosable ⇒ G has proper coloring from these lists.

Faces not having both A and B are okay.

•

••

•

••

c

dA

•

••

•

•• BA

Vertices with A or B chosen form bipartite subgraph G′,
since proper coloring was chosen for G.

∃ proper coloring of G′ chosen from the original 3-lists
on these vertices, since it is a bipartite planar graph.

Conj. (Ramamurthi) Face hypergraphs are 2-choosable.
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Algebraic Interpretation of List Coloring

Idea: Express proper coloring in terms of a polynomial.

Def. For a graph G with vertices numbered 1, . . . , n,
the graph polynomial fG() is

∏

{j∈E(G) : <j}
( − j).

Numbers s1, . . . , sn chosen for the vertices form a
proper coloring if and only if fG() 6= 0.

Consider list assignment L for G with L() = S.
L-coloring exists ⇔ fG(s) 6= 0 for some s ∈ S1× · · ·×Sn.

Recall: polynomial of degree d has at most d zeros.

Lem. (Combinatorial Nullstellensatz; Alon [1999])
Let f be homogen. polynomial of degree m in n varbs.

If the coefficient of
∏n

=1

t
 is nonzero and each |S| > t,

then ∃ s ∈
∏n

=1
S such that f (s) 6= 0.
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↔ choose tail for each edge, forming D

Exponent on  is d
+
D
().

Sign of orientn. = parity of #edges picking larger index.

�

�

�coeff(
∏

 
d
 )

�

�

� =

�

�

�

�

#even orientn w outdeg. d1, . . . , dn
−#odd orientn w outdeg. d1, . . . , dn

�

�

�

�

=

�

�

�

�

#even-sized circulations in D
−#odd-sized circulations in D

�

�

�

�

,

where D is a fixed orientation w outdegrees d1, . . . , dn.

Bijection needed!
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diff(D) 6= 0 ⇒ coeff(
∏

 
d
 ) 6= 0

⇒ f (s) 6= 0 for some s ∈
∏

S
where each S is fixed with |S| > d

⇒ χℓ(G) ≤ 1+ Δ
+(D)



Alon–Tarsi for Hypergraphs

Plan of action (for a k-uniform hypergraph H):

0. Order the vertices 1, . . . , n.

1. Define a hypergraph polynomial fH such that
fH() = 0 precisely when coloring  with  for all 
gives the same number to all vertices of some edge.

2. Generalize graph orientation to hypergraphs to
interpret exponents in monomials.

3. Nullstellensatz ⇒ If lists are bigger than the
corresponding exponents in a monomial term in fH with
nonzero coefficient, then H has an L-coloring.

4. Interpret coefficients in terms of some structure we
can count to obtain a sufficient condition for an
orientation of H to guarantee L-coloring.
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where θ is a kth root of unity and the vertices of each
edge are written in increasing order of indices.
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The Hypergraph Polynomial (k prime)

Def. For a k-uniform hypergraph H with vertices
1, . . . , n, the hypergraph polynomial fH is defined by

fH(1, . . . , n) =
∏

0 ···k−1∈E(H)

(0 + θ1 + · · ·+ θ
k−1k−1),

where θ is a kth root of unity and the vertices of each
edge are written in increasing order of indices.

When numbers 1, . . . , n are assigned to 1, . . . , n,
fH(1, . . . , n) = 0 ⇔ numbers are equal on some edge.

Def. An orientation of a hypergraph chooses one
source vertex in each edge.

Terms like θj
∏


d
 in the expansion of fH() come from

orientations with  chosen as the source in d edges.



The Hypergraph List Coloring Theorem

Thm. (Ramamurthi–West [2005]) For prime k, let D be
an orientation of a k-uniform hypergraph H such that
the number of balanced partitions with modular sum j is
not the same for all j. If each |L()| is larger than the
number of edges in which D chooses  as the source,
then H has an L-coloring.



The Hypergraph List Coloring Theorem

Thm. (Ramamurthi–West [2005]) For prime k, let D be
an orientation of a k-uniform hypergraph H such that
the number of balanced partitions with modular sum j is
not the same for all j. If each |L()| is larger than the
number of edges in which D chooses  as the source,
then H has an L-coloring.

Pf. Follow the Plan!
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