Coloring and List Coloring of Graphs and Hypergraphs

Douglas B. West

Department of Mathematics University of Illinois at Urbana-Champaign west@math.uiuc.edu

Def. graph G: a vertex set V(G) and an edge set E(G), where each edge is an unordered pair of vertices.

Def. graph G: a vertex set V(G) and an edge set E(G), where each edge is an unordered pair of vertices.

Ex. bipartite graph: V(G) is two independent sets.

Def. graph G: a vertex set V(G) and an edge set E(G), where each edge is an unordered pair of vertices.

Ex. bipartite graph: V(G) is two independent sets.

Ex. planar graph: drawable without edge crossings.

Def. graph G: a vertex set V(G) and an edge set E(G), where each edge is an unordered pair of vertices.

Ex. bipartite graph: V(G) is two independent sets.

Ex. planar graph: drawable without edge crossings.

What do the colors mean?

Def. coloring of G: assigns each vertex a label (color). proper coloring c: $uv \in E(G) \Rightarrow c(u) \neq c(v)$. G is k-colorable if \exists proper coloring using $\leq k$ colors. chromatic number $\chi(G) = \min\{k : G \text{ is } k\text{-colorable}\}$.

Def. coloring of G: assigns each vertex a label (color). proper coloring c: $uv \in E(G) \Rightarrow c(u) \neq c(v)$. G is k-colorable if \exists proper coloring using $\leq k$ colors. chromatic number $\chi(G) = \min\{k : G \text{ is } k\text{-colorable}\}$.

Ex. How many time slots are needed to schedule Senate committees?

common members ⇒ different time slots

```
Def. coloring of G: assigns each vertex a label (color). proper coloring c: uv \in E(G) \Rightarrow c(u) \neq c(v). G is k-colorable if \exists proper coloring using \leq k colors. chromatic number \chi(G) = \min\{k : G \text{ is } k\text{-colorable}\}.
```

Ex. How many time slots are needed to schedule Senate committees?

• common members ⇒ different time slots

```
Let V(G) = \{\text{committees}\}\

E(G) = \{\text{pairs of vertices w. common members}\}.

min #time slots = \chi(G).
```

Def. coloring of G: assigns each vertex a label (color). proper coloring c: $uv \in E(G) \Rightarrow c(u) \neq c(v)$. G is k-colorable if \exists proper coloring using $\leq k$ colors. chromatic number $\chi(G) = \min\{k : G \text{ is } k\text{-colorable}\}$.

Ex. How many time slots are needed to schedule Senate committees?

common members ⇒ different time slots

Let $V(G) = \{\text{committees}\}\$ $E(G) = \{\text{pairs of vertices w. common members}\}.$ min #time slots = $\chi(G)$.

Here
$$\chi(G) = 4$$

List Coloring Vizing [1976], Erdős–Rubin–Taylor [1979]

Some committees can't meet at certain times.

List Coloring Vizing [1976], Erdős–Rubin–Taylor [1979]

Some committees can't meet at certain times.

```
Def. list assignment: L(v) = \text{color set available at } v. L-coloring: proper coloring s.t. c(v) \in L(v) \ \forall \ v \in V(G). k-choosable G: \exists \ L-coloring whenever all |L(v)| \ge k. list chromatic number (or choosability) \chi_{\ell}(G) = \min\{k : G \text{ is } k\text{-choosable}\}.
```

List Coloring Vizing [1976], Erdős–Rubin–Taylor [1979]

Some committees can't meet at certain times.

Def. list assignment: L(v) = color set available at v. L-coloring: proper coloring s.t. $c(v) \in L(v) \ \forall \ v \in V(G)$. k-choosable G: $\exists \ L$ -coloring whenever all $|L(v)| \ge k$. list chromatic number (or choosability) $\chi_{\ell}(G) = \min\{k : G \text{ is } k\text{-choosable}\}.$

Prop.
$$\chi(G) \leq \chi_{\ell}(G) \leq \Delta(G) + 1$$
.

Pf. Lower bound: The lists may be identical.

Upper bound: Lists of size $\Delta(G) + 1 \Rightarrow$ a color is available for each successive vertex in any order.

• d(v) = degree of vertex v; $\Delta(G) = \max_{v \in V(G)} d(v)$.

Ex.
$$\chi(K_{2,4}) = 2$$
, but $\chi_{\ell}(K_{2,4}) > 2$.

• $K_{r,s}$ = complete bipartite graph, part-sizes r and s.

Ex.
$$\chi(K_{2,4}) = 2$$
, but $\chi_{\ell}(K_{2,4}) > 2$.

Bipartite graphs may have large choice number.

Prop. If $m = {2k-1 \choose k}$, then $K_{m,m}$ is not k-choosable.

Ex.
$$\chi(K_{2,4}) = 2$$
, but $\chi_{\ell}(K_{2,4}) > 2$.

Bipartite graphs may have large choice number.

Prop. If $m = \binom{2k-1}{k}$, then $K_{m,m}$ is not k-choosable.

Pf. Use the k-sets in [2k-1] as the lists for both X and Y.

Ex.
$$\chi(K_{2,4}) = 2$$
, but $\chi_{\ell}(K_{2,4}) > 2$.

Bipartite graphs may have large choice number.

Prop. If $m = {2k-1 \choose k}$, then $K_{m,m}$ is not k-choosable.

Pf. Use the k-sets in [2k-1] as the lists for both X and Y.

< k colors on $X \Rightarrow$ some vertex of X left uncolored.

k colors on $X \Rightarrow \text{vertex of } Y \text{ w. that list is uncolorable.} \blacksquare$


```
Conj. \binom{\text{Vizing } [1976]}{\text{E-R-T } [1979]} \max \{ \chi_{\ell}(G) \colon G \text{ is planar} \} = 5.
```

Ex. Non 4-choosable: Voigt [1993] 238 vertices
Mirzakhani [1996] 63 vertices

```
Conj. \binom{\text{Vizing } [1976]}{\text{E-R-T } [1979]} \max \{ \chi_{\ell}(G) \colon G \text{ is planar} \} = 5.
```

Ex. Non 4-choosable: Voigt [1993] 238 vertices
Mirzakhani [1996] 63 vertices

Thm. (Thomassen [1994]) $\chi_{\ell}(G) \leq 5$ if G is planar.

```
Conj. \binom{\text{Vizing } [1976]}{\text{E-R-T } [1979]} \max\{\chi_{\ell}(G) \colon G \text{ is planar}\} = 5.
```

Ex. Non 4-choosable: Voigt [1993] 238 vertices Mirzakhani [1996] 63 vertices

Thm. (Thomassen [1994]) $\chi_{\ell}(G) \leq 5$ if G is planar.

Pf. Idea: Prove stronger result (by induction). Coloring still choosable if |L(v)| = 3 for outer vertices, except |L(v)| = 1 for two adjacent outer vertices.

Conj. $\binom{\text{Vizing } [1976]}{\text{E-R-T } [1979]}$ $\max\{\chi_{\ell}(G) \colon G \text{ is planar}\} = 5.$

Ex. Non 4-choosable: Voigt [1993] 238 vertices Mirzakhani [1996] 63 vertices

Thm. (Thomassen [1994]) $\chi_{\ell}(G) \leq 5$ if G is planar.

Pf. Idea: Prove stronger result (by induction). Coloring still choosable if |L(v)| = 3 for outer vertices, except |L(v)| = 1 for two adjacent outer vertices.

We may assume that all bounded faces are triangles and the outer face is a cycle.


```
Conj. \binom{\text{Vizing } [1976]}{\text{E-R-T } [1979]} \max\{\chi_{\ell}(G) \colon G \text{ is planar}\} = 5.
```

Ex. Non 4-choosable: Voigt [1993] 238 vertices Mirzakhani [1996] 63 vertices

Thm. (Thomassen [1994]) $\chi_{\ell}(G) \leq 5$ if G is planar.

Pf. Idea: Prove stronger result (by induction). Coloring still choosable if |L(v)| = 3 for outer vertices, except |L(v)| = 1 for two adjacent outer vertices.

We may assume that all bounded faces are triangles and the outer face is a cycle.

abc

Basis step:

Let $[v_1, ..., v_p]$ be the outer cycle C in order, with $|L(v_1)| = |L(v_p)| = 1$.

Let $[v_1, ..., v_p]$ be the outer cycle C in order, with $|L(v_1)| = |L(v_p)| = 1$.

Case 1: C has a chord.

Case 2: C has no chord.

Let $[v_1, ..., v_p]$ be the outer cycle C in order, with $|L(v_1)| = |L(v_p)| = 1$.

Case 1: C has a chord.

Case 2: C has no chord.

Case 1: Choose *L*-coloring on G_1 , then L'-coloring on G_2 using the colors chosen from L for v_i and v_j .

Let $[v_1, ..., v_p]$ be the outer cycle C in order, with $|L(v_1)| = |L(v_p)| = 1$.

Case 1: C has a chord.

Case 2: C has no chord.

Case 1: Choose *L*-coloring on G_1 , then L'-coloring on G_2 using the colors chosen from L for v_i and v_j .

Case 2: $L(v_1) = \{a\}$. Pick $x, y \in L(v_2) - \{a\}$. Delete x and y from each $L(u_i)$. Choose L-coloring on $G - v_2$. Extend to v_2 using x or y.

Def. circulation C in a digraph D = a subdigraph s.t. indegree $d_C^-(v)$ = outdegree $d_C^+(v)$ at each $v \in V(D)$.

Def. circulation C in a digraph D = a subdigraph s.t. indegree $d_C^-(v)$ = outdegree $d_C^+(v)$ at each $v \in V(D)$.

```
diff(D) = \#circulations of even size in D - \#circulations of odd size in D
```

Def. circulation C in a digraph D = a subdigraph s.t. indegree $d_C^-(v)$ = outdegree $d_C^+(v)$ at each $v \in V(D)$.

```
diff(D) = \#circulations of even size in D - \#circulations of odd size in D
```

Thm. (Alon–Tarsi [1992]) If G has an orientation D such that $diff(D) \neq 0$, then G has an L-coloring whenever $|L(v)| > d_D^+(v)$ for all $v \in V(G)$.

Def. circulation C in a digraph D = a subdigraph s.t. indegree $d_C^-(v)$ = outdegree $d_C^+(v)$ at each $v \in V(D)$.

$$diff(D) = \#circulations of even size in D - \#circulations of odd size in D$$

Thm. (Alon–Tarsi [1992]) If G has an orientation D such that $diff(D) \neq 0$, then G has an L-coloring whenever $|L(v)| > d_D^+(v)$ for all $v \in V(G)$.

Ex. even cycle

2 even, 0 odd

Def. circulation C in a digraph D = a subdigraph s.t. indegree $d_C^-(v)$ = outdegree $d_C^+(v)$ at each $v \in V(D)$.

$$diff(D) = \#circulations of even size in D - \#circulations of odd size in D$$

Thm. (Alon–Tarsi [1992]) If G has an orientation D such that $diff(D) \neq 0$, then G has an L-coloring whenever $|L(v)| > d_D^+(v)$ for all $v \in V(G)$.

Ex. even cycle

2 even, 0 odd $\chi_{\ell}(C_{2k}) \leq 2$

Ex. odd cycle

1 even, 1 odd no info

1 even, 0 odd $\chi_{\ell}(C_{2k+1}) \leq 3$

Def. matching = a set of pairwise disjoint edges. X, Y-bigraph = bipartite graph with partite sets X and Y.

Def. matching = a set of pairwise disjoint edges. X, Y-bigraph = bipartite graph with partite sets X and Y.

Thm. (P. Hall [1935]) TONCAS

Def. matching = a set of pairwise disjoint edges. X, Y-bigraph = bipartite graph with partite sets X and Y.

Thm. (P. Hall [1935]) TONCAS An X, Y-bigraph G has a matching covering $X \Leftrightarrow |N(S)| \ge |S|$ for all $S \subseteq X$.

Def. matching = a set of pairwise disjoint edges. X, Y-bigraph = bipartite graph with partite sets X and Y.

Thm. (P. Hall [1935]) TONCAS An X, Y-bigraph G has a matching covering $X \Leftrightarrow |N(S)| \ge |S|$ for all $S \subseteq X$.

Pf. Nec.: Observed above. Suff.: Induction on |X|.

Def. matching = a set of pairwise disjoint edges. X, Y-bigraph = bipartite graph with partite sets X and Y.

Thm. (P. Hall [1935]) TONCAS An X, Y-bigraph G has a matching covering $X \Leftrightarrow |N(S)| \ge |S|$ for all $S \subseteq X$.

Pf. Nec.: Observed above. Suff.: Induction on |X|.

Case 1: |N(S)| > |S| for all S with $\emptyset \subset S \subset X$. Match one vertex arbitrarily, delete that pair, apply induction hypothesis.

Def. matching = a set of pairwise disjoint edges. X, Y-bigraph = bipartite graph with partite sets X and Y.

Thm. (P. Hall [1935]) TONCAS An X, Y-bigraph G has a matching covering $X \Leftrightarrow |N(S)| \ge |S|$ for all $S \subseteq X$.

Pf. Nec.: Observed above. Suff.: Induction on |X|.

Case 1: |N(S)| > |S| for all S with $\emptyset \subset S \subset X$. Match one vertex arbitrarily, delete that pair, apply induction hypothesis.

Case 2: |N(S)| = |S| for some S with $\emptyset \subset S \subset X$.

Case 2: |N(S)| = |S| for some S with $\emptyset \subset S \subset X$.

Case 2: |N(S)| = |S| for some S with $\emptyset \subset S \subset X$.

Let $G' = \text{subgraph induced by } S \cup N(S)$.

 $S' \subseteq S \implies |N_{G'}(S')| = |N_G(S')| \ge |S'|$, so G' satisfies H.C.

Case 2: |N(S)| = |S| for some S with $\emptyset \subset S \subset X$.

Let $G' = \text{subgraph induced by } S \cup N(S)$.

 $S' \subseteq S \implies |N_{G'}(S')| = |N_G(S')| \ge |S'|$, so G' satisfies H.C.

Let $H = \text{subgraph induced by } (X - S) \cup (Y - N(S)).$ To prove H satisfies H.C., compute $|N_H(T)| = |N(T \cup S)| - |N(S)| \ge |T \cup S| - |S| = |T|.$

Case 2: |N(S)| = |S| for some S with $\emptyset \subset S \subset X$.

Let $G' = \text{subgraph induced by } S \cup N(S)$. $S' \subseteq S \implies |N_{G'}(S')| = |N_G(S')| \ge |S'|$, so G' satisfies H.C.

Let $H = \text{subgraph induced by } (X - S) \cup (Y - N(S)).$ To prove H satisfies H.C., compute $|N_H(T)| = |N(T \cup S)| - |N(S)| \ge |T \cup S| - |S| = |T|.$

Use matchings from G' and H (induction hypothesis).

Lem. (Tarsi) Every graph G has an orientation D such that $\Delta^+(D) \leq \max_{H \subseteq G} \left\lceil \frac{|E(H)|}{|V(H)|} \right\rceil$.

Lem. (Tarsi) Every graph G has an orientation D such that $\Delta^+(D) \leq \max_{H \subseteq G} \left\lceil \frac{|E(H)|}{|V(H)|} \right\rceil$.

Pf. Let $\rho = \max_{H \subseteq G} \left\lceil \frac{|E(H)|}{|V(H)|} \right\rceil$. Form X, Y-bigraph from G.

Lem. (Tarsi) Every graph G has an orientation D such that $\Delta^+(D) \leq \max_{H \subseteq G} \left\lceil \frac{|E(H)|}{|V(H)|} \right\rceil$.

Pf. Let $\rho = \max_{H \subseteq G} \left\lceil \frac{|E(H)|}{|V(H)|} \right\rceil$. Form X, Y-bigraph from G.

Orient $v_i \to v_j$ in D when $v_i v_j$ matched to v_i^k . \exists matching covering $X \Leftrightarrow \exists$ orientn. D with $\Delta^+(D) \leq \rho$.

Lem. (Tarsi) Every graph G has an orientation D such that $\Delta^+(D) \leq \max_{H \subseteq G} \left\lceil \frac{|E(H)|}{|V(H)|} \right\rceil$.

Pf. Let $\rho = \max_{H \subseteq G} \left\lceil \frac{|E(H)|}{|V(H)|} \right\rceil$. Form X, Y-bigraph from G.

Orient $v_i \to v_j$ in D when $v_i v_j$ matched to v_i^k . \exists matching covering $X \Leftrightarrow \exists$ orientn. D with $\Delta^+(D) \leq \rho$.

For $S \subseteq X$, $\exists H \subseteq G$ with S = E(H) and $N(S) = V(H) \times [\rho]$. Compute $|N(S)| = |V(H)| \cdot \rho \ge |E(H)| = |S|$.

Lem. (Tarsi) Every graph G has an orientation D such that $\Delta^+(D) \leq \max_{H \subseteq G} \left\lceil \frac{|E(H)|}{|V(H)|} \right\rceil$.

Pf. Let $\rho = \max_{H \subseteq G} \left\lceil \frac{|E(H)|}{|V(H)|} \right\rceil$. Form X, Y-bigraph from G.

Orient $v_i \to v_j$ in D when $v_i v_j$ matched to v_i^k . \exists matching covering $X \Leftrightarrow \exists$ orientn. D with $\Delta^+(D) \leq \rho$.

For $S \subseteq X$, $\exists H \subseteq G$ with S = E(H) and $N(S) = V(H) \times [\rho]$. Compute $|N(S)| = |V(H)| \cdot \rho \ge |E(H)| = |S|$.

∴ Hall's Theorem \Rightarrow \exists matching covering X.

Thm. (Alon–Tarsi [1992]) Every bipartite planar graph is 3-choosable.

Thm. (Alon–Tarsi [1992]) Every bipartite planar graph is 3-choosable.

```
Pf. Euler's Formula: For a connected plane graph, \#vertices n - \#edges m + \#faces f = 2.
```

Thm. (Alon–Tarsi [1992]) Every bipartite planar graph is 3-choosable.

```
Pf. Euler's Formula: For a connected plane graph, \#vertices n - \#edges m + \#faces f = 2.
```

Bipartite planar $H \Rightarrow$ Every face has length at least 4, so $2m \ge 4f$, so Euler's Formula $\Rightarrow m \le 2n - 4$.

Thm. (Alon–Tarsi [1992]) Every bipartite planar graph is 3-choosable.

```
Pf. Euler's Formula: For a connected plane graph, \#vertices n - \#edges m + \#faces f = 2.
```

Bipartite planar $H \Rightarrow$ Every face has length at least 4, so $2m \ge 4f$, so Euler's Formula $\Rightarrow m \le 2n - 4$.

```
∴ \rho \le 2, and \exists orientation D with \Delta^+(D) \le 2.
```

Thm. (Alon–Tarsi [1992]) Every bipartite planar graph is 3-choosable.

```
Pf. Euler's Formula: For a connected plane graph, \#vertices n - \#edges m + \#faces f = 2.
```

Bipartite planar $H \Rightarrow$ Every face has length at least 4, so $2m \ge 4f$, so Euler's Formula $\Rightarrow m \le 2n - 4$.

```
∴ \rho \le 2, and \exists orientation D with \Delta^+(D) \le 2.
```

Every circulation D' in D decomposes into cycles. Every cycle in G has even length $\Rightarrow |E(D')|$ is even.

Thm. (Alon–Tarsi [1992]) Every bipartite planar graph is 3-choosable.

```
Pf. Euler's Formula: For a connected plane graph, \#vertices n - \#edges m + \#faces f = 2.
```

Bipartite planar $H \Rightarrow$ Every face has length at least 4, so $2m \ge 4f$, so Euler's Formula $\Rightarrow m \le 2n - 4$.

∴ $\rho \le 2$, and \exists orientation D with $\Delta^+(D) \le 2$.

Every circulation D' in D decomposes into cycles. Every cycle in G has even length $\Rightarrow |E(D')|$ is even.

- \therefore diff(D) \neq 0.
- \therefore Alon-Tarsi Theorem \Rightarrow G is 3-choosable.

Hypergraphs

Def. hypergraph: a vertex set V(H) and edge set E(H), with each edge being any subset of V(H).

A hypergraph is k-uniform if every edge has size k.

Hypergraphs

Def. hypergraph: a vertex set V(H) and edge set E(H), with each edge being any subset of V(H).

A hypergraph is k-uniform if every edge has size k.

Def. For hypergraphs, the definitions of

coloring list assignment

proper coloring L-coloring k-colorable k-choosable

chromatic number list chromatic number

are exactly the same as for the special case of graphs, except that we must rephrase one:

A proper coloring is a coloring with no monochromatic edge.

The Probabilistic Method

• Idea: The Existence Argument.

Build an object by a random experiment in which a desired property corresponds to some event A. If Prob(A) > 0, then in some outcome A occurs, so some object has the desired property.

The Probabilistic Method

• Idea: The Existence Argument.

Build an object by a random experiment in which a desired property corresponds to some event A. If Prob(A) > 0, then in some outcome A occurs, so some object has the desired property.

Thm. Every k-uniform hypergraph with fewer than 2^{k-1} edges is 2-colorable.

Pf. Color randomly, giving color 0 or 1 to each vertex with probability 1/2 each, independently.

The Probabilistic Method

• Idea: The Existence Argument.

Build an object by a random experiment in which a desired property corresponds to some event A. If Prob(A) > 0, then in some outcome A occurs, so some object has the desired property.

Thm. Every k-uniform hypergraph with fewer than 2^{k-1} edges is 2-colorable.

Pf. Color randomly, giving color 0 or 1 to each vertex with probability 1/2 each, independently.

Prob(a given edge is monochromatic) = $1/2^{k-1}$.

Prob(some edge is monochromatic) $\leq \#edges/2^{k-1} < 1$.

∃ coloring with no monochromatic edge.

Cor. If *G* is an *n*-vertex *X*, *Y*-bigraph, then $\chi_{\ell}(G) \leq 1 + \lceil \lg n \rceil$.

Cor. If *G* is an *n*-vertex *X*, *Y*-bigraph, then $\chi_{\ell}(G) \leq 1 + \lceil \lg n \rceil$.

Pf. Show that G is k-choosable when $k > 1 + \lg n$.

Cor. If G is an n-vertex X, Y-bigraph, then $\chi_{\ell}(G) \leq 1 + \lceil \lg n \rceil$.

Pf. Show that G is k-choosable when $k > 1 + \lg n$.

Given list assignment L on G with each |L(v)| = k, form hypergraph H with $V(H) = \bigcup_{v \in V(G)} L(v)$. Let E(H) have one edge for each vertex in G: its list!

Cor. If G is an n-vertex X, Y-bigraph, then $\chi_{\ell}(G) \le 1 + \lceil \lg n \rceil$.

Pf. Show that G is k-choosable when $k > 1 + \lg n$.

Given list assignment L on G with each |L(v)| = k, form hypergraph H with $V(H) = \bigcup_{v \in V(G)} L(v)$. Let E(H) have one edge for each vertex in G: its list!

If $n < 2^{k-1}$ (that is, $k > 1 + \lg n$), then H is 2-colorable. Call the two colors "X" and "Y".

This restricts colors in V(H) to usage on X or Y in G.

Cor. If G is an n-vertex X, Y-bigraph, then $\chi_{\ell}(G) \le 1 + \lceil \lg n \rceil$.

Pf. Show that G is k-choosable when $k > 1 + \lg n$.

Given list assignment L on G with each |L(v)| = k, form hypergraph H with $V(H) = \bigcup_{v \in V(G)} L(v)$. Let E(H) have one edge for each vertex in G: its list!

If $n < 2^{k-1}$ (that is, $k > 1 + \lg n$), then H is 2-colorable. Call the two colors "X" and "Y".

This restricts colors in V(H) to usage on X or Y in G.

For each $v \in V(G)$, we must choose a color from L(v). When $v \in X$, choose a color restricted to X. When $v \in Y$, choose a color restricted to Y.

Def. face hypergraph of a plane graph G = hypergr. H with V(H) = V(G) and $E(H) = \{ \text{vertex sets of faces of } G \}$

$$E(H) = \{wxy, xyz, wxyz\}$$

Def. face hypergraph of a plane graph G = hypergr. H with V(H) = V(G) and $E(H) = \{ \text{vertex sets of faces of } G \}$

Thm. (Ramamurthi [2001]) The face hypergraph H of any plane graph G is 3-choosable.

Def. face hypergraph of a plane graph G = hypergr. H with V(H) = V(G) and $E(H) = \{ \text{vertex sets of faces of } G \}$

Thm. (Ramamurthi [2001]) The face hypergraph H of any plane graph G is 3-choosable.

Pf. May assume all faces of *G* are triangles.

Def. face hypergraph of a plane graph G = hypergr. H with V(H) = V(G) and $E(H) = \{ \text{vertex sets of faces of } G \}$

Thm. (Ramamurthi [2001]) The face hypergraph H of any plane graph G is 3-choosable.

Pf. May assume all faces of *G* are triangles.

Given 3-lists at vertices, choose a proper coloring of H.

Need to choose colors from lists s.t. ≥ 2 on each face.

Need to choose colors from lists s.t. ≥ 2 on each face.

Add A and B to each list to make lists of size 5. 5-choosable \Rightarrow G has proper coloring from these lists.

Need to choose colors from lists s.t. ≥ 2 on each face.

Add A and B to each list to make lists of size 5. 5-choosable \Rightarrow G has proper coloring from these lists.

Faces not having both A and B are okay.

Need to choose colors from lists s.t. ≥ 2 on each face.

Add A and B to each list to make lists of size 5. 5-choosable \Rightarrow G has proper coloring from these lists.

Faces not having both A and B are okay.

Vertices with A or B chosen form bipartite subgraph G', since proper coloring was chosen for G.

Need to choose colors from lists s.t. ≥ 2 on each face.

Add A and B to each list to make lists of size 5. 5-choosable \Rightarrow G has proper coloring from these lists.

Faces not having both A and B are okay.

Vertices with A or B chosen form bipartite subgraph G', since proper coloring was chosen for G.

 \exists proper coloring of G' chosen from the original 3-lists on these vertices, since it is a bipartite planar graph.

Need to choose colors from lists s.t. ≥ 2 on each face.

Add A and B to each list to make lists of size 5. 5-choosable \Rightarrow G has proper coloring from these lists. Faces not having both A and B are okay.

 Λ^{c} Λ

Vertices with A or B chosen form bipartite subgraph G', since proper coloring was chosen for G.

 \exists proper coloring of G' chosen from the original 3-lists on these vertices, since it is a bipartite planar graph.

Conj. (Ramamurthi) Face hypergraphs are 2-choosable.

Algebraic Interpretation of List Coloring

Idea: Express proper coloring in terms of a polynomial.

Idea: Express proper coloring in terms of a polynomial.

Def. For a graph G with vertices numbered v_1, \ldots, v_n , the graph polynomial $f_G(x)$ is $\prod_{\{v_i v_i \in E(G): i < j\}} (x_i - x_j)$.

Numbers $s_1, ..., s_n$ chosen for the vertices form a proper coloring if and only if $f_G(x) \neq 0$.

Idea: Express proper coloring in terms of a polynomial.

Def. For a graph G with vertices numbered v_1, \ldots, v_n , the graph polynomial $f_G(x)$ is $\prod_{\{v_i v_j \in E(G): i < j\}} (x_i - x_j)$.

Numbers $s_1, ..., s_n$ chosen for the vertices form a proper coloring if and only if $f_G(x) \neq 0$.

Consider list assignment L for G with $L(v_i) = S_i$. L-coloring exists $\iff f_G(s) \neq 0$ for some $s \in S_1 \times \cdots \times S_n$.

Idea: Express proper coloring in terms of a polynomial.

Def. For a graph G with vertices numbered v_1, \ldots, v_n , the graph polynomial $f_G(x)$ is $\prod_{\{v_i v_j \in E(G): i < j\}} (x_i - x_j)$.

Numbers $s_1, ..., s_n$ chosen for the vertices form a proper coloring if and only if $f_G(x) \neq 0$.

Consider list assignment L for G with $L(v_i) = S_i$. L-coloring exists $\iff f_G(s) \neq 0$ for some $s \in S_1 \times \cdots \times S_n$.

Recall: polynomial of degree d has at most d zeros.

Idea: Express proper coloring in terms of a polynomial.

Def. For a graph G with vertices numbered v_1, \ldots, v_n , the graph polynomial $f_G(x)$ is $\prod_{\{v_i v_j \in E(G): i < j\}} (x_i - x_j)$.

Numbers $s_1, ..., s_n$ chosen for the vertices form a proper coloring if and only if $f_G(x) \neq 0$.

Consider list assignment L for G with $L(v_i) = S_i$. L-coloring exists $\iff f_G(s) \neq 0$ for some $s \in S_1 \times \cdots \times S_n$.

Recall: polynomial of degree d has at most d zeros.

Lem. (Combinatorial Nullstellensatz; Alon [1999]) Let f be homogen. polynomial of degree m in n varbs. If the coefficient of $\prod_{i=1}^n x_i^{t_i}$ is nonzero and each $|S_i| > t_i$, then $\exists s \in \prod_{i=1}^n S_i$ such that $f(s) \neq 0$.

$$f_G(x_1, \ldots, x_n) = \prod_{\{v_i v_j \in E(G): i < j\}} (x_i - x_j)$$

$$f_G(x_1,...,x_n) = \prod_{\{v_i v_j \in E(G): i < j\}} (x_i - x_j) = \sum_d c_d \prod_i x_i^{d_i}$$

Term in expansion \leftrightarrow choose x_i or x_j from each factor \leftrightarrow choose tail for each edge, forming D

$$f_G(x_1,...,x_n) = \prod_{\{v_i v_j \in E(G): i < j\}} (x_i - x_j) = \sum_d c_d \prod_i x_i^{d_i}$$

Term in expansion \leftrightarrow choose x_i or x_j from each factor \leftrightarrow choose tail for each edge, forming D

Exponent on x_i is $d_D^+(v_i)$. Sign of orientn. = parity of #edges picking larger index.

$$f_G(x_1, ..., x_n) = \prod_{\{v_i v_j \in E(G): i < j\}} (x_i - x_j) = \sum_d c_d \prod_i x_i^{d_i}$$

Term in expansion \leftrightarrow choose x_i or x_j from each factor \leftrightarrow choose tail for each edge, forming D

Exponent on x_i is $d_D^+(v_i)$. Sign of orientn. = parity of #edges picking larger index.

$$\left| \text{coeff.}(\prod_{i} x_{i}^{d_{i}}) \right| = \left| \begin{array}{c} \text{\#even orientn w outdeg. } d_{1}, \dots, d_{n} \\ -\text{\#odd orientn w outdeg. } d_{1}, \dots, d_{n} \end{array} \right|$$

$$f_G(x_1,...,x_n) = \prod_{\{v_i v_j \in E(G): i < j\}} (x_i - x_j) = \sum_d c_d \prod_i x_i^{d_i}$$

Term in expansion \leftrightarrow choose x_i or x_j from each factor \leftrightarrow choose tail for each edge, forming D

Exponent on x_i is $d_D^+(v_i)$. Sign of orientn. = parity of #edges picking larger index.

$$\begin{vmatrix} \operatorname{coeff}(\prod_i x_i^{d_i}) \end{vmatrix} = \begin{vmatrix} \text{\#even orientn w outdeg. } d_1, \dots, d_n \\ -\text{\#odd orientn w outdeg. } d_1, \dots, d_n \end{vmatrix}$$
$$= \begin{vmatrix} \text{\#even-sized circulations in } D \\ -\text{\#odd-sized circulations in } D \end{vmatrix},$$

where D is a fixed orientation w outdegrees d_1, \ldots, d_n .

$$f_G(x_1,...,x_n) = \prod_{\{v_i v_j \in E(G): i < j\}} (x_i - x_j) = \sum_d c_d \prod_i x_i^{d_i}$$

Term in expansion \leftrightarrow choose x_i or x_j from each factor \leftrightarrow choose tail for each edge, forming D

Exponent on x_i is $d_D^+(v_i)$. Sign of orientn. = parity of #edges picking larger index.

$$\begin{vmatrix} \operatorname{coeff}(\prod_{i} x_{i}^{d_{i}}) \end{vmatrix} = \begin{vmatrix} \text{#even orientn w outdeg. } d_{1}, \dots, d_{n} \\ -\text{#odd orientn w outdeg. } d_{1}, \dots, d_{n} \end{vmatrix}$$
$$= \begin{vmatrix} \text{#even-sized circulations in } D \\ -\text{#odd-sized circulations in } D \end{vmatrix},$$

where D is a fixed orientation w outdegrees d_1, \ldots, d_n .

Bijection needed!

Concluding the Alon-Tarsi Theorem

Bijection: Given a fixed orientation D with outdegrees d_1, \ldots, d_n , each orientation D' with the same outdegrees as D corresponds to a circulation in D whose edges are those reversed in D'.

Concluding the Alon-Tarsi Theorem

Bijection: Given a fixed orientation D with outdegrees d_1, \ldots, d_n , each orientation D' with the same outdegrees as D corresponds to a circulation in D whose edges are those reversed in D'.

Concluding the Alon-Tarsi Theorem

Bijection: Given a fixed orientation D with outdegrees d_1, \ldots, d_n , each orientation D' with the same outdegrees as D corresponds to a circulation in D whose edges are those reversed in D'.

$$\begin{array}{ll} \operatorname{diff}(D) \neq 0 & \Rightarrow & \operatorname{coeff}(\prod_i x_i^{d_i}) \neq 0 \\ \Rightarrow & f(s) \neq 0 \text{ for some } s \in \prod S_i \\ & \text{where each } S_i \text{ is fixed with } |S_i| > d_i \\ \Rightarrow & \chi_\ell(G) \leq 1 + \Delta^+(D) \end{array}$$

Alon-Tarsi for Hypergraphs

Plan of action (for a *k*-uniform hypergraph *H*):

- 0. Order the vertices v_1, \ldots, v_n .
- 1. Define a hypergraph polynomial f_H such that $f_H(x) = 0$ precisely when coloring v_i with x_i for all i gives the same number to all vertices of some edge.
- 2. Generalize graph orientation to hypergraphs to interpret exponents in monomials.
- 3. Nullstellensatz \Rightarrow If lists are bigger than the corresponding exponents in a monomial term in f_H with nonzero coefficient, then H has an L-coloring.
- 4. Interpret coefficients in terms of some structure we can count to obtain a sufficient condition for an orientation of *H* to guarantee *L*-coloring.

The Hypergraph Polynomial (*k* prime)

Def. For a k-uniform hypergraph H with vertices v_1, \ldots, v_n , the hypergraph polynomial f_H is defined by

$$f_H(x_1,\ldots,x_n) = \prod_{v_{i_0}\cdots v_{i_{k-1}}\in E(H)} (x_{i_0} + \theta x_{i_1} + \cdots + \theta^{k-1} x_{i_{k-1}}),$$

where θ is a kth root of unity and the vertices of each edge are written in increasing order of indices.

The Hypergraph Polynomial (*k* prime)

Def. For a k-uniform hypergraph H with vertices v_1, \ldots, v_n , the hypergraph polynomial f_H is defined by

$$f_H(x_1,\ldots,x_n) = \prod_{v_{i_0}\cdots v_{i_{k-1}}\in E(H)} (x_{i_0} + \theta x_{i_1} + \cdots + \theta^{k-1} x_{i_{k-1}}),$$

where θ is a kth root of unity and the vertices of each edge are written in increasing order of indices.

When numbers $x_1, ..., x_n$ are assigned to $v_1, ..., v_n$, $f_H(x_1, ..., x_n) = 0 \Leftrightarrow$ numbers are equal on some edge.

The Hypergraph Polynomial (*k* prime)

Def. For a k-uniform hypergraph H with vertices v_1, \ldots, v_n , the hypergraph polynomial f_H is defined by

$$f_H(x_1,\ldots,x_n) = \prod_{v_{i_0}\cdots v_{i_{k-1}}\in E(H)} (x_{i_0} + \theta x_{i_1} + \cdots + \theta^{k-1} x_{i_{k-1}}),$$

where θ is a kth root of unity and the vertices of each edge are written in increasing order of indices.

When numbers $x_1, ..., x_n$ are assigned to $v_1, ..., v_n$, $f_H(x_1, ..., x_n) = 0 \Leftrightarrow$ numbers are equal on some edge.

Def. An orientation of a hypergraph chooses one source vertex in each edge.

Terms like $\theta^j \prod x_i^{d_i}$ in the expansion of $f_H(x)$ come from orientations with v_i chosen as the source in d_i edges.

The Hypergraph List Coloring Theorem

Thm. (Ramamurthi–West [2005]) For prime k, let D be an orientation of a k-uniform hypergraph H such that the number of balanced partitions with modular sum j is not the same for all j. If each $|L(v_i)|$ is larger than the number of edges in which D chooses v_i as the source, then H has an L-coloring.

The Hypergraph List Coloring Theorem

Thm. (Ramamurthi–West [2005]) For prime k, let D be an orientation of a k-uniform hypergraph H such that the number of balanced partitions with modular sum j is not the same for all j. If each $|L(v_i)|$ is larger than the number of edges in which D chooses v_i as the source, then H has an L-coloring.

Pf. Follow the Plan!