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What do
the colors
mean?
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Coloring

Def. coloring of G: assigns each vertex a label (color).
proper coloring ¢c: uv € E(G) = c(u) # c(v).

G is k-colorable if 3 proper coloring using < k colors.
chromatic number x(G) = min{k: G is k-colorable}.

Ex. How many time slots are needed to schedule
Senate committees?

e common members = different time slots

Let V(G) = {committees}
E(G) = {pairs of vertices w. common members}.

min #time slots = x(G).

Here x(G) =4



List Coloring vizing [1976], Erdés-Rubin-Taylor [1979]

Some committees can’t meet at certain times.



List Coloring vizing [1976], Erdés-Rubin-Taylor [1979]

Some committees can’t meet at certain times.

Def. list assignment: L(Vv) = color set available at v.
L-coloring: proper coloring s.t. c(v) e L(v) V v € V(G).
k-choosable G: 3 L-coloring whenever all [L(Vv)| = k.

list chromatic number (or choosability)
X:(G) = min{k: G is k-choosable}.



List Coloring Vizing [1976], Erdés-Rubin-Taylor [1979]

Some committees can’t meet at certain times.

Def. list assignment: L(v) = color set available at v.
L-coloring: proper coloring s.t. c(v) e L(v) V v € V(G).
k-choosable G: 3 L-coloring whenever all [L(Vv)| = k.

list chromatic number (or choosability)
X:(G) = min{k: G is k-choosable}.

Prop. x(G) = x:(G) =A(G) + 1.

Pf. Lower bound: The lists may be identical.

Upper bound: Lists of size A(G)+1 = a coloris
available for each successive vertex in any order.

® d(v) = degree of vertex v; A(G) = maxyey(c)d(V).



X:(G) May Exceed x(G)

Ex. Xx(Kz,4)=2,but x;(K24) > 2.
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{1,3} {2,4}
3,4}

e K, s = complete bipartite graph, part-sizes r and s.
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X:(G) May Exceed x(G)

Ex. Xx(Kz4)=2,but x,(Kz,4) > 2.

(1,2}

<

3,4}
Bipartite graphs may have large choice number.

Prop. Ifm= (Zkk_l), then K, m is not k-choosable.

Pf. Use the k-sets in [2k—1] as the lists for both X and Y.

< k colorson X = some vertex of X left uncolored.
k colors on X = vertex of Y w. that list is uncolorable. =
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Planar Graphs

Conj. (\E’ij;’ﬁ{ig;g}) max{x;(G): G is planar} = 5.

Voigt [1993] 238 vertices

Ex. Non 4-choosable: =\~ "1996) 63 vertices

Thm. (Thomassen [1994]) x;(G) <5 if G is planar.
Pf. Idea: Prove stronger result (by induction).
Coloring still choosable if |[L(Vv)| = 3 for outer vertices,

except |L(Vv)| = 1 for two adjacent outer vertices.

We may assume that all bounded faces are triangles
and the outer face is a cycle.

Basis step:

a abc
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Induction Step

Let [vy,..., vp] be the outer cycle C in order,
with [L(v1)| = |L(vp)| = 1.
Case 1: C has a chord. Case 2: C has no chord.

V3

v
Vp

Case 1: Choose L-coloring on G1, then L’-coloring on G>
using the colors chosen from L for v; and v;.

Case 2: L(v1)={a}. Pick x,y € L(v2) — {a}.
Delete x and y from each L(u;). Choose L-coloring on
G — v,. Extend to v, using x or y.
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Alon-Tarsi: A tool for upper bounds on x,(G)

Def. circulation C in a digraph D = a subdigraph s.t.
indegree dg(v) = outdegree dJCf(v) at each v e V(D).

diff(D) = #circulations of even size in D
— #circulations of odd size in D

Thm. (Alon-Tarsi [1992]) If G has an orientation D
such that diff(D) # 0, then G has an L-coloring
whenever |L(V)| > dJDf(v) forall v e V(G).

Ex. even cycle Ex. odd cycle
2 even, 0 odd 1 even, 1 odd 1 even, 0 odd

Xe(Cak) <2 no info Xe(Caks1) < 3
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Def. matching = a set of pairwise disjoint edges.
X, Y-bigraph = bipartite graph with partite sets X and Y.

L LA

Thm. (P. Hall [1935]) TONCAS An X, Y-bigraph G
has a matching covering X < |N(S)| = |S| forall S C X.
Pf. Nec.: Observed above. Suff.: Induction on |X].

Case 1: |N(S)| = |S| forall Swithg c S c X.
Match one vertex arbitrarily, delete that pair,
apply induction hypothesis.

Case 2: |[N(S)| =|S| forsome Swith@gc S c X.
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Case 2 for Hall’'s Theorem

Case 2: |N(S)| = |S| forsome S with@ c S c X.

Let G’ = subgraph induced by SuU N(S).
S’CS = |Ng/(S)| =|Ns(5")| >|S’|, so G’ satisfies H.C.

Let H = subgraph induced by (X —S)uU (Y — N(S)).
To prove H satisfies H.C., compute
INH(T)[ = IN(TUS)| = IN(S)| 2 [TUS|—|S[=]T].

Use matchings from G’ and H (induction hypothesis). =
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Balanced Orientations of Graphs

Lem. (Tarsi) Every graph G has an orientation D such

that AT(D) < maxyce [%1

Pf. Let p = maxyce {%] Form X, Y-bigraph from G.

vivkyP
° ( ] L

X =E(G)
ViV
°

e o Y=V(G)xI[p]

vl VP
f j

Orient v; — v; in D when v;v; matched to vl’F.

3 matching covering X < 3 orientn. D with AT (D) < p.
ForSC X, 3HC G with S=E(H) and N(5) = V(H) x [p].
Compute [N(S)| = [V(H)|-p = [E(H)| =|5].
~.Hall’s Theorem = 3 matching covering X.
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Choosability of Planar Bipartite Graphs

Thm. (Alon-Tarsi [1992]) Every bipartite planar graph
is 3-choosable.

Pf. Euler's Formula: For a connected plane graph,
#vertices N — #edges M + #faces [ = 2.

Bipartite planar H = Every face has length at least 4,
so 2m > 4f, so Euler's Formula = m <2n-—4.

s p<2,and 3 orientation D with A*(D) < 2.
Every circulation D’ in D decomposes into cycles.
Every cycle in G has even length = |E(D’)| is even.

- diff(D) # 0.
-. Alon-Tarsi Theorem = G is 3-choosable. ]
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Hypergraphs

Def. hypergraph: a vertex set V(H) and edge set E(H),
with each edge being any subset of V(H).

A hypergraph is k-uniform if every edge has size k.

Def. For hypergraphs, the definitions of

coloring list assignment
proper coloring L-coloring

k-colorable k-choosable
chromatic number list chromatic number

are exactly the same as for the special case of graphs,
except that we must rephrase one:

A proper coloring is a coloring with no
monochromatic edge.
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The Probabilistic Method

e |dea: The Existence Argument.

Build an object by a random experiment in which a
desired property corresponds to some event A.

If Prob(A) > 0, then in some outcome A occurs,
so some object has the desired property.

Thm. Every k-uniform hypergraph with fewer than
2k-1 edges is 2-colorable.

Pf. Color randomly, giving color O or 1 to each vertex
with probability 1/2 each, independently.

Prob(a given edge is monochromatic) = 1/2%-1,
Prob(some edge is monochromatic) < #edges/2%~1 < 1.
3 coloring with no monochromatic edge. [
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Application to Bipartite Choosability

Cor. If G is an n-vertex X, Y-bigraph, then
Xe(G) <1+Tlgn].

Pf. Show that G is k-choosable when k > 1 + Ign.

Given list assignment L on G with each |L(Vv)| =k,
form hypergraph H with V(H) = [ J, ¢y g)L(V).

Let E(H) have one edge for each vertex in G: its list!

If n < 2k=1 (thatis, kK > 1 +Ign), then H is 2-colorable.
Call the two colors “X” and “Y".

This restricts colors in V(H) to usage on X or Y in G.

For each v € V(G), we must choose a color from L(V).

When v € X, choose a color restricted to X.
When v € Y, choose a color restricted to Y.
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Face Hypergraphs of Planar Graphs

Def. face hypergraph of a plane graph G = hypergr. H
with V(H) = V(G) and E(H) = {vertex sets of faces of G}

X
w z E(H) = {wxy, xyz, wxyz}
y

Thm. (Ramamurthi[2001]) The face hypergraph H of
any plane graph G is 3-choosable.

Pf. May assume all faces of G are triangles.

S

Given 3-lists at vertices, choose a proper coloring of H.
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Face Hypergraphs, continued

Need to choose colors from lists s.t. > 2 on each face.

Add A and B to each list to make lists of size 5.
5-choosable = G has proper coloring from these lists.

Faces not having both A and B are okay.

WAVRVAN

Vertices with A or B chosen form bipartite subgraph G,
since proper coloring was chosen for G.

3 proper coloring of G’ chosen from the original 3-lists
on these vertices, since it is a bipartite planar graph. =

Conj. (Ramamurthi) Face hypergraphs are 2-choosable.
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Consider list assignment L for G with L(v;) = S;.
L-coloring exists < fs(s) #0 forsomese Sy x---xS,,.
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Algebraic Interpretation of List Coloring

Idea: Express proper coloring in terms of a polynomial.

Def. For a graph G with vertices numbered v;, ..., Vn,
the graph polynomial fg(x) is ]_[{vivjeE(G): i<jy (Xi = Xj).

Numbers s, ..., sn chosen for the vertices form a
proper coloring if and only if f5(x) # 0.

Consider list assignment L for G with L(v;) = S;.
L-coloring exists < fs(s) #0 forsomese Sy x---xS,,.

Recall: polynomial of degree d has at most d zeros.

Lem. (Combinatorial Nullstellensatz; Alon [1999])

Let f be homogen. polynomial of degree m in n varbs.
If the coefficient of ]_[lexf" is nonzero and each |S;| > t;,
then Ise ]_[?:15,- such that f(s) # 0.
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Graph Polynomial and Orientations
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Graph Polynomial and Orientations

fa(X1,...,Xn) = l_[ (Xi—Xj)ZZCdl_[X?i
d i

{vivj€E(G): i<j}

Term in expansion <« choose x; or x; from each factor
« choose tail for each edge, forming D

Exponent on x; is dg(v[-).
Sign of orientn. = parity of #edges picking larger index.

din| _ #even orientn w outdeg. dy, ..., dn
coeff([I;x; )‘ ~ | —#odd orientn w outdeg. d4, ..., d,
#even-sized circulations in D
—#odd-sized circulations in D |’

where D is a fixed orientation w outdegrees d4, ..., d,.



Graph Polynomial and Orientations

fe(x1,...,Xn) = l_[ (X[—Xj)ZZCdl_[x?i
d i

{vivj€E(G): i<j}

Term in expansion <« choose x; or x; from each factor
« choose tail for each edge, forming D

Exponent on X; is dg(vi).
Sign of orientn. = parity of #edges picking larger index.

din| _ #even orientn w outdeg. dy, ..., dn
coeff(] ];x; )‘ ~ | —#odd orientn w outdeg. d4, ..., d,
#even-sized circulations in D
—#odd-sized circulations in D |’

where D is a fixed orientation w outdegrees d4, ..., d,.
Bijection needed!



Concluding the Alon-Tarsi Theorem

Bijection: Given a fixed orientation D with outdegrees
di,...,dn, each orientation D’ with the same
outdegrees as D corresponds to a circulation in D
whose edges are those reversed in D’.
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Concluding the Alon-Tarsi Theorem

Bijection: Given a fixed orientation D with outdegrees
di,...,dn, each orientation D’ with the same
outdegrees as D corresponds to a circulation in D
whose edges are those reversed in D’.

[ ]
edges of D

D D’
reversed by D’

diff(D)#0 =  coeff(J];x(") #0
= f(s)#0forsomese][]S;
where each S; is fixed with |S;| > d;
=  xu(G) <1+ A*(D)



Alon-Tarsi for Hypergraphs

Plan of action (for a k-uniform hypergraph H):
0. Order the vertices vy, ..., vj.

1. Define a fy such that
fr(x) = 0 precisely when coloring v; with x; for all (
gives the same number to all vertices of some edge.

2. Generalize to hypergraphs to
interpret exponents in monomials.

3. = If lists are bigger than the
corresponding exponents in a monomial term in fy with
nonzero coefficient, then H has an L-coloring.

4. Interpret coefficients in terms of some structure we
can count to obtain a sufficient condition for an
orientation of H to guarantee L-coloring.



The Hypergraph Polynomial (k prime)
Def. For a k-uniform hypergraph H with vertices

Vi,...,Vn, the hypergraph polynomial fy is defined by

fuxa,....xn)= ] O +6xy +--+ 651, y),

Vig***Vie_1 €EE(H)

where 6 is a kth root of unity and the vertices of each
edge are written in increasing order of indices.
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When numbers x1, ..., x, are assigned to vi,..., v,
fu(x1,..., Xn) =0 < numbers are equal on some edge.



The Hypergraph Polynomial (k prime)

Def. For a k-uniform hypergraph H with vertices
Vi,...,Vn, the hypergraph polynomial fy is defined by

fuxa,....xn)= ] O +6xy +--+ 651, y),

Vig***Vi,_1 EE(H)
where 6 is a kth root of unity and the vertices of each

edge are written in increasing order of indices.

When numbers x1, ..., x, are assigned to vi,..., v,
fu(x1,..., Xn) =0 < numbers are equal on some edge.

Def. An orientation of a hypergraph chooses one
source vertex in each edge.

Terms like Gfl_[xld" in the expansion of fy(x) come from
orientations with v; chosen as the source in d; edges.



The Hypergraph List Coloring Theorem

Thm. (Ramamurthi-West [2005]) For prime k, let D be
an orientation of a k-uniform hypergraph H such that
the number of balanced partitions with modular sum j is
not the same for all j. If each |L(v;)| is larger than the

number of edges in which D chooses v; as the source,
then H has an L-coloring.



The Hypergraph List Coloring Theorem

Thm. (Ramamurthi-West [2005]) For prime k, let D be
an orientation of a k-uniform hypergraph H such that
the number of balanced partitions with modular sum j is
not the same for all j. If each |L(v;)| is larger than the
number of edges in which D chooses v; as the source,
then H has an L-coloring.

Pf. Follow the Plan!
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