Reconstruction from k-vertex Induced Subgraphs

Douglas B. West

Departments of Mathematics
Zhejiang Normal University and
University of Illinois at Urbana-Champaign
dwest@math.uiuc.edu
slides and paper on preprint page

Joint work with
Hannah Spinoza
The Classical Problem

Def. A card of a graph G is an induced subgraph $G - v$. The deck of a graph is the multiset of its cards.
The Classical Problem

Def. A card of a graph G is an induced subgraph $G - v$. The deck of a graph is the multiset of its cards.

(Reconstruction Conj: Kelly [1957], Ulam [1960])
Any graph with ≥ 3 vertices is determined by its deck.
The Classical Problem

Def. A card of a graph G is an induced subgraph $G - v$. The deck of a graph is the multiset of its cards.

(Reconstruction Conj: Kelly [1957], Ulam [1960])
Any graph with ≥ 3 vertices is determined by its deck. Posed earlier in Kelly’s thesis, 1942.
The Classical Problem

Def. A *card* of a graph G is an induced subgraph $G - v$. The *deck* of a graph is the multiset of its cards.

![Graphs](image)

(Reconstruction Conj: Kelly [1957], Ulam [1960])
Any graph with ≥ 3 vertices is determined by its deck.

- **Surveys:** Bondy-Hemminger ['77], Lauri ['87], Ellingham ['88], Manvel ['88], Bondy ['91], Lauri ['97], Maccari-Rueda-Viazzi ['02], Asciak-Francalanza-Lauri-Myrvold['10]
The Classical Problem

Def. A card of a graph G is an induced subgraph $G - v$. The deck of a graph is the multiset of its cards.

(Reconstruction Conj: Kelly [1957], Ulam [1960])
Any graph with ≥ 3 vertices is determined by its deck.

- **Surveys:** Bondy-Hemminger ['77], Lauri ['87], Ellingham ['88], Manvel ['88], Bondy ['91], Lauri ['97], Maccari-Rueda-Viazzi ['02], Asciak-Francalanza-Lauri-Myrvold ['10]

Ex. K_4^- is determined by three of its cards.
The Classical Problem

Def. A card of a graph G is an induced subgraph $G - \nu$. The deck of a graph is the multiset of its cards.

(Reconstruction Conj: Kelly [1957], Ulam [1960])
Any graph with ≥ 3 vertices is determined by its deck.

Ex. K_4^- is determined by three cards. Which three?
The Classical Problem

Def. A card of a graph G is an induced subgraph $G - \nu$. The deck of a graph is the multiset of its cards.

(Reconstruction Conj: Kelly [1957], Ulam [1960]) Any graph with ≥ 3 vertices is determined by its deck.

- **Surveys:** Bondy-Hemminger ['77], Lauri ['87], Ellingham ['88], Manvel ['88], Bondy ['91], Lauri ['97], Maccari-Rueda-Viazzi ['02], Asciak-Francalanza-Lauri-Myrvold ['10]

Def. (Harary-Plantholt [1985]) The reconstruction number $\text{rn}(G)$ is the least number of cards that determine G.
The Classical Problem

Def. A card of a graph \(G \) is an induced subgraph \(G - v \). The deck of a graph is the multiset of its cards.

(Reconstruction Conj: Kelly [1957], Ulam [1960]) Any graph with \(\geq 3 \) vertices is determined by its deck.

- Surveys: Bondy-Hemminger ['77], Lauri ['87], Ellingham ['88], Manvel ['88], Bondy ['91], Lauri ['97], Maccari-Rueda-Viazzi ['02], Asciak-Francalanza-Lauri-Myrvold ['10]

Def. (Harary-Plantholt [1985]) The reconstruction number \(\text{rn}(G) \) is the least number of cards that determine \(G \).

Def. (Myrvold [1988]) The adversary reconstruction number \(\#\text{arn}(G) \) is the least \(k \) such that any \(k \) cards determine \(G \).
Reconstruction numbers

- (Myrvold [1989]) $\text{rn}(G) = 3$ for disconnected graphs with (at least) two nonisomorphic components.

- (Myrvold [1990]) $\text{rn}(G) = 3$ for trees with ≥ 5 vertices.
Reconstruction numbers

- (Myrvold [1989]) \(\text{rn}(G) = 3 \) for disconnected graphs with (at least) two nonisomorphic components.
- (Myrvold [1990]) \(\text{rn}(G) = 3 \) for trees with \(\geq 5 \) vertices.
- (Müller [1976], Bollobás [1990]) \(\text{rn}(G) = 3 \) almost always.
Reconstruction numbers

- (Myrvold [1989]) $\text{rn}(G) = 3$ for disconnected graphs with (at least) two nonisomorphic components.
- (Myrvold [1990]) $\text{rn}(G) = 3$ for trees with ≥ 5 vertices.
- (Müller [1976], Bollobás [1990]) $\text{rn}(G) = 3$ almost always.
- (Myrvold [1989]) $\text{rn}(mK_r) = r + 2 = \text{rn}(K_r,\ldots,r)$.
Reconstruction numbers

- (Myrvold [1989]) \(\text{rn}(G) = 3 \) for disconnected graphs with (at least) two nonisomorphic components.
- (Myrvold [1990]) \(\text{rn}(G) = 3 \) for trees with \(\geq 5 \) vertices.
- (Müller [1976], Bollobás [1990]) \(\text{rn}(G) = 3 \) almost always.
- (Myrvold [1989]) \(\text{rn}(mK_r) = r + 2 = \text{rn}(K_r,\ldots,r) \).

\(K_{n/2,n/2} \) shares \(\frac{n}{2} + 1 \) cards with \(K_{n/2+1,n/2-1} \).
Reconstruction numbers

- (Myrvold [1989]) $\text{rn}(G) = 3$ for disconnected graphs with (at least) two nonisomorphic components.
- (Myrvold [1990]) $\text{rn}(G) = 3$ for trees with ≥ 5 vertices.
- (Müller [1976], Bollobás [1990]) $\text{rn}(G) = 3$ almost always.
- (Myrvold [1989]) $\text{rn}(mK_r) = r + 2 = \text{rn}(K_r, \ldots, r)$.

$K_{n/2, n/2}$ shares $\frac{n}{2} + 1$ cards with $K_{n/2+1, n/2-1}$.

Conj. (Harary–Plantholt [1985]) $\text{rn}(G) \leq \frac{n}{2} + 2$, with equality only for $K_{n/2, n/2}$ and $2K_{n/2}$ when $n > 4$.
Reconstruction numbers

- (Myrvold [1989]) $\text{rn}(G) = 3$ for disconnected graphs with (at least) two nonisomorphic components.

- (Myrvold [1990]) $\text{rn}(G) = 3$ for trees with ≥ 5 vertices.

- (Müller [1976], Bollobás [1990]) $\text{rn}(G) = 3$ almost always.

- (Myrvold [1989]) $\text{rn}(mK_r) = r + 2 = \text{rn}(K_r, ..., r)$. $K_{n/2, n/2}$ shares $\frac{n}{2} + 1$ cards with $K_{n/2+1, n/2-1}$.

Conj. (Harary–Plantholt [1985]) $\text{rn}(G) \leq \frac{n}{2} + 2$, with equality only for $K_{n/2, n/2}$ and $2K_{n/2}$ when $n > 4$.

- (Kocay–Kreher [2014]) When q is a prime power with $q \equiv 1 \mod 4$, and $n = 4q - 4$, there exist (constructively) two connected (complementary) n-vertex graphs G with $\text{rn}(G) = \frac{n}{2} + 2$.
Another Direction

Conj. (Kelly [1957]) For \(\ell \in \mathbb{N} \), \(\exists M_\ell \in \mathbb{N} \) such that \(|V(G)| \geq M_\ell \Rightarrow G \) is reconstructible from the deck obtained by deleting \(\ell \) vertices.
Another Direction

Conj. (Kelly [1957]) For $\ell \in \mathbb{N}$, $\exists M_\ell \in \mathbb{N}$ such that $|V(G)| \geq M_\ell \implies G$ is reconstructible from the deck obtained by deleting ℓ vertices. “ℓ-reconstructible”
Another Direction

Conj. (Kelly [1957]) For \(\ell \in \mathbb{N} \), \(\exists M_{\ell} \in \mathbb{N} \) such that \(|V(G)| \geq M_{\ell} \Rightarrow G \) is reconstructible from the deck obtained by deleting \(\ell \) vertices. “\(\ell \)-reconstructible”

RC: \(M_1 = 3 \).
Another Direction

Conj. (Kelly [1957]) For $\ell \in \mathbb{N}$, $\exists M_\ell \in \mathbb{N}$ such that $|V(G)| \geq M_\ell \Rightarrow G$ is reconstructible from the deck obtained by deleting ℓ vertices. “ℓ-reconstructible”

RC: $M_1 = 3$. $M_2 = 6?$ (McMullen–Radziszowski [2007])
Another Direction

Conj. (Kelly [1957]) For $\ell \in \mathbb{N}$, $\exists M_\ell \in \mathbb{N}$ such that $|V(G)| \geq M_\ell \Rightarrow G$ is reconstructible from the deck obtained by deleting ℓ vertices. “ℓ-reconstructible”

RC: $M_1 = 3$. $M_2 = 6$? (McMullen–Radziszowski [2007])
(C_4+K_1 and the 5-vertex tree $K_{1,3}'$ are not 2-reconstructible.)
Another Direction

Conj. (Kelly [1957]) For $\ell \in \mathbb{N}$, $\exists M_\ell \in \mathbb{N}$ such that $|V(G)| \geq M_\ell \Rightarrow G$ is reconstructible from the deck obtained by deleting ℓ vertices. “ℓ-reconstructible”

RC: $M_1 = 3$. $M_2 = 6$? (McMullen–Radziszowski [2007]) (C_4+K_1 and the 5-vertex tree $K_{1,3}'$ are not 2-reconstructible.)

Def. k-deck $D_k(G) = $ set of k-vertex induced subgraphs.
Another Direction

Conj. (Kelly [1957]) For $\ell \in \mathbb{N}$, $\exists M_\ell \in \mathbb{N}$ such that $|V(G)| \geq M_\ell \implies G$ is reconstructible from the deck obtained by deleting ℓ vertices. “ℓ-reconstructible”

RC: $M_1 = 3$. $M_2 = 6$? (McMullen–Radziszowski [2007]) ($C_4 + K_1$ and the 5-vertex tree $K'_{1,3}$ are not 2-reconstructible.)

Def. k-deck $\mathcal{D}_k(G) = \text{set of } k\text{-vertex induced subgraphs.}$

Obs. $\mathcal{D}_k(G)$ determines $\mathcal{D}_{k-1}(G)$.
Another Direction

Conj. (Kelly [1957]) For $\ell \in \mathbb{N}$, $\exists M_\ell \in \mathbb{N}$ such that $|V(G)| \geq M_\ell \Rightarrow G$ is reconstructible from the deck obtained by deleting ℓ vertices. “ℓ-reconstructible”

RC: $M_1 = 3$. $M_2 = 6$? (McMullen–Radziszowski [2007]) ($C_4 + K_1$ and the 5-vertex tree $K'_{1,3}$ are not 2-reconstructible.)

Def. k-deck $\mathcal{D}_k(G) = \text{set of } k\text{-vertex induced subgrs.}$

Obs. $\mathcal{D}_k(G)$ determines $\mathcal{D}_{k-1}(G)$.

Pf. Each graph in \mathcal{D}_{k-1} arises $n - k + 1$ times by deleting one vertex from a graph in $\mathcal{D}_k(G)$. }

\[\blacksquare\]
Another Direction

Conj. (Kelly [1957]) For $\ell \in \mathbb{N}$, $\exists M_\ell \in \mathbb{N}$ such that $|V(G)| \geq M_\ell \Rightarrow G$ is reconstructible from the deck obtained by deleting ℓ vertices. "ℓ-reconstructible"

RC: $M_1 = 3$. $M_2 = 6$? (McMullen–Radziszowski [2007]) (C_4+K_1 and the 5-vertex tree $K_{1,3}'$ are not 2-reconstructible.)

Def. k-deck $\mathcal{D}_k(G) =$ set of k-vertex induced subgrs.

Obs. $\mathcal{D}_k(G)$ determines $\mathcal{D}_{k-1}(G)$.

Pf. Each graph in \mathcal{D}_{k-1} arises $n-k+1$ times by deleting one vertex from a graph in $\mathcal{D}_k(G)$. \blacksquare

Aim: Find the least k s.t. G is k-deck reconstructible.
Another Direction

Conj. (Kelly [1957]) For $\ell \in \mathbb{N}$, $\exists M_{\ell} \in \mathbb{N}$ such that $|V(G)| \geq M_{\ell} \Rightarrow G$ is reconstructible from the deck obtained by deleting ℓ vertices. "ℓ-reconstructible"

RC: $M_1 = 3$. $M_2 = 6$? (McMullen–Radziszowski [2007])
(C_4+K_1 and the 5-vertex tree $K_{1,3}'$ are not 2-reconstructible.)

Def. k-deck $D_k(G) =$ set of k-vertex induced subgraphs.

Obs. $D_k(G)$ determines $D_{k-1}(G)$.

Pf. Each graph in D_{k-1} arises $n-k+1$ times by deleting one vertex from a graph in $D_k(G)$. ■

Aim: Find the least k s.t. G is k-deck reconstructible.
(Same as ℓ-reconstructible when $k + \ell = |V(G)|$.)
Another Direction

Conj. (Kelly [1957]) For \(l \in \mathbb{N} \), \(\exists M_l \in \mathbb{N} \) such that \(|V(G)| \geq M_l \Rightarrow G \) is reconstructible from the deck obtained by deleting \(l \) vertices. “\(l \)-reconstructible”

RC: \(M_1 = 3 \). \(M_2 = 6 \)? (McMullen–Radziszowski [2007]) (\(C_4+K_1 \) and the 5-vertex tree \(K'_{1,3} \) are not 2-reconstructible.)

Def. \(k \)-deck \(D_k(G) \) = set of \(k \)-vertex induced subgrps.

Obs. \(D_k(G) \) determines \(D_{k-1}(G) \).

Pf. Each graph in \(D_{k-1} \) arises \(n - k + 1 \) times by deleting one vertex from a graph in \(D_k(G) \).

Aim: Find the least \(k \) s.t. \(G \) is \(k \)-deck reconstructible. (Same as \(l \)-reconstructible when \(k + l = |V(G)| \).

This refinement asks how hard it is to reconstruct \(G \) (in a different way from the reconstruction number).
Results (Spinoza–West [2016+])

Thm. \(P_n \) and \(C_{\lceil n/2 \rceil + 1} + P_{\lfloor n/2 \rfloor - 1} \) have same \(\lfloor n/2 \rfloor \)-deck. \(C_n \) and \(C_{\lceil n/2 \rceil} + C_{\lfloor n/2 \rfloor} \) have same \(\lfloor n/2 \rfloor - 1 \)-deck.
Results (Spinoza–West [2016+])

Thm. \(P_n \) and \(C_{\lceil n/2 \rceil+1} + P_{\lceil n/2 \rceil-1} \) have same \(\lfloor n/2 \rfloor \)-deck.
\(C_n \) and \(C_{\lceil n/2 \rceil} + C_{\lfloor n/2 \rfloor} \) have same \(\lfloor n/2 \rfloor-1 \)-deck. Sharp!
Results (Spinoza–West [2016+])

Thm. P_n and $C_{\lceil n/2 \rceil} + 1 + P_{\lfloor n/2 \rfloor - 1}$ have same $\lfloor n/2 \rfloor$-deck. C_n and $C_{\lceil n/2 \rceil} + C_{\lfloor n/2 \rfloor}$ have same $\lfloor n/2 \rfloor - 1$-deck. Sharp!

Thm. For all G with $\Delta(G) = 2$, we determine the least k such that G is k-deck reconstructible.
Results (Spinoza–West [2016+])

Thm. P_n and $C_{\lfloor n/2 \rfloor + 1} + P_{\lceil n/2 \rceil - 1}$ have same $\lfloor n/2 \rfloor$-deck. C_n and $C_{\lfloor n/2 \rfloor} + C_{\lfloor n/2 \rfloor}$ have same $\lfloor n/2 \rfloor - 1$-deck. Sharp!

Thm. For all G with $\Delta(G) = 2$, we determine the least k such that G is k-deck reconstructible.

Cor. $\mathcal{D}_{\lfloor n/2 \rfloor}(G)$ may not determine connectedness.
Results (Spinoza–West [2016+])

Thm. P_n and $C_{\lceil n/2 \rceil} + 1 + P_{\lfloor n/2 \rfloor - 1}$ have same $\lfloor n/2 \rfloor$-deck. C_n and $C_{\lceil n/2 \rceil} + C_{\lfloor n/2 \rfloor}$ have same $\lfloor n/2 \rfloor - 1$-deck. Sharp!

Thm. For all G with $\Delta(G) = 2$, we determine the least k such that G is k-deck reconstructible.

Cor. $D_{\lfloor n/2 \rfloor}(G)$ may not determine connectedness.

(Manvel [1974]) $D_{n-2}(G)$ does connectedness for $n \geq 6$.

Results (Spinoza–West [2016+])

Thm. P_n and $C_{\lceil n/2 \rceil+1} + P_{\lfloor n/2 \rfloor-1}$ have same $\lceil n/2 \rceil$-deck. C_n and $C_{\lceil n/2 \rceil} + C_{\lfloor n/2 \rfloor}$ have same $\lfloor n/2 \rfloor - 1$-deck. Sharp!

Thm. For all G with $\Delta(G) = 2$, we determine the least k such that G is k-deck reconstructible.

Cor. $\mathcal{D}_{\lfloor n/2 \rfloor}(G)$ may not determine connectedness.

(Manvel [1974]) $\mathcal{D}_{n-2}(G)$ does connectedness for $n \geq 6$.

($C_4 + K_1$ and the tree $K_{1,3}'$ have the same 3-deck.)
Results (Spinoza–West [2016+])

Thm. P_n and $C_{\lceil n/2 \rceil + 1} + P_{\lfloor n/2 \rfloor - 1}$ have same $\lfloor n/2 \rfloor$-deck. C_n and $C_{\lceil n/2 \rceil} + C_{\lfloor n/2 \rfloor}$ have same $\lfloor n/2 \rfloor - 1$-deck. Sharp!

Thm. For all G with $\Delta(G) = 2$, we determine the least k such that G is k-deck reconstructible.

Cor. $\mathcal{D}_{\lfloor n/2 \rfloor}(G)$ may not determine connectedness.

(Manvel [1974]) $\mathcal{D}_{n-2}(G)$ does connectedness for $n \geq 6$.

($C_4 + K_1$ and the tree $K'_{1,3}$ have the same 3-deck.)

We show connectedness is 3-reconstructible for $n \geq 25$.
Results (Spinoza–West [2016+])

Thm. P_n and $C_{\lceil n/2 \rceil} + P_{\lfloor n/2 \rfloor - 1}$ have same $\lfloor n/2 \rfloor$-deck. C_n and $C_{\lceil n/2 \rceil} + C_{\lfloor n/2 \rfloor}$ have same $\lfloor n/2 \rfloor - 1$-deck. Sharp!

Thm. For all G with $\Delta(G) = 2$, we determine the least k such that G is k-deck reconstructible.

Cor. $D_{\lfloor n/2 \rfloor}(G)$ may not determine connectedness.

(Manvel [1974]) $D_{n-2}(G)$ does connectedness for $n \geq 6$.

($C_4 + K_1$ and the tree $K_{1,3}'$ have the same 3-deck.)

We show connectedness is 3-reconstructible for $n \geq 25$.

Thm. Connectedness is ℓ-reconstructible for $n > \ell^{(\ell+1)^2}$.
Results (Spinoza–West [2016+])

Thm. P_n and $C_{\lceil n/2 \rceil} + P_{\lfloor n/2 \rfloor} - 1$ have same $\lfloor n/2 \rfloor$-deck. C_n and $C_{\lfloor n/2 \rfloor} + C_{\lfloor n/2 \rfloor}$ have same $\lfloor n/2 \rfloor - 1$-deck. Sharp!

Thm. For all G with $\Delta(G) = 2$, we determine the least k such that G is k-deck reconstructible.

Cor. $D_{\lfloor n/2 \rfloor}(G)$ may not determine connectedness.

(Manvel [1974]) $D_{n-2}(G)$ does connectedness for $n \geq 6$.

($C_4 + K_1$ and the tree $K_{1,3}$ have the same 3-deck.)

We show connectedness is 3-reconstructible for $n \geq 25$.

Thm. Connectedness is ℓ-reconstructible for $n > \ell^{(\ell+1)^2}$.

Thm. If $\ell \leq (1 - o(1))n/2$, then almost all graphs are reconstructible from some (many) sets of $\binom{\ell+2}{2}$ subgraphs obtained by deleting ℓ vertices.
k-deck Reconstruction for Small k

$k = 2$: only K_n, K_n^-, and their complements.
k-deck Reconstruction for Small k

$k = 2$: only K_n, K^-_n, and their complements.
(Manvel [1974]) $D_{\Delta(G) + 2}(G)$ determines the degree list.
k-deck Reconstruction for Small k

\[k = 2: \text{ only } K_n, K_n^-, \text{ and their complements.} \]

(Manvel [1974]) \(\mathcal{D}_{\Delta(G)+2}(G) \) determines the degree list.

Prop. \(\sum K_{n_i} \) with all \(n_i \leq m \) is \((m+1)\)-deck reconstructible
k-deck Reconstruction for Small k

$k = 2$: only K_n, K_n^-, and their complements.

(Manvel [1974]) $D_{\Delta(G)+2}(G)$ determines the degree list.

Prop. $\sum K_{n_i}$ with all $n_i \leq m$ is $(m+1)$-deck reconstructible

Pf. $P_3 \notin D_3(G) \iff G$ has the form $\sum K_{n_i}$.
k-deck Reconstruction for Small k

\(k = 2 \): only \(K_n, K_n^- \), and their complements.

(Manvel [1974]) \(\mathcal{D}_{\Delta(G)+2}(G) \) determines the degree list.

Prop. \(\sum K_{n_i} \) with all \(n_i \leq m \) is \((m+1)\)-deck reconstructible

Pf. \(P_3 \notin \mathcal{D}_3(G) \iff G \) has the form \(\sum K_{n_i} \).

With \(\Delta(G) < m \), by Manvel’s result we can reconstruct the degree list, which determines \(G \) for such \(G \).
k-deck Reconstruction for Small k

\(k = 2 \): only \(K_n, K_n^{-} \), and their complements.

(Manvel [1974]) \(D_{\Delta(G)+2}(G) \) determines the degree list.

Prop. \(\sum K_{n_i} \) with all \(n_i \leq m \) is \((m+1)\)-deck reconstructible

Pf. \(P_3 \notin D_3(G) \iff G \) has the form \(\sum K_{n_i} \).

With \(\Delta(G) < m \), by Manvel’s result we can reconstruct the degree list, which determines \(G \) for such \(G \).

Thm. Complete \(r \)-partite is \((r+1)\)-deck reconstructible
k-deck Reconstruction for Small k

\(k = 2 \): only \(K_n, K^{-}_n \), and their complements.
(Manvel [1974]) \(\mathcal{D}_{\Delta(G)+2}(G) \) determines the degree list.

Prop. \(\sum K_{n_i} \) with all \(n_i \leq m \) is \((m+1)\)-deck reconstructible

Pf. \(P_3 \not\in \mathcal{D}_3(G) \iff G \) has the form \(\sum K_{n_i} \).

With \(\Delta(G) < m \), by Manvel’s result we can reconstruct the degree list, which determines \(G \) for such \(G \).

Thm. Complete \(r \)-partite is \((r+1)\)-deck reconstructible

Pf. \(P_2 + P_1 \not\in \mathcal{D}_3(G) \) \& \(K_{r+1} \not\in \mathcal{D}_{r+1} \ \Rightarrow \) complete \(r \)-partite.
k-deck Reconstruction for Small k

\(k = 2 \): only \(K_n, K_n^- \), and their complements.

(Manvel [1974]) \(\mathcal{D}_{\Delta(G)+2}(G) \) determines the degree list.

Prop. \(\sum K_{n_i} \) with all \(n_i \leq m \) is \((m+1)\)-deck reconstructible

Pf. \(P_3 \notin \mathcal{D}_3(G) \iff G \) has the form \(\sum K_{n_i} \).

With \(\Delta(G) < m \), by Manvel’s result we can reconstruct the degree list, which determines \(G \) for such \(G \).

Thm. Complete \(r \)-partite is \((r+1)\)-deck reconstructible

Pf. \(P_2 + P_1 \notin \mathcal{D}_3(G) \) \& \(K_{r+1} \notin \mathcal{D}_{r+1} \implies \) complete \(r \)-partite.

With part-sizes \(q_1, \ldots, q_r \), let \(f(x) = \prod_{i=1}^{r}(x - q_i) \).
k-deck Reconstruction for Small k

$k = 2$: only K_n, K_n^\sim, and their complements. (Manvel [1974]) $\mathcal{D}_{\Delta(G)+2}(G)$ determines the degree list.

Prop. $\sum K_{n_i}$ with all $n_i \leq m$ is $(m+1)$-deck reconstructible

Pf. $P_3 \notin \mathcal{D}_3(G) \iff G$ has the form $\sum K_{n_i}$.

With $\Delta(G) < m$, by Manvel’s result we can reconstruct the degree list, which determines G for such G.

Thm. Complete r-partite is $(r+1)$-deck reconstructible

Pf. $P_2+P_1 \notin \mathcal{D}_3(G) \& K_{r+1} \notin \mathcal{D}_{r+1} \Rightarrow$ complete r-partite.

With part-sizes q_1, \ldots, q_r, let $f(x) = \prod_{i=1}^{r}(x - q_i)$.

Note $f(x) = \sum_{i=0}^{r}(-1)^i s_i x^{r-i}$, where s_i is the sum of products of i choices from q_1, \ldots, q_r.

k-deck Reconstruction for Small k

- **k = 2**: only K_n, K_n^-, and their complements. (Manvel [1974]) $D_{\Delta(G)+2}(G)$ determines the degree list.

Prop. $\sum K_{n_i}$ with all $n_i \leq m$ is $(m+1)$-deck reconstructible

Pf. $P_3 \notin D_3(G) \iff G$ has the form $\sum K_{n_i}$.

With $\Delta(G) < m$, by Manvel’s result we can reconstruct the degree list, which determines G for such G.

Thm. Complete r-partite is $(r+1)$-deck reconstructible

Pf. $P_2 + P_1 \notin D_3(G)$ & $K_{r+1} \notin D_{r+1} \Rightarrow$ complete r-partite.

With part-sizes q_1, \ldots, q_r, let $f(x) = \prod_{i=1}^{r}(x - q_i)$.

Note $f(x) = \sum_{i=0}^{r}(-1)^i s_i x^{r-i}$, where s_i is the sum of products of i choices from q_1, \ldots, q_r.

Also $s_i = \#i$-cards that are K_i, so $D_i(G)$ determines s_i.
k-deck Reconstruction for Small k

\(k = 2 \): only \(K_n \), \(K_n^- \), and their complements.

(Manvel [1974]) \(\mathcal{D}_{\Delta(G)+2}(G) \) determines the degree list.

Prop. \(\sum K_{n_i} \) with all \(n_i \leq m \) is \((m+1) \)-deck reconstructible

Pf. \(P_3 \notin \mathcal{D}_3(G) \iff G \) has the form \(\sum K_{n_i} \).

With \(\Delta(G) < m \), by Manvel’s result we can reconstruct the degree list, which determines \(G \) for such \(G \).

Thm. Complete \(r \)-partite is \((r+1) \)-deck reconstructible

Pf. \(P_2 + P_1 \notin \mathcal{D}_3(G) \& K_{r+1} \notin \mathcal{D}_{r+1} \Rightarrow \) complete \(r \)-partite.

With part-sizes \(q_1, \ldots, q_r \), let \(f(x) = \prod_{i=1}^{r} (x - q_i) \).

Note \(f(x) = \sum_{i=0}^{r} (-1)^i s_i x^{r-i} \), where \(s_i \) is the sum of products of \(i \) choices from \(q_1, \ldots, q_r \).

Also \(s_i = \#i \)-cards that are \(K_i \), so \(\mathcal{D}_i(G) \) determines \(s_i \).

Knowing \(f \), we find \(q_1, \ldots, q_r \).
Almost All Graphs

Lem. (Müller [1976]) Fix $\epsilon > 0$. For almost every graph G, the induced subgraphs with at least $(1 + \epsilon)\frac{|V(G)|}{2}$ vertices are good, meaning they have no nontrivial automorphisms and are pairwise nonisomorphic.
Almost All Graphs

Lem. (Müller [1976]) Fix $\varepsilon > 0$. For almost every graph G, the induced subgraphs with at least $(1 + \varepsilon)\frac{|V(G)|}{2}$ vertices are **good**, meaning they have no nontrivial automorphisms and are pairwise nonisomorphic.

Thm. If the subgraphs obtained by deleting $\ell + 1$ verts are **good**, then G is reconstructible from some set of $\binom{\ell+2}{2}$ subgraphs obtained by deleting ℓ vertices.
Almost All Graphs

Lem. (Müller [1976]) Fix $\epsilon > 0$. For almost every graph G, the induced subgraphs with at least $(1 + \epsilon)\frac{|V(G)|}{2}$ vertices are good, meaning they have no nontrivial automorphisms and are pairwise nonisomorphic.

Thm. If the subgraphs obtained by deleting $\ell+1$ verts are good, then G is reconstructible from some set of $\binom{\ell+2}{2}$ subgraphs obtained by deleting ℓ vertices.

Cor. Among n-vertex graphs, the fraction that are reconstructible from the subgraphs obtained by deleting $(1 - \epsilon)\frac{n}{2}$ vertices tends to 1 as $n \to \infty$.
Using Some of the Deck

Thm. $\mathcal{D}_{n-\ell-1}$ good $\implies \mathcal{D}_{n-\ell}$ determines G.
Using Some of the Deck

Thm. $\mathcal{D}_{n-\ell-1}$ good \Rightarrow $\mathcal{D}_{n-\ell}$ determines G.

Pf. Let $n = |V(G)|$. Fix $S = \{x_1, \ldots, x_{\ell+1}\} \subseteq V(G)$. Let $H = G - S$ and $h = |V(H)| = n - \ell - 1$.

![Diagram with vertices and edges]
Using Some of the Deck

Thm. \(D_{n-\ell-1} \) good \(\Rightarrow \) \(D_{n-\ell} \) determines \(G \).

Pf. Let \(n = |V(G)| \). Fix \(S = \{x_1, \ldots, x_{\ell+1}\} \subseteq V(G) \). Let \(H = G - S \) and \(h = |V(H)| = n - \ell - 1 \).

Let \(C_i = G - (S - \{x_i\}) \) (deleting \(\ell \)) and \(C = \{C_i: x_i \in S\} \).

\[\text{Diagram} \]
Using Some of the Deck

Thm. \(D_{n-\ell-1} \) good \(\Rightarrow \) \(D_{n-\ell} \) determines \(G \).

Pf. Let \(n = |V(G)| \). Fix \(S = \{x_1, \ldots, x_{\ell+1}\} \subseteq V(G) \).
Let \(H = G - S \) and \(h = |V(H)| = n - \ell - 1 \).

Let \(C_i = G - (S - \{x_i\}) \) (deleting \(\ell \)) and \(C = \{C_i: x_i \in S\} \).

For \(x_i, x_j \in S \), let \(D_{i,j} = G - (S - \{x_i, x_j\}) - w_{i,j} \),
where \(w_{i,j} \in V(H) \). Let \(D = \{D_{i,j}: x_i, x_j \in S\} \).
Using Some of the Deck

Thm. $D_{n-\ell-1}$ good \Rightarrow D_n determines G.

Pf. Let $n = |V(G)|$. Fix $S = \{x_1, \ldots, x_{\ell+1}\} \subseteq V(G)$. Let $H = G - S$ and $h = |V(H)| = n - \ell - 1$.

Let $C_i = G - (S - \{x_i\})$ (deleting ℓ) and $C = \{C_i: x_i \in S\}$.

For $x_i, x_j \in S$, let $D_{i,j} = G - (S - \{x_i, x_j\}) - w_{i,j}$, where $w_{i,j} \in V(H)$. Let $D = \{D_{i,j}: x_i, x_j \in S\}$.

Claim: G is reconstructible from $C \cup D$.
Using Some of the Deck

Thm. D_{n-l-1} good $\Rightarrow D_{n-l}$ determines G.

Pf. Let $n = |V(G)|$. Fix $S = \{x_1, \ldots, x_{l+1}\} \subseteq V(G)$. Let $H = G - S$ and $h = |V(H)| = n - l - 1$.

Let $C_i = G - (S - \{x_i\})$ (deleting l) and $C = \{C_i : x_i \in S\}$.

For $x_i, x_j \in S$, let $D_{i,j} = G - (S - \{x_i, x_j\}) - w_{i,j}$, where $w_{i,j} \in V(H)$. Let $D = \{D_{i,j} : x_i, x_j \in S\}$.

Claim: G is reconstructible from $C \cup D$. many such
Reconstructing G from $C \cup D$.

The cards have $h + 1$ verts; h-vertex subgrs are good. Which h-vertex subgrs H' appear in the cards in $C \cup D$?
Reconstructing G from $C \cup D$.

The cards have $h + 1$ verts; h-vertex subgrs are good. Which h-vertex subgrs H' appear in the cards in $C \cup D$?

Idea: H is the only h-vertex subgraph appearing $\ell + 1$ times in cards in $C \cup D$. This identifies H and all C_i, the vertex x_i in C_i, and the edges from x_i to $V(H)$.
Reconstructing G from $C \cup D$.

The cards have $h + 1$ verts; h-vertex subgrs are good. Which h-vertex subgrs H' appear in the cards in $C \cup D$?

Idea: H is the only h-vertex subgraph appearing $l + 1$ times in cards in $C \cup D$. This identifies H and all C_i, the vertex x_i in C_i, and the edges from x_i to $V(H)$.

If $|V(H') \cap S| \geq 3$, then H' appears in no card in $C \cap D$.

If $V(H') \cap S = \{x_i, x_j\}$, then H' appears only in $D_{i,j}$.

If $V(H') \cap S = \{x_i\}$, then H' is in one card in C and can be in cards $D_{i,j}$ as $H' = D_{i,j} - x_j = G[V(H) + x_i - w_{i,j}]$.

If $w_{i,j}$ is not the same for all j, then H' is in $\leq l$ cards.

If $V(H') \cap S = \emptyset$, then $H' = H$, in all $l + 1$ cards of C.
Reconstructing G from $C \cup D$.

The cards have $h + 1$ verts; h-vertex subgrs are good. Which h-vertex subgrs H' appear in the cards in $C \cup D$?

Idea: H is the only h-vertex subgraph appearing $\ell + 1$ times in cards in $C \cup D$. This identifies H and all C_i, the vertex x_i in C_i, and the edges from x_i to $V(H)$.

If $|V(H') \cap S| \ge 3$, then H' appears in no card in $C \cap D$.
If $V(H') \cap S = \{x_i, x_j\}$, then H' appears only in $D_{i,j}$.
If $V(H') \cap S = \{x_i\}$, then H' is in one card in C and can be in cards $D_{i,j}$ as $H' = D_{i,j} - x_j = G[V(H) + x_i - w_{i,j}]$.
If $w_{i,j}$ is not the same for all j, then H' is in $\le \ell$ cards.
If $V(H') \cap S = \emptyset$, then $H' = H$, in all $\ell + 1$ cards of C.

Note $H = C_i - x_i$. For $w \in V(H)$, a card $D' \in D$ contains both $C_i - w$ and $C_j - w$ only when $D' = D_{i,j}$ and $w = w_{i,j}$. This identifies $D_{i,j}$, used to check whether $x_i x_j \in E(G)$. ■
Connectedness is l-Reconstructible for Large n

Def. Let $c(D) = \#$ of connected cards in a deck D.
Connectedness is ℓ-Reconstructible for Large n

Def. Let $c(\mathcal{D}) = \#$ of connected cards in a deck \mathcal{D}.

Suppose G connected, H disconn., same $(n - \ell)$-deck \mathcal{D}.
Connectedness is ℓ-Reconstructible for Large n

Def. Let $c(D) = \#$ of connected cards in a deck D.

Suppose G connected, H disconn., same $(n - \ell)$-deck D. $G \Rightarrow c(D) \geq 1$, so H has component C with $|V(C)| \geq n - \ell$.
Connectedness is ℓ-Reconstructible for Large n

Def. Let $c(\mathcal{D}) = \# \text{ of connected cards in a deck } \mathcal{D}$.

Suppose G connected, H disconn., same $(n - \ell)$-deck \mathcal{D}.

$G \Rightarrow c(\mathcal{D}) \geq 1$, so H has component C with $|V(C)| \geq n - \ell$.

Let $|V(C)| = n - p$, so $H \Rightarrow c(\mathcal{D}) \leq \binom{n-p}{\ell-p} \leq \binom{n-1}{\ell-1}$.

(Keep only vertices from C, discarding $\ell - p$ of them.)
Connectedness is l-Reconstructible for Large n

Def. Let $c(D) = \#$ of connected cards in a deck D.

Suppose G connected, H disconn., same $(n - l)$-deck D. $G \Rightarrow c(D) \geq 1$, so H has component C with $|V(C)| \geq n - l$.

Let $|V(C)| = n - p$, so $H \Rightarrow c(D) \leq \binom{n-p}{l-p} \leq \binom{n-1}{l-1}$.

(Keep only vertices from C, discarding $l - p$ of them.)

Also $H \Rightarrow \hat{c}(D) \geq \binom{n-1}{l}$, where $\hat{c}(D) = \#$ cards having a component of order $\leq l$. (Keep a vertex x outside C.)
Connectedness is ℓ-Reconstructible for Large n

Def. Let $c(\mathcal{D}) = \#$ of connected cards in a deck \mathcal{D}.

Suppose G connected, H disconn., same $(n - \ell)$-deck \mathcal{D}.
$G \Rightarrow c(\mathcal{D}) \geq 1$, so H has component C with $|V(C)| \geq n - \ell$.

Let $|V(C)| = n - p$, so $H \Rightarrow c(\mathcal{D}) \leq \binom{n-p}{\ell} \leq \binom{n-1}{\ell}$. (Keep only vertices from C, discarding $\ell - p$ of them.)

Also $H \Rightarrow \hat{c}(\mathcal{D}) \geq \binom{n-1}{\ell}$, where $\hat{c}(\mathcal{D}) = \#$cards having a component of order $\leq \ell$. (Keep a vertex x outside C.)

Idea: From G get lower bd on $c(\mathcal{D})$ & upper bd on $\hat{c}(\mathcal{D})$, leading to contradiction when n is large.
Connectedness is \(l \)-Reconstructible for Large \(n \)

Def. Let \(c(\mathcal{D}) = \# \) of connected cards in a deck \(\mathcal{D} \).

Suppose \(G \) connected, \(H \) disconn., same \((n - l)\)-deck \(\mathcal{D} \).

\(G \Rightarrow c(\mathcal{D}) \geq 1 \), so \(H \) has component \(C \) with \(|V(C)| \geq n - l\).

Let \(|V(C)| = n - p\), so \(H \Rightarrow c(\mathcal{D}) \leq \binom{n-p}{l-p} \leq \binom{n-1}{l-1} \).

(Keep only vertices from \(C \), discarding \(l - p \) of them.)

Also \(H \Rightarrow \hat{c}(\mathcal{D}) \geq \binom{n-1}{l} \), where \(\hat{c}(\mathcal{D}) = \# \) cards having a component of order \(\leq l \). (Keep a vertex \(x \) outside \(C \).)

Idea: From \(G \) get lower bd on \(c(\mathcal{D}) \) & upper bd on \(\hat{c}(\mathcal{D}) \), leading to contradiction when \(n \) is large.

Let \(T \) be a spanning tree of \(G \), and let \(\mathcal{D}' = \mathcal{D}_{n-l}(T) \).
Connectedness is l-Reconstructible for Large n

Def. Let $c(D) = \# \text{ of connected cards in a deck } D$.

Suppose G connected, H disconn., same $(n - l)$-deck D.
$G \Rightarrow c(D) \geq 1$, so H has component C with $|V(C)| \geq n - l$.

Let $|V(C)| = n - p$, so $\quad H \Rightarrow c(D) \leq \binom{n-p}{l-p} \leq \binom{n-1}{l-1}$.
(Keep only vertices from C, discarding $l - p$ of them.)

Also $H \Rightarrow \hat{c}(D) \geq \binom{n-1}{l}$, where $\hat{c}(D) = \# \text{cards having a component of order } \leq l$. (Keep a vertex x outside C.)

Idea: From G get lower bd on $c(D)$ & upper bd on $\hat{c}(D)$, leading to contradiction when n is large.

Let T be a spanning tree of G, and let $D' = D_{n-l}(T)$.
• $c(D) \geq c(D')$ and $\hat{c}(D) \leq \hat{c}(D')$ (using same vertices).
Connectedness is \(\ell \)-Reconstructible for Large \(n \)

Def. Let \(c(\mathcal{D}) \) = \# of connected cards in a deck \(\mathcal{D} \).

Suppose \(G \) connected, \(H \) disconn., same \((n - \ell)\)-deck \(\mathcal{D} \).
\(G \Rightarrow c(\mathcal{D}) \geq 1 \), so \(H \) has component \(C \) with \(|V(C)| \geq n - \ell \).

Let \(|V(C)| = n - p \), so

\[H \Rightarrow c(\mathcal{D}) \leq \binom{n-p}{\ell-p} \leq \binom{n-1}{\ell-1}. \]

(Keep only vertices from \(C \), discarding \(\ell - p \) of them.)

Also \(H \Rightarrow \hat{c}(\mathcal{D}) \geq \binom{n-1}{\ell} \), where \(\hat{c}(\mathcal{D}) \) = \# cards having a component of order \(\leq \ell \).

(Keeper a vertex \(x \) outside \(C \).)

Idea: From \(G \) get lower bd on \(c(\mathcal{D}) \) & upper bd on \(\hat{c}(\mathcal{D}) \), leading to contradiction when \(n \) is large.

Let \(T \) be a spanning tree of \(G \), and let \(\mathcal{D}' = \mathcal{D}_{n-\ell}(T) \).

- \(c(\mathcal{D}) \geq c(\mathcal{D}') \) and \(\hat{c}(\mathcal{D}) \leq \hat{c}(\mathcal{D}') \) (using same vertices).

Get lower bd on \(c(\mathcal{D}') \) & upper bd on \(\hat{c}(\mathcal{D}') \) instead.
Cards in D'

Let t be the number of leaves in T.
Cards in \mathcal{D}'

Let t be the number of leaves in T.
Deleting leaves doesn’t disconnect, so $c(\mathcal{D}) \geq c(\mathcal{D}') \geq \left(\frac{t}{\ell} \right)$.
Cards in \mathcal{D}'

Let t be the number of leaves in T. Deleting leaves doesn’t disconnect, so $c(\mathcal{D}) \geq c(\mathcal{D}') \geq \binom{t}{\ell}$.

Thus $\frac{t(\ell)}{\ell!} = \binom{t}{\ell} \leq c(\mathcal{D}) \leq \binom{n-1}{\ell-1} \leq \binom{n}{\ell-1} = \frac{n(\ell-1)}{(\ell-1)!}$.
Cards in \mathcal{D}'

Let t be the number of leaves in T.
Deleting leaves doesn’t disconnect, so $c(\mathcal{D}) \geq c(\mathcal{D}') \geq \binom{t}{\ell}$.
Thus $\frac{\binom{t}{\ell}}{\ell!} \leq c(\mathcal{D}) \leq \binom{n-1}{\ell-1} \leq \binom{n}{\ell-1} = \frac{n(n-1)}{(l-1)!}$.

Hence $(t - \ell)^\ell < \ell n^{\ell-1}$, yielding $t < n(2\ell/n)^{1/\ell}$ for $n > \ell^{\ell^2}$.

Cards in \mathcal{D}'

Let t be the number of leaves in T. Deleting leaves doesn’t disconnect, so $c(\mathcal{D}) \geq c(\mathcal{D}') \geq \binom{t}{\ell}$. Thus $\frac{t(\ell)}{\ell!} = \binom{t}{\ell} \leq c(\mathcal{D}) \leq \binom{n-1}{\ell-1} \leq \binom{n}{\ell-1} = \frac{n(\ell-1)}{(\ell-1)!}$. Hence $(t - \ell)^\ell < \ell n^{\ell-1}$, yielding $t < n(2\ell/n)^{1/\ell}$ for $n > \ell^{\ell^2}$.

Every card in \mathcal{D}' counted by $\hat{c}(\mathcal{D}')$ has a tree component F with $|V(F)| \leq \ell$, cut off by at most ℓ vertices.
Cards in \mathcal{D}'

Let t be the number of leaves in T.
Deleting leaves doesn’t disconnect, so $c(\mathcal{D}) \geq c(\mathcal{D}') \geq \binom{t}{\ell}$.
Thus $\frac{t(\ell)}{\ell!} = \binom{t}{\ell} \leq c(\mathcal{D}) \leq \binom{n-1}{\ell-1} \leq \binom{n}{\ell-1} = \frac{n(\ell-1)}{(\ell-1)!}$.
Hence $(t - \ell)^\ell < \ell n^{\ell-1}$, yielding $t < n(2\ell/n)^{1/\ell}$ for $n > \ell^2$.

Every card in \mathcal{D}' counted by $\hat{c}(\mathcal{D}')$ has a tree component F with $|V(F)| \leq \ell$, cut off by at most ℓ vertices.

If F is cut off by j vertices, then F is a component in fewer than $\binom{n}{\ell-j}$ cards.
Cards in \mathcal{D}'

Let t be the number of leaves in T.
Deleting leaves doesn’t disconnect, so $c(\mathcal{D}) \geq c(\mathcal{D}') \geq \binom{t}{\ell}$.

Thus \(\frac{t(\ell)}{\ell!} = \binom{t}{\ell} \leq c(\mathcal{D}) \leq \binom{n-1}{\ell-1} \leq \binom{n}{\ell-1} = \frac{n(n-1)}{(\ell-1)!} \).

Hence \((t - \ell)^\ell < \ell n^{\ell-1}\), yielding \(t < n(2\ell/n)^{1/\ell}\) for \(n > \ell^{\ell^2}\).

Every card in \mathcal{D}' counted by $\hat{c}(\mathcal{D}')$ has a tree component F with $|V(F)| \leq \ell$, cut off by at most ℓ vertices.

If F is cut off by j vertices, then F is a component in fewer than $\binom{n}{\ell-j}$ cards. Let $b_j = \#$ such subtrees F.
Cards in \mathcal{D}'

Let t be the number of leaves in T. Deleting leaves doesn’t disconnect, so $c(\mathcal{D}) \geq c(\mathcal{D}') \geq \binom{t}{\ell}$.

Thus $\frac{t(\ell)}{\ell!} = \binom{t}{\ell} \leq c(\mathcal{D}) \leq \binom{n-1}{\ell-1} \leq \binom{n}{\ell-1} = \frac{n(n-1)(n-2)\cdots(n-\ell+1)}{(\ell-1)!}$.

Hence $(t - \ell)^\ell < \ell n^{\ell-1}$, yielding $t < n(2\ell/n)^{1/\ell}$ for $n > \ell^2$.

Every card in \mathcal{D}' counted by $\hat{c}(\mathcal{D}')$ has a tree component F with $|V(F)| \leq \ell$, cut off by at most ℓ vertices.

If F is cut off by j vertices, then F is a component in fewer than $\binom{n}{\ell-j}$ cards. Let $b_j = \#$ such subtrees F.

Hence $\hat{c}(\mathcal{D}) \leq \hat{c}(\mathcal{D}') \leq \sum_{j=1}^{\ell} b_j \binom{n}{\ell-j}$.
Cards in \mathcal{D}'

Let t be the number of leaves in T. Deleting leaves doesn’t disconnect, so $c(\mathcal{D}) \geq c(\mathcal{D}') \geq \binom{t}{\ell}$. Thus $\frac{t}{\ell!} \leq c(\mathcal{D}) \leq \binom{n-1}{\ell-1} \leq \binom{n}{\ell-1} = \frac{n(n-1)}{(l-1)!}$.

Hence $(t - \ell)^l < \ell n^{l-1}$, yielding $t < n\left(\frac{2\ell}{n}\right)^{1/l}$ for $n > \ell^{l^2}$.

Every card in \mathcal{D}' counted by $\hat{c}(\mathcal{D}')$ has a tree component F with $|V(F)| \leq \ell$, cut off by at most ℓ vertices. If F is cut off by j vertices, then F is a component in fewer than $\binom{n}{\ell-j}$ cards. Let $b_j = \#$ such subtrees F.

Hence $\hat{c}(\mathcal{D}) \leq \hat{c}(\mathcal{D}') \leq \sum_{j=1}^{\ell} b_j \binom{n}{\ell-j}$.

We claim: $b_j \binom{n}{\ell-j} \leq \frac{\ell}{2} n^{l-1} t$.
Cards in \mathcal{D}'

Let t be the number of leaves in T.
Deleting leaves doesn’t disconnect, so $c(\mathcal{D}) \geq c(\mathcal{D}') \geq \binom{t}{\ell}$.
Thus $\frac{t(\ell)}{\ell!} = \binom{t}{\ell} \leq c(\mathcal{D}) \leq \binom{n-1}{\ell-1} \leq \binom{n}{\ell-1} = \frac{n(\ell-1)}{(\ell-1)!}$.

Hence $(t - \ell)^{\ell} < \ell n^{\ell-1}$, yielding $t < n(2\ell/n)^{1/\ell}$ for $n > \ell^2$.

Every card in \mathcal{D}' counted by $\hat{c}(\mathcal{D}')$ has a tree component F with $|V(F)| \leq \ell$, cut off by at most ℓ vertices.

If F is cut off by j vertices, then F is a component in fewer than $\binom{n}{\ell-j}$ cards. Let $b_j = \#\text{such subtrees } F$.

Hence $\hat{c}(\mathcal{D}) \leq \hat{c}(\mathcal{D}') \leq \sum_{j=1}^{\ell} b_j \binom{n}{\ell-j}$.

We claim: $b_j \binom{n}{\ell-j} \leq \frac{\ell}{2} n^{\ell-1} t$.

Thus $\left(\frac{n-\ell}{\ell}\right)^{\ell} < \binom{n-1}{\ell} \leq \hat{c}(\mathcal{D}) \leq \frac{\ell^2}{2} n^{\ell-1} t < \frac{\ell^2}{2} n^{\ell} \left(\frac{2\ell}{n}\right)^{1/\ell}$.
Cards in \mathcal{D}'

Let t be the number of leaves in T. Deleting leaves doesn’t disconnect, so $c(\mathcal{D}) \geq c(\mathcal{D}') \geq \binom{t}{\ell}$. Thus $\frac{t(\ell)}{\ell!} = \binom{t}{\ell} \leq c(\mathcal{D}) \leq \binom{n-1}{\ell-1} \leq \binom{n}{\ell-1} = \frac{n(n-1)}{(\ell-1)!}$.

Hence $(t - \ell)^{\ell} < \ell n^{\ell-1}$, yielding $t < n(2\ell/n)^{1/\ell}$ for $n > \ell^{l^2}$.

Every card in \mathcal{D}' counted by $\hat{c}(\mathcal{D}')$ has a tree component F with $|V(F)| \leq \ell$, cut off by at most ℓ vertices. If F is cut off by j vertices, then F is a component in fewer than $\binom{n}{\ell-j}$ cards. Let $b_j = \#$ such subtrees F.

Hence $\hat{c}(\mathcal{D}) \leq \hat{c}(\mathcal{D}') \leq \sum_{j=1}^{\ell} b_j \binom{n}{\ell-j}$.

We claim: $b_j \binom{n}{\ell-j} \leq \frac{\ell}{2} n^{\ell-1} t$.

Thus $\left(\frac{n-\ell}{\ell}\right)^{\ell} < \binom{n-1}{\ell} \leq \hat{c}(\mathcal{D}) \leq \frac{\ell^2}{2} n^{\ell-1} t < \frac{\ell^2}{2} n^\ell \left(\frac{2\ell}{n}\right)^{1/\ell}$.

Requires $n < 2\ell^{(\ell+1)^2}$, roughly $\ell > \left(\frac{2 \log n}{\log \log n}\right)^{1/2}$. \tag*{☐}
Counting Small Subtrees

Thm. If T is an n-vertex tree with t leaves, and $j \leq \ell$, and b_j is $\#$subtrees F with $|V(F)| \leq \ell$ and exactly j outside nbrs, then $b_j \leq \binom{t}{j} \binom{\ell+j-1}{j}$.
Counting Small Subtrees

Thm. If T is an n-vertex tree with t leaves, and $j \leq \ell$, and b_j is the number of subtrees F with $|V(F)| \leq \ell$ and exactly j outside nbrs, then $b_j \leq \binom{t}{j} \binom{\ell-j+1}{j}$ (except $b_2 \leq nt\ell/2$).
Counting Small Subtrees

Thm. If T is an n-vertex tree with t leaves, and $j \leq \ell$, and b_j is the number of subtrees F with $|V(F)| \leq \ell$ and exactly j outside neighbors, then $b_j \leq \binom{t}{j} \binom{\ell+j-1}{j}$ (except $b_2 \leq nt\ell/2$).

$t = 8$

$l = 11$

$j = 4$

Pf. $j \geq 3$: Let S be the set of outside vertices with neighbors in F.

Counting Small Subtrees

Thm. If T is an n-vertex tree with t leaves, and $j \leq \ell$, and b_j is the number of subtrees F with $|V(F)| \leq \ell$ and exactly j outside nbrs, then $b_j \leq \binom{t}{j} \binom{\ell+j-1}{j}$ (except $b_2 \leq nt\ell/2$).

$t = 8$
$l = 11$
$j = 4$

Pf. $j \geq 3$: Let S be the set of outside vertices with nbrs in F. $F = \text{component of } T - S \text{ having vertices between those of } S$.
Counting Small Subtrees

Thm. If T is an n-vertex tree with t leaves, and $j \leq \ell$, and b_j is the number of subtrees F with $|V(F)| \leq \ell$ and exactly j outside nbrs, then $b_j \leq \binom{t}{j} \binom{\ell+j-1}{j}$ (except $b_2 \leq nt\ell/2$).

$t = 8$

\[\ell = 11 \]

\[j = 4 \]

Pf. $j \geq 3$: Let S be the set of outside vertices with nbrs in F. $F = \text{component of } T - S \text{ having vertices between those of } S$. Paths from F through S reach leaves S' of T.
Thm. If T is an n-vertex tree with t leaves, and $j \leq l$, and b_j is #subtrees F with $|V(F)| \leq l$ and exactly j outside nbrs, then $b_j \leq {t \choose j} \left(\frac{l+j-1}{j} \right)$ (except $b_2 \leq ntl/2$).

$t = 8$
$l = 11$
$j = 4$

Pf. $j \geq 3$: Let S be the set of outside vertices with nbrs in F. $F = \text{component of } T - S \text{ having vertices between those of } S$. Paths from F through S reach leaves S' of T. Bound #subgraphs F generating fixed S' of size j.
Thm. If T is an n-vertex tree with t leaves, and $j \leq \ell$, and b_j is #subtrees F with $|V(F)| \leq \ell$ and exactly j outside nbrs, then $b_j \leq \binom{t}{j} \binom{\ell+j-1}{j}$ (except $b_2 \leq ntl/2$).

Pf. \(j \geq 3\): Let S be the set of outside vertices with nbrs in F. $F = \text{component of } T - S$ having vertices between those of S. Paths from F through S reach leaves S' of T. Given S' (in $\binom{t}{j}$ ways), let T' be the tree generated by S'.

$t = 8$\[\begin{array}{c}
\text{\includegraphics[width=0.5\textwidth]{tree.png}}
\end{array}\]$
\ell = 11$
\(j = 4\)
Counting Small Subtrees

Thm. If T is an n-vertex tree with t leaves, and $j \leq \ell$, and b_j is the number of subtrees F with $|V(F)| \leq \ell$ and exactly j outside nbrs, then $b_j \leq \binom{t}{j} \binom{\ell+j-1}{j}$ (except $b_2 \leq nt\ell/2$).

$t = 8$

\[\ell = 11 \]

\[j = 4 \]

Pf. $j \geq 3$: Let S be the set of outside vertices with nbrs in F. F = component of $T - S$ having vertices between those of S. Paths from F through S reach leaves S' of T.

Given S' (in $\binom{t}{j}$ ways), let T' be the tree generated by S'.

The vertex $u \in S$ generating $v \in S'$ is on the path from v to the nearest branch vertex w in T'. Note $w \in V(F)$. Between w and u are fewer than ℓ vertices.
Counting Small Subtrees

Thm. If T is an n-vertex tree with t leaves, and $j \leq \ell$, and b_j is \#subtrees F with $|V(F)| \leq \ell$ and exactly j outside nbrs, then $b_j \leq \binom{t}{j} \binom{\ell + j - 1}{j}$ (except $b_2 \leq n t \ell / 2$).

- $t = 8$
- $\ell = 11$
- $j = 4$

Pf. $j \geq 3$: Let S be the set of outside vertices with nbrs in F. $F = \text{component of } T - S \text{ having vertices between those of } S$. Paths from F through S reach leaves S' of T. Given S' (in $\binom{t}{j}$ ways), let T' be the tree generated by S'. The vertex $u \in S$ generating $v \in S'$ is on the path from v to the nearest branch vertex w in T'. Note $w \in V(F)$. Between w and u are fewer than ℓ vertices. \# ways to place the break vertices $u \in S$ is at most \#solutions to $x_1 + \cdots + x_j \leq \ell - 1$, which equals $\binom{\ell + j - 1}{j}$.
Smaller cases

\[t = 8 \]
\[\ell = 5 \]
\[i = 3 \]

\[j = 2: \] Since \(T \) has \(t \) leaves, from each vertex \(u \) there are at most \(t \) vertices at distance \(i \), for \(2 \leq i \leq \ell + 1 \).
Smaller cases

\[t = 8 \]
\[\ell = 5 \]
\[i = 3 \]

\[j = 2 \]: Since \(T \) has \(t \) leaves, from each vertex \(u \) there are at most \(t \) vertices at distance \(i \), for \(2 \leq i \leq \ell + 1 \). Hence each vertex belongs to at most \(t\ell \) sets \(S \) of size 2 that can cut off desired subtrees; the bound is \(n\ell/2 \).
$j = 2$: Since T has t leaves, from each vertex u there are at most t vertices at distance i, for $2 \leq i \leq \ell + 1$.

Hence each vertex belongs to at most $t\ell$ sets S of size 2 that can cut off desired subtrees; the bound is $nt\ell/2$.

$j = 1$: From a leaf move toward the centroid at most ℓ steps to place the vertex u cutting off F;
Smaller cases

\[t = 8 \]
\[\ell = 5 \]
\[i = 3 \]

\(j = 2 \): Since \(T \) has \(t \) leaves, from each vertex \(u \) there are at most \(t \) vertices at distance \(i \), for \(2 \leq i \leq \ell + 1 \).

Hence each vertex belongs to at most \(t\ell \) sets \(S \) of size 2 that can cut off desired subtrees; the bound is \(n tl/2 \).

\(j = 1 \): From a leaf move toward the centroid at most \(\ell \) steps to place the vertex \(u \) cutting off \(F \); bound is \(t\ell \).
Smaller cases

\[t = 8 \]
\[\ell = 5 \]
\[i = 3 \]

\[j = 2: \text{ Since } T \text{ has } t \text{ leaves, from each vertex } u \text{ there are at most } t \text{ vertices at distance } i, \text{ for } 2 \leq i \leq \ell + 1. \]

Hence each vertex belongs to at most \(t\ell \) sets \(S \) of size 2 that can cut off desired subtrees; the bound is \(n t\ell / 2 \).

\[j = 1: \text{ From a leaf move toward the centroid at most } \ell \text{ steps to place the vertex } u \text{ cutting off } F; \text{ bound is } t\ell. \]

\[b_j \left(\begin{array}{c} n \\ \ell-j \end{array} \right) \leq (t_j^{\ell+j-1}) \left(\begin{array}{c} n \\ \ell-j \end{array} \right) \leq \frac{\ell}{2} n^{\ell-1} t \quad \text{(biggest when } j = 1) \]
Smaller cases

\(t = 8 \)
\(\ell = 5 \)
\(i = 3 \)

\(j = 2 \): Since \(T \) has \(t \) leaves, from each vertex \(u \) there are at most \(t \) vertices at distance \(i \), for \(2 \leq i \leq \ell + 1 \).

Hence each vertex belongs to at most \(t\ell \) sets \(S \) of size 2 that can cut off desired subtrees; the bound is \(n\ell/2 \).

\(j = 1 \): From a leaf move toward the centroid at most \(\ell \) steps to place the vertex \(u \) cutting off \(F \); bound is \(t\ell \).

- \(b_j(\binom{n}{\ell-j}) \leq (\binom{t}{j})(\ell+j-1)(\binom{n}{\ell-j}) \leq \frac{\ell}{2}n^{\ell-1}t \) (biggest when \(j = 1 \))

- For \(\ell = 3 \), these computations imply that connectedness is 3-reconstructible for \(n > 86,000,000 \).
Smaller cases

\[t = 8 \]
\[\ell = 5 \]
\[i = 3 \]

\[j = 2 \]: Since \(T \) has \(t \) leaves, from each vertex \(u \) there are at most \(t \) vertices at distance \(i \), for \(2 \leq i \leq \ell + 1 \).

Hence each vertex belongs to at most \(t\ell \) sets \(S \) of size 2 that can cut off desired subtrees; the bound is \(n\ell t/2 \).

\[j = 1 \]: From a leaf move toward the centroid at most \(\ell \) steps to place the vertex \(u \) cutting off \(F \); bound is \(t\ell \).

- \(b_j(\binom{n}{\ell-j}) \leq \binom{t}{j}(\binom{\ell+j-1}{j})(\binom{n}{\ell-j}) \leq \frac{\ell}{2}n^{\ell-1}t \) (biggest when \(j = 1 \))

- For \(\ell = 3 \), these computations imply that connectedness is 3-reconstructible for \(n > 86,000,000 \).

For \(\ell = 3 \), we reduce this to \(n \geq 25 \).
Smaller cases

\[t = 8 \]
\[\ell = 5 \]
\[i = 3 \]

\(j = 2 \): Since \(T \) has \(t \) leaves, from each vertex \(u \) there are at most \(t \) vertices at distance \(i \), for \(2 \leq i \leq \ell + 1 \).

Hence each vertex belongs to at most \(t\ell \) sets \(S \) of size 2 that can cut off desired subtrees; the bound is \(ntl/2 \).

\(j = 1 \): From a leaf move toward the centroid at most \(\ell \) steps to place the vertex \(u \) cutting off \(F \); bound is \(t\ell \).

\[b_j \left(\frac{n}{\ell-j} \right) \leq \binom{t}{j} \binom{\ell+j-1}{j} \binom{n}{\ell-j} \leq \frac{\ell}{2} n^{\ell-1} t \quad \text{(biggest when } j = 1) \]

\[\bullet \quad \text{For } \ell = 3, \text{ these computations imply that connectedness is } 3\text{-reconstructible for } n > 86,000,000. \]

For \(\ell = 3 \), we reduce this to \(n \geq 25 \).

For the ideas, see the appendix at the end of the slides.
Prob 11898 (Stanley [2016], Amer. Math. Monthly) If G is an n-vertex graph whose components are cycles of length greater than k, show that the number of independent sets of size k depends only on n and k.
Prob 11898 (Stanley [2016], Amer. Math. Monthly) If G is an n-vertex graph whose components are cycles of length greater than k, show that the number of independent sets of size k depends only on n and k.

Thm. Let G and G' be n-vertex graphs with maximum degree 2 and $|E(G)| = |E(G')|$. If every component in each graph is a cycle with more than k vertices or a path with at least $k - 1$ vertices, then $D_k(G) = D_k(G')$.
Maximum Degree 2

Prob 11898 (Stanley [2016], Amer. Math. Monthly) If G is an n-vertex graph whose components are cycles of length greater than k, show that the number of independent sets of size k depends only on n and k.

Thm. Let G and G' be n-vertex graphs with maximum degree 2 and $|E(G)| = |E(G')|$. If every component in each graph is a cycle with more than k vertices or a path with at least $k - 1$ vertices, then $D_k(G) = D_k(G')$.

(1) $D_k(C_{q+r}) = D_k(C_q + C_r)$ if $q, r \geq k + 1$,
(2) $D_k(P_{q+r}) = D_k(C_q + P_r)$ if $q \geq k + 1$ and $r \geq k - 1$, and
(3) $D_k(P_{q-1} + P_r) = D_k(P_q + P_{r-1})$ if $q, r \geq k$.

Maximum Degree 2

Prob 11898 (Stanley [2016], Amer. Math. Monthly) If G is an n-vertex graph whose components are cycles of length greater than k, show that the number of independent sets of size k depends only on n and k.

Thm. Let G and G' be n-vertex graphs with maximum degree 2 and $|E(G)| = |E(G')|$. If every component in each graph is a cycle with more than k vertices or a path with at least $k-1$ vertices, then $D_k(G) = D_k(G')$.

(1) $D_k(C_{q+r}) = D_k(C_q + C_r)$ if $q, r \geq k + 1$,

(2) $D_k(P_{q+r}) = D_k(C_q + P_r)$ if $q \geq k + 1$ and $r \geq k - 1$, and

(3) $D_k(P_{q-1} + P_r) = D_k(P_q + P_{r-1})$ if $q, r \geq k$.

In fact, (1,2,3) suffice to prove the theorem, because:
Prob 11898 (Stanley [2016], Amer. Math. Monthly) If G is an n-vertex graph whose components are cycles of length greater than k, show that the number of independent sets of size k depends only on n and k.

Thm. Let G and G' be n-vertex graphs with maximum degree 2 and $|E(G)| = |E(G')|$. If every component in each graph is a cycle with more than k vertices or a path with at least $k - 1$ vertices, then $D_k(G) = D_k(G')$.

(1) $D_k(C_{q+r}) = D_k(C_q + C_r)$ if $q, r \geq k + 1$,
(2) $D_k(P_{q+r}) = D_k(C_q + P_r)$ if $q \geq k + 1$ and $r \geq k - 1$, and
(3) $D_k(P_{q-1} + P_r) = D_k(P_q + P_{r-1})$ if $q, r \geq k$.

In fact, (1,2,3) suffice to prove the theorem, because:

Lem. If G, G', and H are graphs, then $D_k(G) = D_k(G')$ if and only if $D_k(G + H) = D_k(G' + H)$.
The full statement, roughly

(1) $D_k(C_{q+r}) = D_k(C_q + C_r)$ if $q, r \geq k + 1$,
(2) $D_k(P_{q+r}) = D_k(C_q + P_r)$ if $q \geq k + 1$ and $r \geq k - 1$, and
(3) $D_k(P_{q-1} + P_r) = D_k(P_q + P_{r-1})$ if $q, r \geq k$.

The full statement, roughly

(1) $D_k(C_{q+r}) = D_k(C_q + C_r)$ if $q, r \geq k + 1$,

(2) $D_k(P_{q+r}) = D_k(C_q + P_r)$ if $q \geq k + 1$ and $r \geq k - 1$, and

(3) $D_k(P_{q-1} + P_r) = D_k(P_q + P_{r-1})$ if $q, r \geq k$.

Thm. Given G with $\Delta(G) = 2$, largest component F with $m = |V(F)|$, and next largest with m' vertices, G is k-deck reconstructible iff $k \geq \max\{\lfloor m/2 \rfloor + \epsilon, m' + \epsilon'\}$, where $\epsilon = 1$ if $F = P_m$ (else $\epsilon = 0$), and $\epsilon' \in \{0, 1, 2\}$.
The full statement, roughly

(1) \(D_k(C_{q+r}) = D_k(C_q + C_r)\) if \(q, r \geq k + 1\),
(2) \(D_k(P_{q+r}) = D_k(C_q + P_r)\) if \(q \geq k + 1\) and \(r \geq k - 1\), and
(3) \(D_k(P_{q-1} + P_r) = D_k(P_q + P_{r-1})\) if \(q, r \geq k\).

Thm. Given \(G\) with \(\Delta(G) = 2\), largest component \(F\) with \(m = |V(F)|\), and next largest with \(m'\) vertices, \(G\) is \(k\)-deck reconstructible iff \(k \geq \max\{\lfloor m/2 \rfloor + \epsilon, m' + \epsilon'\}\), where \(\epsilon = 1\) if \(F = P_m\) (else \(\epsilon = 0\)), and \(\epsilon' \in \{0, 1, 2\}\).

Let \(s(G, H) = \#\) induced copies of \(H\) in \(G\).
The full statement, roughly

(1) $D_k(C_{q+r}) = D_k(C_q + C_r)$ if $q, r \geq k + 1$,
(2) $D_k(P_{q+r}) = D_k(C_q + P_r)$ if $q \geq k + 1$ and $r \geq k - 1$, and
(3) $D_k(P_{q-1} + P_r) = D_k(P_q + P_{r-1})$ if $q, r \geq k$.

Thm. Given G with $\Delta(G) = 2$, largest component F with $m = |V(F)|$, and next largest with m' vertices, G is k-deck reconstructible iff $k \geq \max\{ \lfloor m/2 \rfloor + \epsilon, m' + \epsilon' \}$, where $\epsilon = 1$ if $F = P_m$ (else $\epsilon = 0$), and $\epsilon' \in \{0, 1, 2\}$.

Let $s(G, H) = \#$ induced copies of H in G.

Let $s'(G', H') = \#$ induced copies of H' having a named vertex z of G' as an isolated vertex in H'. ($H' = H + P_1$)
The full statement, roughly

(1) $D_k(C_{q+r}) = D_k(C_q + C_r)$ if $q, r \geq k + 1$,
(2) $D_k(P_{q+r}) = D_k(C_q + P_r)$ if $q \geq k + 1$ and $r \geq k - 1$, and
(3) $D_k(P_{q-1} + P_r) = D_k(P_q + P_{r-1})$ if $q, r \geq k$.

Thm. Given G with $\Delta(G) = 2$, largest component F with $m = |V(F)|$, and next largest with m' vertices, G is k-deck reconstructible iff $k \geq \max\{\lfloor m/2 \rfloor + \epsilon, m' + \epsilon'\}$, where $\epsilon = 1$ if $F = P_m$ (else $\epsilon = 0$), and $\epsilon' \in \{0, 1, 2\}$.

Let $s(G, H) = \#$ induced copies of H in G.

Let $s'(G', H') = \#$ induced copies of H' having a named vertex z of G' as an isolated vertex in H'. ($H' = H + P_1$)

- $s'(P_n, H')$ is indep of z when far enough from ends.
Independent of the Named Vertex

Lem. Let L^m be the linear forest $\sum_{i=1}^{p} m_i P_{\ell_i}$ with k vertices, and let $P_n = \langle w_1, \ldots, w_n \rangle$. For all $z = w_h$ with $k \leq h \leq n + 1 - k$, the value $s'(P_n, L^m)$ is the same.
Lem. Let L^m be the linear forest $\sum_{i=1}^{p} m_i P_{\ell_i}$ with k vertices, and let $P_n = \langle w_1, \ldots, w_n \rangle$. For all $z = w_h$ with $k \leq h \leq n + 1 - k$, the value $s'(P_n, L^m)$ is the same.

Pf. Induction on k. For $k = 1$, any w_h is in one P_1.
Lem. Let L^m be the linear forest $\sum_{i=1}^{p} m_i P_{\ell_i}$ with k vertices, and let $P_n = \langle w_1, \ldots, w_n \rangle$. For all $z = w_h$ with $k \leq h \leq n + 1 - k$, the value $s'(P_n, L^m)$ is the same.

Pf. Induction on k. For $k = 1$, any w_h is in one P_1. Compare $s'(P_n, L^m)$ to $s'(C_n, L^m)$ with edge $w_n w_1$.
Independent of the Named Vertex

Lem. Let L^m be the linear forest $\sum_{i=1}^{p} m_i P_{\ell_i}$ with k vertices, and let $P_n = \langle w_1, \ldots, w_n \rangle$. For all $z = w_h$ with $k \leq h \leq n + 1 - k$, the value $s'(P_n, L^m)$ is the same.

Pf. Induction on k. For $k = 1$, any w_h is in one P_1. Compare $s'(P_n, L^m)$ to $s'(C_n, L^m)$ with edge $w_n w_1$. By symmetry, $s'(C_n, L^m)$ is independent of h.
Independent of the Named Vertex

Lem. Let L^m be the linear forest $\sum_{i=1}^{p} m_i P_{\ell_i}$ with k vertices, and let $P_n = \langle w_1, \ldots, w_n \rangle$. For all $z = w_h$ with $k \leq h \leq n + 1 - k$, the value $s'(P_n, L^m)$ is the same.

Pf. Induction on k. For $k = 1$, any w_h is in one P_1. Compare $s'(P_n, L^m)$ to $s'(C_n, L^m)$ with edge $w_n w_1$. By symmetry, $s'(C_n, L^m)$ is independent of h.

$s'(C_n, L^m)$ omits copies of L^m in P_n using w_1 and w_n. $s'(C_n, L^m)$ counts unwanted subgraphs using $w_n w_1$.
Independent of the Named Vertex

Lem. Let L^m be the linear forest $\sum_{i=1}^{p} m_i P_{\ell_i}$ with k vertices, and let $P_n = \langle w_1, \ldots, w_n \rangle$. For all $z = w_h$ with $k \leq h \leq n + 1 - k$, the value $s'(P_n, L^m)$ is the same.

Pf. Induction on k. For $k = 1$, any w_h is in one P_1.

Compare $s'(P_n, L^m)$ to $s'(C_n, L^m)$ with edge $w_n w_1$.

By symmetry, $s'(C_n, L^m)$ is independent of h.

$s'(C_n, L^m)$ omits copies of L^m in P_n using w_1 and w_n.

$s'(C_n, L^m)$ counts unwanted subgraphs using $w_n w_1$.

With $L^m_i = L^m - V(P_{\ell_i})$ and $L^m_{i,j} = L^m - V(P_{\ell_i} + P_{\ell_j})$, we have

$$s'(P_n, L^m) = s'(C_n, L^m) + \sum_{i,j} s'(P_{n-(\ell_i+\ell_j+2)}, L^m_{i,j})$$

$$- \sum_i (\ell_i - 1) s'(P_{n-(\ell_i+2)}, L^m_i)$$
Independent of the Named Vertex

Lem. Let L^m be the linear forest $\sum_{i=1}^{p} m_i P_{\ell_i}$ with k vertices, and let $P_n = \langle w_1, \ldots, w_n \rangle$. For all $z = w_h$ with $k \leq h \leq n + 1 - k$, the value $s'(P_n, L^m)$ is the same.

Pf. Induction on k. For $k = 1$, any w_h is in one P_1. Compare $s'(P_n, L^m)$ to $s'(C_n, L^m)$ with edge $w_n w_1$.

By symmetry, $s'(C_n, L^m)$ is independent of h.

$s'(C_n, L^m)$ omits copies of L^m in P_n using w_1 and w_n. $s'(C_n, L^m)$ counts unwanted subgraphs using $w_n w_1$.

With $L^m_i = L^m - V(P_{\ell_i})$ and $L^m_{i,j} = L^m - V(P_{\ell_i} + P_{\ell_j})$, we have

$$s'(P_n, L^m) = s'(C_n, L^m) + \sum_{i,j} s'(P_n-(\ell_i+\ell_j+2), L^m_{i,j}) - \sum_{i}(\ell_i - 1)s'(P_n-(\ell_i+2), L^m_i)$$

w_h is far enough from the ends to use induction hyp.
Same k-deck

(3) $D_k(P_{q-1} + P_r) = D_k(P_q + P_{r-1})$ if $q, r \geq k$.

With $q, r \geq k$, either index h for $z = w_h$ satisfies $k + 1 \leq h \leq (q + r + 3) - (k + 1)$, so $s'(P_{q+r+2}, L^m + P_1)$ is the same for both when $|V(L^m)| = k$. \[\square\]
Same k-deck

(3) $\mathcal{D}_k(P_{q-1} + P_r) = \mathcal{D}_k(P_q + P_{r-1})$ if $q, r \geq k$.

With $q, r \geq k$, either index h for $z = w_h$ satisfies $k + 1 \leq h \leq (q + r + 3) - (k + 1)$, so $s'(P_{q+r+2}, L^m + P_1)$ is the same for both when $|V(L^m)| = k$.

(2) $\mathcal{D}_k(P_{q+r}) = \mathcal{D}_k(C_q + P_r)$ if $q \geq k + 1$ and $r \geq k - 1$.
Same k-deck

(3) $D_k(P_{q-1} + P_r) = D_k(P_q + P_{r-1})$ if $q, r \geq k$.

With $q, r \geq k$, either index h for $z = w_h$ satisfies $k + 1 \leq h \leq (q + r + 3) - (k + 1)$, so $s'(P_{q+r+2}, L^m + P_1)$ is the same for both when $|V(L^m)| = k$.

(2) $D_k(P_{q+r}) = D_k(C_q + P_r)$ if $q \geq k + 1$ and $r \geq k - 1$. Let $P_{q+r} = \langle w_1, \ldots, w_{q+r} \rangle$ and $C_q = [w_1, \ldots, w_q]$.

\[D_k(P_{q-1} + P_r) = D_k(P_q + P_{r-1}) \text{ if } q, r \geq k. \]
Same \(k \)-deck

(3) \(\mathcal{D}_k(P_{q-1} + P_r) = \mathcal{D}_k(P_q + P_{r-1}) \) if \(q, r \geq k \).

With \(q, r \geq k \), either index \(h \) for \(z = w_h \) satisfies \(k + 1 \leq h \leq (q + r + 3) - (k + 1) \), so \(s'(P_{q+r+2}, L^m + P_1) \) is the same for both when \(|V(L^m)| = k \).

(2) \(\mathcal{D}_k(P_{q+r}) = \mathcal{D}_k(C_q + P_r) \) if \(q \geq k + 1 \) and \(r \geq k - 1 \).

Let \(P_{q+r} = \langle w_1, \ldots, w_{q+r} \rangle \) and \(C_q = [w_1, \ldots, w_q] \).

If \(w_q \) not in copy of \(L^m \), both cases give \(s(P_{q-1} + P_r, L^m) \).
Same k-deck

(3) $\mathcal{D}_k(P_{q-1} + P_r) = \mathcal{D}_k(P_q + P_{r-1})$ if $q, r \geq k$.

With $q, r \geq k$, either index h for $z = w_h$ satisfies $k + 1 \leq h \leq (q + r + 3) - (k + 1)$, so $s'(P_{q+r+2}, L^m + P_1)$ is the same for both when $|V(L^m)| = k$.

(2) $\mathcal{D}_k(P_{q+r}) = \mathcal{D}_k(C_q + P_r)$ if $q \geq k + 1$ and $r \geq k - 1$.
Let $P_{q+r} = \langle w_1, \ldots, w_{q+r} \rangle$ and $C_q = [w_1, \ldots, w_q]$.
If w_q not in copy of L^m, both cases give $s(P_{q-1} + P_r, L^m)$.
If used, sum over position of w_q in which P_{ℓ_i} in L^m.

G'

\[\begin{align*}
q - 1 & \quad z & \quad r \\
q & \quad z & \quad r - 1
\end{align*} \]
Same k-deck

(3) $\mathcal{D}_k(P_{q-1} + P_r) = \mathcal{D}_k(P_q + P_{r-1})$ if $q, r \geq k$.

With $q, r \geq k$, either index h for $z = w_h$ satisfies $k + 1 \leq h \leq (q + r + 3) - (k + 1)$, so $s'(P_{q+r+2}, L^m + P_1)$ is the same for both when $|V(L^m)| = k$.

(2) $\mathcal{D}_k(P_{q+r}) = \mathcal{D}_k(C_q + P_r)$ if $q \geq k + 1$ and $r \geq k - 1$.
Let $P_{q+r} = \langle w_1, \ldots, w_{q+r} \rangle$ and $C_q = [w_1, \ldots, w_q]$.
If w_q not in copy of L^m, both cases give $s(P_{q-1} + P_r, L^m)$.
If used, sum over position of w_q in which P_{ℓ_i} in L^m.
By (3), corresponding terms are equal.
Same k-deck

(3) $\mathcal{D}_k(P_{q-1} + P_r) = \mathcal{D}_k(P_q + P_{r-1})$ if $q, r \geq k$.

With $q, r \geq k$, either index h for $z = w_h$ satisfies $k + 1 \leq h \leq (q + r + 3) - (k + 1)$, so $s'(P_q+r+2, L^m + P_1)$ is the same for both when $|V(L^m)| = k$.

(2) $\mathcal{D}_k(P_{q+r}) = \mathcal{D}_k(C_q + P_r)$ if $q \geq k + 1$ and $r \geq k - 1$.

Let $P_{q+r} = \langle w_1, \ldots, w_{q+r} \rangle$ and $C_q = [w_1, \ldots, w_q]$.

If w_q not in copy of L^m, both cases give $s(P_{q-1}+P_r, L^m)$.

If used, sum over position of w_q in which P_{ℓ_i} in L^m.

By (3), corresponding terms are equal.

(1) $\mathcal{D}_k(C_{q+r}) = \mathcal{D}_k(C_q + C_r)$ if $q, r \geq k + 1$.
Same k-deck

(3) $D_k(P_{q-1} + P_r) = D_k(P_q + P_{r-1})$ if $q, r \geq k$.

With $q, r \geq k$, either index h for $z = w_h$ satisfies $k + 1 \leq h \leq (q + r + 3) - (k + 1)$, so $s'(P_{q+r+2}, L^m + P_1)$ is the same for both when $|V(L^m)| = k$.

(2) $D_k(P_{q+r}) = D_k(C_q + P_r)$ if $q \geq k + 1$ and $r \geq k - 1$.

Let $P_{q+r} = \langle w_1, \ldots, w_{q+r} \rangle$ and $C_q = [w_1, \ldots, w_q]$.

If w_q not in copy of L^m, both cases give $s(P_{q-1} + P_r, L^m)$.

If used, sum over position of w_q in which P_{ℓ_i} in L^m.

By (3), corresponding terms are equal.

(1) $D_k(C_{q+r}) = D_k(C_q + C_r)$ if $q, r \geq k + 1$.

Same idea, reducing to equalities given by (2).
Proving k-deck Reconstructibility

Lem. If all components with more than k vertices are determined by $\mathcal{D}_k(G)$, then G is determined by $\mathcal{D}_k(G)$.
Proving k-deck Reconstructibility

Lem. If all components with more than k vertices are determined by $\mathcal{D}_k(G)$, then G is determined by $\mathcal{D}_k(G)$.

Pf. Since $\mathcal{D}_k(G)$ determines $\mathcal{D}_{k-1}(G)$, it suffices to find the k-vertex components F and iterate.
Proving k-deck Reconstructibility

Lem. If all components with more than k vertices are determined by $\mathcal{D}_k(G)$, then G is determined by $\mathcal{D}_k(G)$.

Pf. Since $\mathcal{D}_k(G)$ determines $\mathcal{D}_{k-1}(G)$, it suffices to find the k-vertex components F and iterate.

$$\#F\text{-components} = \left[\#F\text{-cards in } \mathcal{D}_k(G) \right] - \sum_{i=1}^{r} s(H_i, F),$$

where H_1, \ldots, H_r are the larger components.

\blacksquare
Proving k-deck Reconstructibility

Lem. If all components with more than k vertices are determined by $\mathcal{D}_k(G)$, then G is determined by $\mathcal{D}_k(G)$.

Pf. Since $\mathcal{D}_k(G)$ determines $\mathcal{D}_{k-1}(G)$, it suffices to find the k-vertex components F and iterate.

\[
\text{\#F-components} = \left[\text{\#F-cards in } \mathcal{D}_k(G) \right] - \sum_{i=1}^{r} s(H_i, F),
\]

where H_1, \ldots, H_r are the larger components.

Let q be \#path components with at least $k-1$ vertices.
Lem. If all components with more than k vertices are determined by $D_k(G)$, then G is determined by $D_k(G)$.

Pf. Since $D_k(G)$ determines $D_{k-1}(G)$, it suffices to find the k-vertex components F and iterate.

$$\#F\text{-components} = \left[\#F\text{-cards in } D_k(G) \right] - \sum_{i=1}^{r} s(H_i, F),$$
where H_1, \ldots, H_r are the larger components.

Let q be $\# path components with at least $k - 1$ vertices.

Lem. If $\Delta(G) = 2$, then $q = s(G,P_{k-1}) - s(G,P_k) - ks(G,C_k)$.

Note: The $D_k(G)$ notation refers to the k-deck of graph G, which is a collection of subgraphs of G with k vertices. The $s(H,F)$ notation represents the number of shared cards between components H and F. The $\Delta(G)$ notation represents the maximum degree of the graph G.
Proving k-deck Reconstructibility

Lem. If all components with more than k vertices are determined by $\mathcal{D}_k(G)$, then G is determined by $\mathcal{D}_k(G)$.

Pf. Since $\mathcal{D}_k(G)$ determines $\mathcal{D}_{k-1}(G)$, it suffices to find the k-vertex components F and iterate.

$$\#F\text{-components} = [\#F\text{-cards in } \mathcal{D}_k(G)] - \sum_{i=1}^{r} s(H_i, F),$$

where H_1, \ldots, H_r are the larger components.

Let q be $\#$ path components with at least $k-1$ vertices.

Lem. If $\Delta(G) = 2$, then $q = s(G, P_{k-1}) - s(G, P_k) - ks(G, C_k)$.

Pf. Each such path contributes 1 to $s(G, P_{k-1}) - s(G, P_k)$. Each k-cycle contributes 0 to $s(G, P_{k-1}) - ks(G, C_k)$. Each longer cycle contributes 0 to $s(G, P_{k-1}) - s(G, P_k)$.

Proving \(k \)-deck Reconstructibility

Lem. If all components with more than \(k \) vertices are determined by \(D_k(G) \), then \(G \) is determined by \(D_k(G) \).

Pf. Since \(D_k(G) \) determines \(D_{k-1}(G) \), it suffices to find the \(k \)-vertex components \(F \) and iterate.

\[
\text{\#F-components} = \left(\text{\#F-cards in } D_k(G) \right) - \sum_{i=1}^{r} s(H_i, F),
\]
where \(H_1, \ldots, H_r \) are the larger components.

Let \(q \) be \#path components with at least \(k - 1 \) vertices.

Lem. If \(\Delta(G) = 2 \), then \(q = s(G, P_{k-1}) - s(G, P_k) - ks(G, C_k) \).

Pf. Each such path contributes \(1 \) to \(s(G, P_{k-1}) - s(G, P_k) \).
Each \(k \)-cycle contributes \(0 \) to \(s(G, P_{k-1}) - ks(G, C_k) \).
Each longer cycle contributes \(0 \) to \(s(G, P_{k-1}) - s(G, P_k) \).

Lem. If \(\Delta(G) = 2 \), then \(D_k(G) \) determines \(q \).
Proving k-deck Reconstructibility

Lem. If all components with more than k vertices are determined by $D_k(G)$, then G is determined by $D_k(G)$.

Pf. Since $D_k(G)$ determines $D_{k-1}(G)$, it suffices to find the k-vertex components F and iterate.

$\#F$-components $= \left[\#F\text{-cards in } D_k(G) \right] - \sum_{i=1}^{r} s(H_i, F)$, where H_1, \ldots, H_r are the larger components.

Let q be $\#$ path components with at least $k - 1$ vertices.

Lem. If $\Delta(G)=2$, then $q = s(G, P_{k-1}) - s(G, P_k) - ks(G, C_k)$.

Pf. Each such path contributes 1 to $s(G, P_{k-1}) - s(G, P_k)$. Each k-cycle contributes 0 to $s(G, P_{k-1}) - ks(G, C_k)$. Each longer cycle contributes 0 to $s(G, P_{k-1}) - s(G, P_k)$.

Lem. If $\Delta(G) = 2$, then $D_k(G)$ determines q.

Pf. $s(G, P_k)$ and $s(G, C_k)$ just count cards. Each copy of P_{k-1} is in $n-k+1$ cards, so $s(G, P_{k-1}) = \frac{\sum_{Q \in D_k(G)} s(Q, P_{k-1})}{n-k+1}$.
How to Use the Lemmas

\[k \geq \max\{\lfloor m/2 \rfloor + \epsilon, m' + \epsilon'\} \implies D_k(G) \text{ determines } G \]
How to Use the Lemmas

\[k \geq \max\{\lfloor m/2 \rfloor + \epsilon, m' + \epsilon'\} \implies D_k(G) \text{ determines } G \]

Manvel [1974] showed that \(D_k(G) \) determines the degree list when \(k \geq \Delta(G) + 2 \). (We need special arguments when \(k = 3 \).) Henceforth \(\Delta(G) = 2 \).
How to Use the Lemmas

\[k \geq \max\{\lfloor m/2 \rfloor + \epsilon, m' + \epsilon'\} \Rightarrow D_k(G) \text{ determines } G \]

Manvel [1974] showed that \(D_k(G) \) determines the degree list when \(k \geq \Delta(G) + 2 \). (We need special arguments when \(k = 3 \).) Henceforth \(\Delta(G) = 2 \).

Let \(q \) be \# path components with at least \(k - 1 \) vertices.
How to Use the Lemmas

\[k \geq \max\{\lfloor m/2 \rfloor + \epsilon, m' + \epsilon'\} \Rightarrow D_k(G) \text{ determines } G \]

Manvel [1974] showed that \(D_k(G) \) determines the degree list when \(k \geq \Delta(G) + 2 \). (We need special arguments when \(k = 3 \).) Henceforth \(\Delta(G) = 2 \).

Let \(q \) be \#path components with at least \(k - 1 \) vertices.

- If \(q \geq 2 \), then \(k < m' + \epsilon' \), not \(k \)-deck reconstructible.
How to Use the Lemmas

\[k \geq \max \{ \lfloor m/2 \rfloor + \epsilon, m' + \epsilon' \} \implies \mathcal{D}_k(G) \text{ determines } G \]

Manvel [1974] showed that \(\mathcal{D}_k(G) \) determines the degree list when \(k \geq \Delta(G) + 2 \). (We need special arguments when \(k = 3 \).) Henceforth \(\Delta(G) = 2 \).

Let \(q \) be \#path components with at least \(k - 1 \) vertices.

- If \(q \geq 2 \), then \(k < m' + \epsilon' \), not \(k \)-deck reconstructible.
- If \(q \in \{0, 1\} \) and \(s(G, P_k) > \{2k+1, k\} \), then \(k < \left\lfloor \frac{m}{2} \right\rfloor + \epsilon \).
How to Use the Lemmas

\[k \geq \max\{ \lfloor m/2 \rfloor + \epsilon, m' + \epsilon' \} \Rightarrow \mathcal{D}_k(G) \text{ determines } G \]

Manvel [1974] showed that \(\mathcal{D}_k(G) \) determines the degree list when \(k \geq \Delta(G) + 2 \). (We need special arguments when \(k = 3 \).) Henceforth \(\Delta(G) = 2 \).

Let \(q \) be \#path components with at least \(k - 1 \) vertices.

- If \(q \geq 2 \), then \(k < m' + \epsilon' \), not \(k \)-deck reconstructible.
- If \(q \in \{0, 1\} \) and \(s(G, P_k) > \{2k+1, k\} \), then \(k < \lfloor \frac{m}{2} \rfloor + \epsilon \).
- If \(q = 0 \) and \(0 < s(G, P_k) \leq 2k + 1 \), then \(G \) has one component with more than \(k \) vertices, \(C_{s(G, P_k)} \).
How to Use the Lemmas

\[k \geq \max\{\lfloor m/2 \rfloor + \epsilon, m' + \epsilon'\} \Rightarrow D_k(G) \text{ determines } G \]

Manvel [1974] showed that \(D_k(G) \) determines the degree list when \(k \geq \Delta(G) + 2 \). (We need special arguments when \(k = 3 \).) Henceforth \(\Delta(G) = 2 \).

Let \(q \) be \# path components with at least \(k - 1 \) vertices.

- If \(q \geq 2 \), then \(k < m' + \epsilon' \), not \(k \)-deck reconstructible.
- If \(q \in \{0, 1\} \) and \(s(G, P_k) > \{2k+1, k\} \), then \(k < \left\lfloor \frac{m}{2} \right\rfloor + \epsilon \).
- If \(q = 0 \) and \(0 < s(G, P_k) \leq 2k + 1 \), then \(G \) has one component with more than \(k \) vertices, \(C_{s(G, P_k)} \).
- If \(q = 1 \) and \(0 \leq s(G, P_k) \leq k \), then \(G \) has no cycle with more than \(k \) vertices, and its long path is \(P_{s(G, P_k)+k-1} \).
How to Use the Lemmas

\[k \geq \max \{ \lfloor m/2 \rfloor + \epsilon, m' + \epsilon' \} \Rightarrow D_k(G) \text{ determines } G \]

Manvel [1974] showed that \(D_k(G) \) determines the degree list when \(k \geq \Delta(G) + 2 \). (We need special arguments when \(k = 3 \).) Henceforth \(\Delta(G) = 2 \).

Let \(q \) be \#path components with at least \(k - 1 \) vertices.

- If \(q \geq 2 \), then \(k < m' + \epsilon' \), not \(k \)-deck reconstructible.
- If \(q \in \{0, 1\} \) and \(s(G, P_k) > \{2k+1, k\} \), then \(k < \lfloor \frac{m}{2} \rfloor + \epsilon \).
- If \(q = 0 \) and \(0 < s(G, P_k) \leq 2k + 1 \), then \(G \) has one component with more than \(k \) vertices, \(C_{s(G, P_k)} \).
- If \(q = 1 \) and \(0 \leq s(G, P_k) \leq k \), then \(G \) has no cycle with more than \(k \) vertices, and its long path is \(P_{s(G, P_k)+k-1} \).

This completes the proof except for small \(k \).
Open Questions

Super-Kelly Conj. Find M_ℓ such that $n \geq M_\ell$ implies n-vertex G is ℓ-reconstructible. Linear? $2\ell + 1$?
Open Questions

Super-Kelly Conj. Find M_ℓ such that $n \geq M_\ell$ implies n-vertex G is ℓ-reconstructible. Linear? $2\ell + 1$?

Ques. What is the least k such that when G has n vertices, $D_k(G)$ determines whether G is connected?
Open Questions

Super-Kelly Conj. Find M_ℓ such that $n \geq M_\ell$ implies n-vertex G is ℓ-reconstructible. Linear? $2\ell + 1$?

Ques. What is the least k such that when G has n vertices, $D_k(G)$ determines whether G is connected?

Ques. What values of k suffice for $D_k(G)$ to determine other parameters on n-vertex graphs? (connectivity, matching number, chromatic number, planarity)
Open Questions

Super-Kelly Conj. Find $M_ℓ$ such that $n \geq M_ℓ$ implies n-vertex G is $ℓ$-reconstructible. Linear? $2ℓ + 1$?

Ques. What is the least k such that when G has n vertices, $D_k(G)$ determines whether G is connected?

Ques. What values of k suffice for $D_k(G)$ to determine other parameters on n-vertex graphs? (connectivity, matching number, chromatic number, planarity)

Ques. Is reconstructibility monotone for bipartite G? ($k = 3$ suffices for $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$, but need $k = m$ for C_{2m}.)
Open Questions

Super-Kelly Conj. Find $M_ℓ$ such that $n \geq M_ℓ$ implies n-vertex G is $ℓ$-reconstructible. Linear? $2ℓ + 1$?

Ques. What is the least k such that when G has n vertices, $D_k(G)$ determines whether G is connected?

Ques. What values of k suffice for $D_k(G)$ to determine other parameters on n-vertex graphs? (connectivity, matching number, chromatic number, planarity)

Ques. Is reconstructibility monotone for bipartite G? ($k = 3$ suffices for $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$, but need $k = m$ for C_{2m}.)

Ques. Compute the least k for other graph classes. ($Δ(G) = 3$, vertex-transitive, etc.)
Open Questions

Super-Kelly Conj. Find M_l such that $n \geq M_l$ implies n-vertex G is l-reconstructible. Linear? $2l + 1$?

Ques. What is the least k such that when G has n vertices, $\mathcal{D}_k(G)$ determines whether G is connected?

Ques. What values of k suffice for $\mathcal{D}_k(G)$ to determine other parameters on n-vertex graphs? (connectivity, matching number, chromatic number, planarity)

Ques. Is reconstructibility monotone for bipartite G? ($k = 3$ suffices for $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$, but need $k = m$ for C_{2m}.)

Ques. Compute the least k for other graph classes. ($\Delta(G) = 3$, vertex-transitive, etc.)

Ques. Do there exist a complete r-partite graph and complete $(r + 1)$-partite graph with the same r-deck? (Yes for $r \leq 3$: $\mathcal{D}_3(K_{7,4,3}) = \mathcal{D}_3(K_{6,6,1,1})$.)
Appendix - Connectedness from \mathcal{D}_{n-3}

Recall $c(\mathcal{D}) = \# \text{ of connected cards in a deck } \mathcal{D}$.
Appendix - Connectedness from \mathcal{D}_{n-3}

Recall $c(\mathcal{D}) = \#$ of connected cards in a deck \mathcal{D}.

G is connected if and only if $c(\mathcal{D}_{n-1}(G)) \geq 2$.
Appendix - Connectedness from \mathcal{D}_{n-3}

Recall $c(\mathcal{D}) = \# \; \text{of connected cards in a deck } \mathcal{D}$.

G is connected if and only if $c(\mathcal{D}_{n-1}(G)) \geq 2$. Also, $c(\mathcal{D}_{n-3}(G)) \leq 1 \implies G$ is disconnected.
Appendix - Connectedness from \mathcal{D}_{n-3}

Recall $c(\mathcal{D}) = \# \text{ of connected cards in a deck } \mathcal{D}$. G is connected if and only if $c(\mathcal{D}_{n-1}(G)) \geq 2$. Also, $c(\mathcal{D}_{n-3}(G)) \leq 1 \implies G$ is disconnected.

Take G connected, H disconn. with same $(n-3)$-deck \mathcal{D}.
Appendix - Connectedness from \mathcal{D}_{n-3}

Recall $c(\mathcal{D}) = \#$ of connected cards in a deck \mathcal{D}.

G is connected if and only if $c(\mathcal{D}_{n-1}(G)) \geq 2$. Also, $c(\mathcal{D}_{n-3}(G)) \leq 1 \implies G$ is disconnected.

Take G connected, H disconn. with same $(n-3)$-deck \mathcal{D}. This needs $c(\mathcal{D}) \geq 2$, so H has component of order ≤ 2.
Appendix - Connectedness from \mathcal{D}_{n-3}

Recall $c(\mathcal{D}) = \#$ of connected cards in a deck \mathcal{D}.

G is connected if and only if $c(\mathcal{D}_{n-1}(G)) \geq 2$.

Also, $c(\mathcal{D}_{n-3}(G)) \leq 1 \Rightarrow G$ is disconnected.

Take G connected, H disconn. with same $(n-3)$-deck \mathcal{D}.

This needs $c(\mathcal{D}) \geq 2$, so H has component of order ≤ 2.

(Taylor [1990]) The degree list is reconstructible from the k-deck when $k \geq n(1 - \frac{1}{e})(1 + o(1))$.
Appendix - Connectedness from \mathcal{D}_{n-3}

Recall $c(\mathcal{D}) = \#$ of connected cards in a deck \mathcal{D}.

G is connected if and only if $c(\mathcal{D}_{n-1}(G)) \geq 2$.

Also, $c(\mathcal{D}_{n-3}(G)) \leq 1 \implies G$ is disconnected.

Take G connected, H disconn. with same $(n-3)$-deck \mathcal{D}.

This needs $c(\mathcal{D}) \geq 2$, so H has component of order ≤ 2.

(Taylor [1990]) The degree list is reconstructible from the k-deck when $k \geq n(1 - \frac{1}{e})(1 + o(1))$.

\therefore we may assume $H = C + C'$ of orders $n - 2$ and 2.
Appendix - Connectedness from \mathcal{D}_{n-3}

Recall $c(\mathcal{D}) = \#$ of connected cards in a deck \mathcal{D}.

G is connected if and only if $c(\mathcal{D}_{n-1}(G)) \geq 2$.

Also, $c(\mathcal{D}_{n-3}(G)) \leq 1 \Rightarrow G$ is disconnected.

Take G connected, H disconn. with same $(n-3)$-deck \mathcal{D}.

This needs $c(\mathcal{D}) \geq 2$, so H has component of order ≤ 2.

(Taylor [1990]) The degree list is reconstructible from the k-deck when $k \geq n(1 - \frac{1}{e})(1 + o(1))$.

∴ we may assume $H = C + C'$ of orders $n-2$ and 2.

Thus $c(\mathcal{D}) \leq n-2$ and $i(\mathcal{D}) \geq \binom{n-2}{3}$, where $i(\mathcal{D}) = \#$ of cards in \mathcal{D} having an isolated edge.
Appendix - Connectedness from D_{n-3}

Recall $c(D) = \# \text{ of connected cards in a deck } D$.

G is connected if and only if $c(D_{n-1}(G)) \geq 2$.
Also, $c(D_{n-3}(G)) \leq 1 \implies G$ is disconnected.

Take G connected, H disconn. with same $(n-3)$-deck D.
This needs $c(D) \geq 2$, so H has component of order ≤ 2.

(Taylor [1990]) The degree list is reconstructible from the k-deck when $k \geq n(1 - \frac{1}{e})(1 + o(1))$.

∴ we may assume $H = C + C'$ of orders $n - 2$ and 2.

Thus $c(D) \leq n - 2$ and $i(D) \geq \binom{n-2}{3}$,
where $i(D) = \# \text{ of cards in } D \text{ having an isolated edge}$.

Idea: From G get lower bound on $c(D)$ and upper bound on $i(D)$
leading to a contradiction when $n \geq 25$.

Connected \((n - 3)\)-cards of connected \(G\)

Let \(T\) be a spanning tree of \(G\) having the fewest leaves.
Connected \((n - 3)\)-cards of connected \(G\)

Let \(T\) be a spanning tree of \(G\) having the fewest leaves.

- \(c(D) \geq c(D')\), where \(D' = D_{n-3}(T)\).
Connected \((n - 3)\)-cards of connected \(G\)

Let \(T\) be a spanning tree of \(G\) having the fewest leaves.

- \(c(\mathcal{D}) \geq c(\mathcal{D}')\), where \(\mathcal{D}' = \mathcal{D}_{n-3}(T)\).

Let \(L_1 =\) leaves of \(T\); \(V_2 = \{v \in V(T): d_T(v) = 2\}\)
\(L_2 = N_T(L_1) \cap V_2; \quad L_3 = N_T(L_2) \cap V_2; \quad l_i = |L_i|\).
Connected $(n - 3)$-cards of connected G

Let T be a spanning tree of G having the fewest leaves.

- $c(D) \geq c(D')$, where $D' = D_{n-3}(T)$.

Let $L_1 = \text{leaves of } T$; $V_2 = \{v \in V(T): d_T(v) = 2\}$, $L_2 = N_T(L_1) \cap V_2$; $L_3 = N_T(L_2) \cap V_2$; $l_i = |L_i|$.

Connected cards in D': (1) Delete three from L_1. (2) Delete from L_2, its neighbor in L_1, another from L_1. (3) Delete an L_3, L_2, L_1 path.
Connected \((n-3)\)-cards of connected \(G\)

Let \(T\) be a spanning tree of \(G\) having the fewest leaves.

- \(c(D) \geq c(D')\), where \(D' = D_{n-3}(T)\).

Let \(L_1 = \) leaves of \(T\); \(V_2 = \{v \in V(T) : d_T(v) = 2\}\)
\(L_2 = N_T(L_1) \cap V_2; \quad L_3 = N_T(L_2) \cap V_2; \quad l_i = |L_i|\).

Connected cards in \(D'\): (1) Delete three from \(L_1\).
(2) Delete from \(L_2\), its neighbor in \(L_1\), another from \(L_1\).
(3) Delete an \(L_3, L_2, L_1\) path.

Hence \(c(D) \geq \binom{l_1}{3} + l_2(l_1 - 1) + l_3\).
Cards with Isolated Edges

Let T be a spanning tree of G having the fewest leaves.
Cards with Isolated Edges

Let T be a spanning tree of G having the fewest leaves.

• $i(D) \leq i(D') + \hat{i}$, where $D' = D_{n-3}(T)$ and \hat{i} counts the cards in D' having two isolated vertices adjacent in G.
Let T be a spanning tree of G having the fewest leaves.

- $i(D) \leq i(D') + \hat{i}$, where $D' = D_{n-3}(T)$ and \hat{i} counts the cards in D' having two isolated vertices adjacent in G.

\[i(D') \leq l_2 \left(\frac{n-3}{2} \right) + (n - 1 - l_2)(n - 4) \]
Cards with Isolated Edges

Let T be a spanning tree of G having the fewest leaves.

- $i(D) \leq i(D') + \hat{i}$, where $D' = D_{n-3}(T)$ and \hat{i} counts the cards in D' having two isolated vertices adjacent in G.

$$i(D') \leq l_2\left(\frac{n-3}{2}\right) + (n - 1 - l_2)(n - 4)$$

\hat{i} counts no $\{x, y\}$ both in L_1 (T has fewest leaves).
Let T be a spanning tree of G having the fewest leaves.

- $i(D) \leq i(D') + \hat{i}$, where $D' = D_{n-3}(T)$ and \hat{i} counts the cards in D' having two isolated vertices adjacent in G.

\[
i(D') \leq l_2\left(\frac{n-3}{2}\right) + (n - 1 - l_2)(n - 4)
\]

\hat{i} counts no \{x, y\} both in L_1 (T has fewest leaves).

$x \in L_1$ and $y \in L_3$ with common nbr: $\leq l_3(n - 4)$.
Cards with Isolated Edges

Let T be a spanning tree of G having the fewest leaves.

- $i(D) \leq i(D') + \hat{i}$, where $D' = D_{n-3}(T)$ and \hat{i} counts the cards in D' having two isolated vertices adjacent in G.

\[
i(D') \leq l_2\left(\frac{n-3}{2}\right) + (n - 1 - l_2)(n - 4)
\]

\hat{i} counts no $\{x, y\}$ both in L_1 (T has fewest leaves).

$x \in L_1$ and $y \in L_3$ with common nbr: $\leq l_3(n - 4)$.

$x \in L_1$ and $d_T(y) = 2$ w no common nbr: $\leq (l_1 - 2)(n - 5)$.
Let T be a spanning tree of G having the fewest leaves.

- $i(D) \leq i(D') + \hat{i}$, where $D' = D_{n-3}(T)$ and \hat{i} counts the cards in D' having two isolated vertices adjacent in G.

\[
i(D') \leq l_2 \left(\frac{n-3}{2} \right) + (n - 1 - l_2)(n - 4)
\]

\hat{i} counts no $\{x, y\}$ both in L_1 (T has fewest leaves).

$x \in L_1$ and $y \in L_3$ with common nbr: $\leq l_3(n - 4)$.

$x \in L_1$ and $d_T(y) = 2$ with no common nbr: $\leq (l_1 - 2)(n - 5)$.

$x, y \in V_2$ with common nbr: $\leq \binom{n-3}{2}$ (weak bound).
Cards with Isolated Edges

Let \(T \) be a spanning tree of \(G \) having the fewest leaves.

- \(i(D) \leq i(D') + \hat{i} \), where \(D' = D_{n-3}(T) \) and \(\hat{i} \) counts the cards in \(D' \) having two isolated vertices adjacent in \(G \).

\[
i(D') \leq l_2\left(\frac{n-3}{2}\right) + (n - 1 - l_2)(n - 4)
\]

\(\hat{i} \) counts no \(\{x, y\} \) both in \(L_1 \) (\(T \) has fewest leaves).

- \(x \in L_1 \) and \(y \in L_3 \) with common nbr: \(\leq l_3(n - 4) \).

- \(x \in L_1 \) and \(d_T(y) = 2 \) w no common nbr: \(\leq (l_1 - 2)(n-5) \).

- \(x, y \in V_2 \) with common nbr: \(\leq \binom{n-3}{2} \) (weak bound).

\[
i(D) \leq l_2\left(\frac{n-3}{2}\right) + (n - 1)(n - 4) + (l_1 - 2)(n - 5) + \binom{n-3}{2}
\]
Inequalities

Bounds on $c(D)$: $\binom{l_1}{3} + l_2(l_1 - 1) + l_3 \leq n - 2$
Inequalities

Bounds on $c(\mathcal{D})$: $\binom{l_1}{3} + l_2(l_1 - 1) + l_3 \leq n - 2$

Bounds on $i(\mathcal{D})$:

$\binom{n-2}{3} \leq l_2 \binom{n-3}{2} + (n - 3)(n - 4) + l_1(n - 5) + 2 + \binom{n-3}{2}$
Inequalities

Bounds on $c(D)$: \(\left(\frac{1}{3} \right) + l_2(l_1 - 1) + l_3 \leq n - 2 \)

Bounds on $i(D)$:
\[
{\binom{n-2}{3}} \leq l_2 \left(\frac{n-3}{2} \right) + (n - 3)(n - 4) + l_1(n - 5) + 2 + \left(\frac{n-3}{2} \right)
\]

Divide the second by \(\frac{1}{3} \left(\frac{n-3}{2} \right) \) and combine:
\[
\left(\frac{1}{3} \right) + l_2(l_1 - 1) \leq 3l_2 + 6 + l_1 \frac{n-5}{n-3} + \frac{12}{(n-3)(n-4)} + 3,
\]
Inequalities

Bounds on $c(D)$: $(\binom{l_1}{3}) + l_2(l_1 - 1) + l_3 \leq n - 2$

Bounds on $i(D)$:

$\binom{n-2}{3} \leq l_2 \binom{n-3}{2} + (n - 3)(n - 4) + l_1(n - 5) + 2 + \binom{n-3}{2}$

Divide the second by $\frac{1}{3} \binom{n-3}{2}$ and combine:

$\left(\binom{l_1}{3}\right) + l_2(l_1 - 1) \leq 3l_2 + 6 + l_1 \frac{n-5}{n-3} + \frac{12}{(n-3)(n-4)} + 3,$

leading to $\left(\binom{l_1}{3}\right) + l_2(l_1 - 4) \leq 9 + l_1$.
Inequalities

Bounds on $c(D)$: \(\binom{l_1}{3} + l_2(l_1 - 1) + l_3 \leq n - 2 \)

Bounds on $i(D)$:
\[
\binom{n-2}{3} \leq l_2 \binom{n-3}{2} + (n - 3)(n - 4) + l_1(n - 5) + 2 + \binom{n-3}{2}
\]

Divide the second by \(\frac{1}{3} \binom{n-3}{2} \) and combine:
\[
\binom{l_1}{3} + l_2(l_1 - 1) \leq 3l_2 + 6 + l_1 \frac{n-5}{n-3} + \frac{12}{(n-3)(n-4)} + 3,
\]
leading to \(\binom{l_1}{3} + l_2(l_1 - 4) \leq 9 + l_1 \).

This requires \(l_1 \leq 5 \).
Inequalities

Bounds on $c(D)$: \(\binom{l_1}{3} + l_2(l_1 - 1) + l_3 \leq n - 2 \)

Bounds on $i(D)$:
\[
\binom{n-2}{3} \leq l_2 \binom{n-3}{2} + (n-3)(n-4) + l_1(n-5) + 2 + \binom{n-3}{2}
\]

Divide the second by \(\frac{1}{3} \binom{n-3}{2} \) and combine:
\[
\binom{l_1}{3} + l_2(l_1 - 1) \leq 3l_2 + 6 + l_1 \frac{n-5}{n-3} + \frac{12}{(n-3)(n-4)} + 3,
\]
leading to \(\binom{l_1}{3} + l_2(l_1 - 4) \leq 9 + l_1 \).

This requires \(l_1 \leq 5 \). With \(l_1 \leq 5 \), the bound on \# pairs $x, y \in V_2$ with common nbr improves from $\binom{n-3}{2}$ to $n - 1$.

Inequalities

Bounds on $c(D)$: \(\binom{l_1}{3} + l_2(l_1 - 1) + l_3 \leq n - 2 \)

Bounds on $i(D)$:
\[
\binom{n-2}{3} \leq l_2 \binom{n-3}{2} + (n - 3)(n - 4) + l_1(n - 5) + 2 + \binom{n-3}{2}
\]

Divide the second by \(\frac{1}{3} \binom{n-3}{2} \) and combine:
\[
\binom{l_1}{3} + l_2(l_1 - 1) \leq 3l_2 + 6 + l_1 \frac{n-5}{n-3} + \frac{12}{(n-3)(n-4)} + 3,
\]
leading to \(\binom{l_1}{3} + l_2(l_1 - 4) \leq 9 + l_1 \).

This requires $l_1 \leq 5$. With $l_1 \leq 5$, the bound on \# pairs $x, y \in V_2$ with common nbr improves from \(\binom{n-3}{2} \) to $n - 1$.

With $l_2 \leq l_1 \leq 5$, the inequality
\[
\binom{n-2}{3} \leq l_2 \binom{n-3}{2} + (n - 3)(n - 4) + l_1(n - 5) + 2 + n - 1
\]
cannot hold for $n \geq 25$. \(\blacksquare\)