Reconstruction from the Subgraphs Obtained by Deleting ℓ Vertices

Douglas B. West

Departments of Mathematics
Zhejiang Normal University and
University of Illinois at Urbana-Champaign
dwest@illinois.edu
slides and papers on preprint page from
https://faculty.math.illinois.edu/

Joint work with
Alexandr V. Kostochka, Mina Nahvi, Dara Zirlin
(and earlier with) Hannah Spinoza
Def. A card of a graph G is an induced subgraph $G - v$. The deck of a graph is the multiset of its cards.
Extending The Classical Problem

Def. A card of a graph G is an induced subgraph $G - v$. The deck of a graph is the multiset of its cards.

Reconstruction Conj: Kelly–Ulam [1942 thesis]
Any graph with ≥ 3 vertices is determined by its deck.
Extending The Classical Problem

Def. A card of a graph G is an induced subgraph $G - v$. The deck of a graph is the multiset of its cards.

Reconstruction Conj: Kelly–Ulam [1942 thesis]
Any graph with ≥ 3 vertices is determined by its deck.

How to measure the difficulty of reconstruction?
Def. A card of a graph G is an induced subgraph $G - v$. The deck of a graph is the multiset of its cards.

\[
\begin{array}{c}
\includegraphics[width=0.2\textwidth]{card1}\quad \Leftrightarrow \quad \includegraphics[width=0.4\textwidth]{card2}
\end{array}
\]

Reconstruction Conj: Kelly–Ulam [1942 thesis]
Any graph with ≥ 3 vertices is determined by its deck.

How to measure the difficulty of reconstruction?

Def. k-deck $D_k(G) =$ all k-vertex induced subgraphs.
Extending The Classical Problem

Def. A card of a graph G is an induced subgraph $G - v$. The deck of a graph is the multiset of its cards.

Reconstruction Conj: Kelly–Ulam [1942 thesis]
Any graph with ≥ 3 vertices is determined by its deck.

How to measure the difficulty of reconstruction?

Def. k-deck $\mathcal{D}_k(G) =$ all k-vertex induced subgraphs.

Ex. K_4^- is determined by having four vertices and five edges — known from the 1-deck and the 2-deck.
Extending The Classical Problem

Def. A card of a graph G is an induced subgraph $G - v$. The deck of a graph is the multiset of its cards.

![Graphs and cards](image)

Reconstruction Conj: Kelly–Ulam [1942 thesis]
Any graph with ≥ 3 vertices is determined by its deck.

How to measure the difficulty of reconstruction?

Def. k-deck $\mathcal{D}_k(G) =$ all k-vertex induced subgraphs.

Ex. K_4^- is determined by having four vertices and five edges — known from the 1-deck and the 2-deck.

Obs. $\mathcal{D}_k(G)$ determines $\mathcal{D}_{k-1}(G)$.
Def. A card of a graph G is an induced subgraph $G - v$. The deck of a graph is the multiset of its cards.

Reconstruction Conj: Kelly–Ulam [1942 thesis]
Any graph with ≥ 3 vertices is determined by its deck.

How to measure the difficulty of reconstruction?

Def. k-deck $\mathcal{D}_k(G) =$ all k-vertex induced subgraphs.

Ex. K_4^- is determined by having four vertices and five edges — known from the 1-deck and the 2-deck.

Obs. $\mathcal{D}_k(G)$ determines $\mathcal{D}_{k-1}(G)$.

Pf. Each member of \mathcal{D}_{k-1} arises $n - k + 1$ times by deleting one vertex from a graph in $\mathcal{D}_k(G)$. \[\blacksquare\]
A More General Conjecture

If the RC holds, then for every graph G there is a least k such that G is determined by $\mathcal{D}_k(G)$, meaning that every graph with k-deck $\mathcal{D}_k(G)$ is isomorphic to G.
A More General Conjecture

If the **RC** holds, then for every graph G there is a least k such that G is determined by $\mathcal{D}_k(G)$, meaning that every graph with k-deck $\mathcal{D}_k(G)$ is isomorphic to G.

Conj. “Kelly’s Conjecture” (Manvel [1964, 1969]): For $\ell \in \mathbb{N}$, $\exists M_\ell \in \mathbb{N}$ such that $|V(G)| \geq M_\ell \implies G$ is determined by its subgraphs deleting ℓ vertices.
A More General Conjecture

If the RC holds, then for every graph G there is a least k such that G is determined by $D_k(G)$, meaning that every graph with k-deck $D_k(G)$ is isomorphic to G.

Conj. “Kelly’s Conjecture” (Manvel [1964, 1969]):
For $\ell \in \mathbb{N}$, $\exists M_\ell \in \mathbb{N}$ such that $|V(G)| \geq M_\ell \Rightarrow G$ is determined by its subgraphs deleting ℓ vertices.

Call this property “ℓ-reconstructible”.
A More General Conjecture

If the **RC** holds, then for every graph G there is a least k such that G is determined by $D_k(G)$, meaning that every graph with k-deck $D_k(G)$ is isomorphic to G.

Conj. “Kelly’s Conjecture” (Manvel [1964, 1969]): For $\ell \in \mathbb{N}$, $\exists M_\ell \in \mathbb{N}$ such that $|V(G)| \geq M_\ell \Rightarrow G$ is determined by its subgraphs deleting ℓ vertices.

Call this property “ℓ-reconstructible”. For each G, find the largest ℓ such that G is ℓ-reconstructible.
A More General Conjecture

If the RC holds, then for every graph G there is a least k such that G is determined by $\mathcal{D}_k(G)$, meaning that every graph with k-deck $\mathcal{D}_k(G)$ is isomorphic to G.

Conj. “Kelly’s Conjecture” (Manvel [1964, 1969]): For $\ell \in \mathbb{N}$, $\exists M_\ell \in \mathbb{N}$ such that $|V(G)| \geq M_\ell \implies G$ is determined by its subgraphs deleting ℓ vertices.

Call this property “ℓ-reconstructible”. For each G, find the largest ℓ such that G is ℓ-reconstructible.

RC: $M_1 = 3$.
A More General Conjecture

If the **RC** holds, then for every graph G there is a least k such that G is determined by $\mathcal{D}_k(G)$, meaning that every graph with k-deck $\mathcal{D}_k(G)$ is isomorphic to G.

Conj. “Kelly’s Conjecture” (Manvel [1964, 1969]): For $\ell \in \mathbb{N}$, $\exists M_\ell \in \mathbb{N}$ such that $|V(G)| \geq M_\ell \Rightarrow G$ is determined by its subgraphs deleting ℓ vertices.

Call this property “ℓ-reconstructible”. For each G, find the largest ℓ such that G is ℓ-reconstructible.

RC: $M_1 = 3$. $M_2 = 6$? McMullen–Radziszowski [2007]
A More General Conjecture

If the RC holds, then for every graph G there is a least k such that G is determined by $D_k(G)$, meaning that every graph with k-deck $D_k(G)$ is isomorphic to G.

Conj. “Kelly’s Conjecture” (Manvel [1964, 1969]): For $\ell \in \mathbb{N}$, $\exists M_\ell \in \mathbb{N}$ such that $|V(G)| \geq M_\ell \implies G$ is determined by its subgraphs deleting ℓ vertices.

Call this property “ℓ-reconstructible”. For each G, find the largest ℓ such that G is ℓ-reconstructible.

RC: $M_1 = 3$. $M_2 = 6$? McMullen–Radziszowski [2007]

Sharp: $C_4 + K_1$ and the tree $K_{1,3}'$ are not 2-reconstructible.
A More General Conjecture

If the RC holds, then for every graph G there is a least k such that G is determined by $D_k(G)$, meaning that every graph with k-deck $D_k(G)$ is isomorphic to G.

** Conj. “Kelly’s Conjecture” (Manvel [1964, 1969]):** For $\ell \in \mathbb{N}$, $\exists M_\ell \in \mathbb{N}$ such that $|V(G)| \geq M_\ell \implies G$ is determined by its subgraphs deleting ℓ vertices.

Call this property “ℓ-reconstructible”. For each G, find the largest ℓ such that G is ℓ-reconstructible.

RC: $M_1 = 3$. $M_2 = 6$? McMullen–Radziszowski [2007]

Sharp: $C_4 + K_1$ and the tree $K_{1,3}'$ are not 2-reconstructible.

3-deck of each: four of P_3, four of $P_2 + P_1$, two of $3K_1$.

![Diagram](null)
Warmup: Complete Multipartite Graphs

Thm. Any complete r-partite graph G is determined by its $(r + 1)$-deck $\mathcal{D}_{r+1}(G)$.
Warmup: Complete Multipartite Graphs

Thm. Any complete \(r \)-partite graph \(G \) is determined by its \((r + 1) \)-deck \(D_{r+1}(G) \).

Pf. Trivial for \(r = 1 \); suppose \(r \geq 2 \).
Thm. Any complete r-partite graph G is determined by its $(r + 1)$-deck $D_{r+1}(G)$.

Pf. Trivial for $r = 1$; suppose $r \geq 2$.

G is complete multipartite $\iff P_2 + P_1 \notin D_3(G)$.
Warmup: Complete Multipartite Graphs

Thm. Any complete r-partite graph G is determined by its $(r + 1)$-deck $D_{r+1}(G)$.

Pf. Trivial for $r = 1$; suppose $r \geq 2$.

G is complete multipartite $\iff P_2 + P_1 \notin D_3(G)$.

Also $K_{r+1} \notin D_{r+1}(G)$, so G must be complete r-partite.
Thm. Any complete \(r \)-partite graph \(G \) is determined by its \((r + 1)\)-deck \(\mathcal{D}_{r+1}(G) \).

Pf. Trivial for \(r = 1 \); suppose \(r \geq 2 \).

\(G \) is complete multipartite \(\iff P_2 + P_1 \notin \mathcal{D}_3(G) \).

Also \(K_{r+1} \notin \mathcal{D}_{r+1}(G) \), so \(G \) must be complete \(r \)-partite.

Unknown part-sizes \(q_1, \ldots, q_r \), let \(f(x) = \prod_{j=1}^{r} (x - q_j) \).
Thm. Any complete r-partite graph G is determined by its $(r + 1)$-deck $\mathcal{D}_{r+1}(G)$.

Pf. Trivial for $r = 1$; suppose $r \geq 2$. G is complete multipartite $\iff P_2 + P_1 \notin \mathcal{D}_3(G)$. Also $K_{r+1} \notin \mathcal{D}_{r+1}(G)$, so G must be complete r-partite. Unknown part-sizes q_1, \ldots, q_r, let $f(x) = \prod_{j=1}^r (x - q_j)$. Note $f(x) = \sum_{i=0}^r (-1)^i s_i x^{r-i}$, where s_i is the sum of products of i choices from q_1, \ldots, q_r.
Thm. Any complete \(r \)-partite graph \(G \) is determined by its \((r + 1)\)-deck \(\mathcal{D}_{r+1}(G) \).

Pf. Trivial for \(r = 1 \); suppose \(r \geq 2 \).

\(G \) is complete multipartite \(\iff P_2 + P_1 \notin \mathcal{D}_3(G) \).

Also \(K_{r+1} \notin \mathcal{D}_{r+1}(G) \), so \(G \) must be complete \(r \)-partite.

Unknown part-sizes \(q_1, \ldots, q_r \), let \(f(x) = \prod_{j=1}^{r} (x - q_j) \).

Note \(f(x) = \sum_{i=0}^{r} (-1)^i s_i x^{r-i} \), where \(s_i \) is the sum of products of \(i \) choices from \(q_1, \ldots, q_r \).

Also \(s_i = \# \) copies of \(K_i \) in \(G \), so \(\mathcal{D}_i(G) \) determines \(s_i \).
Thm. Any complete r-partite graph G is determined by its $(r + 1)$-deck $D_{r+1}(G)$.

Pf. Trivial for $r = 1$; suppose $r \geq 2$.

G is complete multipartite $\iff P_2 + P_1 \notin D_3(G)$. Also $K_{r+1} \notin D_{r+1}(G)$, so G must be complete r-partite.

Unknown part-sizes q_1, \ldots, q_r, let $f(x) = \prod_{j=1}^{r} (x - q_j)$.

Note $f(x) = \sum_{i=0}^{r} (-1)^i s_i x^{r-i}$, where s_i is the sum of products of i choices from q_1, \ldots, q_r.

Also $s_i = \#$ copies of K_i in G, so $D_i(G)$ determines s_i.

Knowing f, we find q_1, \ldots, q_r.

\[\blacksquare\]
Warmup: Complete Multipartite Graphs

Thm. Any complete r-partite graph G is determined by its $(r+1)$-deck $\mathcal{D}_{r+1}(G)$.

Pf. Trivial for $r = 1$; suppose $r \geq 2$.

G is complete multipartite $\iff P_2 + P_1 \notin \mathcal{D}_3(G)$.

Also $K_{r+1} \notin \mathcal{D}_{r+1}(G)$, so G must be complete r-partite.

Unknown part-sizes q_1, \ldots, q_r, let $f(x) = \prod_{j=1}^{r} (x - q_j)$.

Note $f(x) = \sum_{i=0}^{r} (-1)^i s_i x^{r-i}$, where s_i is the sum of products of i choices from q_1, \ldots, q_r.

Also $s_i = \#$ copies of K_i in G, so $\mathcal{D}_i(G)$ determines s_i.

Knowing f, we find q_1, \ldots, q_r.

Sharpness? $\mathcal{D}_3(K_{7,4,3}) = \mathcal{D}_3(K_{6,6,1,1})$, so \mathcal{D}_r does not suffices when $r = 3$, but what about larger r?
Results on Manvel’s Conjecture

Thm. Nýdl [1992]: For $\epsilon > 0$ and sufficiently large n_0, $\exists n$-vertex G with $n \geq n_0$ that is not ϵn-reconstructible.
Results on Manvel’s Conjecture

Thm. Nýdl [1992]: For $\epsilon > 0$ and sufficiently large n_0, \(\exists n \)-vertex G with $n \geq n_0$ that is not ϵn-reconstructible.

\[\therefore M_\ell \text{ grows at least superlinearly (if it exists).} \]
Results on Manvel’s Conjecture

Thm. Nýdl [1992]: For $\varepsilon > 0$ and sufficiently large n_0, $\exists n$-vertex G with $n \geq n_0$ that is not εn-reconstructible.

$\therefore M_\ell$ grows at least superlinearly (if it exists).

Theme: For special classes of graphs, find a threshold c such that $n \geq cl$ implies l-reconstructibility.
Results on Manvel’s Conjecture

Thm. Nýdl [1992]: For $\epsilon > 0$ and sufficiently large n_0, \(\exists n\)-vertex G with $n \geq n_0$ that is not ϵn-reconstructible.

$\therefore M_\ell$ grows at least superlinearly (if it exists).

Theme: For special classes of graphs, find a threshold c such that $n \geq c\ell$ implies ℓ-reconstructibility.

Thm. Müller [1976]: When n and ℓ are restricted by $n \geq (2 + \epsilon)\ell$, almost all graphs are ℓ-reconstructible.
Results on Manvel’s Conjecture

Thm. Nýdl [1992]: For $\varepsilon > 0$ and sufficiently large n_0, \(\exists \) n-vertex G with $n \geq n_0$ that is not εn-reconstructible.

\[\therefore M_\ell \text{ grows at least superlinearly (if it exists).} \]

Theme: For special classes of graphs, find a threshold c such that $n \geq c\ell$ implies ℓ-reconstructibility.

Thm. Müller [1976]: When n and ℓ are restricted by $n \geq (2 + \varepsilon)\ell$, almost all graphs are ℓ-reconstructible.

Lem. Müller [1976] Fix $\varepsilon > 0$. For almost every graph G, the induced subgraphs with $\geq (1 + \varepsilon)\frac{|V(G)|}{2}$ vertices are good (no nontrival automorphisms and pairwise nonisomorphic).
Results on Manvel’s Conjecture

Thm. Nýdl [1992]: For $\epsilon > 0$ and sufficiently large n_0, $\exists n$-vertex G with $n \geq n_0$ that is not ϵn-reconstructible.

$\therefore M_\ell$ grows at least superlinearly (if it exists).

Theme: For special classes of graphs, find a threshold c such that $n \geq cl$ implies l-reconstructibility.

Thm. Müller [1976]: When n and l are restricted by $n \geq (2 + \epsilon)l$, almost all graphs are l-reconstructible.

Lem. Müller [1976] Fix $\epsilon > 0$. For almost every graph G, the induced subgraphs with $\geq (1 + \epsilon)\frac{|V(G)|}{2}$ vertices are good (no nontrivial automorphisms and pairwise nonisomorphic).

Thm. Spinoza–West [2019]: If D_{n-l-1} is good, then G is reconstructible from some $\binom{l+2}{2}$ subgraphs in D_{n-l}.
Results on Manvel’s Conjecture

Thm. Nýdl [1992]: For $\epsilon > 0$ and sufficiently large n_0, \exists n-vertex G with $n \geq n_0$ that is not ϵn-reconstructible.

\therefore M_ℓ grows at least superlinearly (if it exists).

Theme: For special classes of graphs, find a threshold c such that $n \geq c \ell$ implies ℓ-reconstructibility.

Thm. Müller [1976]: When n and ℓ are restricted by $n \geq (2 + \epsilon) \ell$, almost all graphs are ℓ-reconstructible.

Lem. Müller [1976] Fix $\epsilon > 0$. For almost every graph G, the induced subgraphs with $\geq (1 + \epsilon) \frac{|V(G)|}{2}$ vertices are good (no nontrivial automorphisms and pairwise nonisomorphic).

Thm. Spinoza–West [2019]: If $D_{n-\ell-1}$ is good, then G is reconstructible from some $\binom{\ell+2}{2}$ subgraphs in $D_{n-\ell}$.

Generalizes Chinn ’71, Müller ’76, Bollobás ’90 for $\ell = 1$: Almost every G is 1-reconstructible from any three cards.
Almost All Graphs

Thm. \(\mathcal{D}_{n-\ell-1} \text{ good } \Rightarrow \mathcal{D}_{n-\ell} \text{ determines } G. \)
Almost All Graphs

Thm. \(D_{n-\ell-1} \) good \(\Rightarrow \) \(D_{n-\ell} \) determines \(G \).

Pf. Let \(n = |V(G)| \). Fix \(S = \{x_1, \ldots, x_{\ell+1}\} \subseteq V(G) \). Let \(H = G - S \) and \(h = |V(H)| = n - \ell - 1 \).
Thm. \(\mathcal{D}_{n-\ell-1} \text{ good} \implies \mathcal{D}_{n-\ell} \text{ determines } G. \)

Pf. Let \(n = |V(G)| \). Fix \(S = \{x_1, \ldots, x_{\ell+1}\} \subseteq V(G) \). Let \(H = G - S \) and \(h = |V(H)| = n - \ell - 1 \).

Let \(C_i = G - (S - \{x_i\}) \) (deleting \(\ell \)) and \(C = \{C_i : x_i \in S\} \).
Almost All Graphs

Thm. $D_{n-\ell-1}$ good \Rightarrow $D_{n-\ell}$ determines G.

Pf. Let $n = |V(G)|$. Fix $S = \{x_1, \ldots, x_{\ell+1}\} \subseteq V(G)$. Let $H = G - S$ and $h = |V(H)| = n - \ell - 1$.

Let $C_i = G - (S - \{x_i\})$ (deleting ℓ) and $C = \{C_i : x_i \in S\}$.

For $x_i, x_j \in S$, let $D_{i,j} = G - (S - \{x_i, x_j\}) - w_{i,j}$, where $w_{i,j} \in V(H)$. Let $D = \{D_{i,j} : x_i, x_j \in S\}$.
Almost All Graphs

Thm. \(D_{n-1} \) good \(\Rightarrow D_{n-\ell} \) determines \(G \).

Pf. Let \(n = |V(G)| \). Fix \(S = \{x_1, \ldots, x_{\ell+1}\} \subseteq V(G) \). Let \(H = G - S \) and \(h = |V(H)| = n - \ell - 1 \).

Let \(C_i = G - (S - \{x_i\}) \) (deleting \(\ell \)) and \(C = \{C_i: x_i \in S\} \).

For \(x_i, x_j \in S \), let \(D_{i,j} = G - (S - \{x_i, x_j\}) - w_{i,j} \), where \(w_{i,j} \in V(H) \). Let \(D = \{D_{i,j}: x_i, x_j \in S\} \).

Claim: \(G \) is reconstructible from \(C \cup D \).
Reconstructing G from $C \cup D$.

Idea: H is the only h-vertex subgraph H' appearing in $\ell + 1$ cards in $C \cup D$. This identifies H and all C_i, the vertex x_i in C_i, and the edges from x_i to $V(H)$.
Reconstructing G from $C \cup D$.

Idea: H is the only h-vertex subgraph H' appearing in $\ell + 1$ cards in $C \cup D$. This identifies H and all C_i, the vertex x_i in C_i, and the edges from x_i to $V(H)$.

If $|V(H') \cap S| \geq 3$, then H' appears in no card in $C \cap D$.

If $V(H') \cap S = \{x_i, x_j\}$, then H' appears only in $D_{i,j}$.

If $V(H') \cap S = \{x_i\}$, then H' is in one card in C and can be in cards $D_{i,j}$ as $H' = D_{i,j} - x_j = G[V(H) + x_i - w_{i,j}]$.

If $w_{i,j}$ is not the same for all j, then H' is in $\leq \ell$ cards.

If $V(H') \cap S = \emptyset$, then $H' = H$, in all $\ell + 1$ cards of C.
Reconstructing G from $C \cup D$.

Idea: H is the only h-vertex subgraph H' appearing in $l + 1$ cards in $C \cup D$. This identifies H and all C_i, the vertex x_i in C_i, and the edges from x_i to $V(H)$.

If $|V(H') \cap S| \geq 3$, then H' appears in no card in $C \cap D$.

If $V(H') \cap S = \{x_i, x_j\}$, then H' appears only in $D_{i,j}$.

If $V(H') \cap S = \{x_i\}$, then H' is in one card in C and can be in cards $D_{i,j}$ as $H' = D_{i,j} - x_j = G[V(H) + x_i - w_{i,j}]$.

If $w_{i,j}$ is not the same for all j, then H' is in $\leq l$ cards.

If $V(H') \cap S = \emptyset$, then $H' = H$, in all $l + 1$ cards of C.

Idea: H can also be used to identify the card $D_{i,j}$, which is used to check whether $x_ix_j \in E(G)$.
Reconstructing G from $C \cup D$.

Idea: H is the only h-vertex subgraph H' appearing in $\ell + 1$ cards in $C \cup D$. This identifies H and all C_i, the vertex x_i in C_i, and the edges from x_i to $V(H)$.

If $|V(H') \cap S| \geq 3$, then H' appears in no card in $C \cap D$.
If $V(H') \cap S = \{x_i, x_j\}$, then H' appears only in $D_{i,j}$.
If $V(H') \cap S = \{x_i\}$, then H' is in one card in C and can be in cards $D_{i,j}$ as $H' = D_{i,j} - x_j = G[V(H)+x_i-w_{i,j}]$.
If $w_{i,j}$ is not the same for all j, then H' is in $\leq \ell$ cards.
If $V(H') \cap S = \emptyset$, then $H' = H$, in all $\ell + 1$ cards of C.

Idea: H can also be used to identify the card $D_{i,j}$, which is used to check whether $x_ix_j \in E(G)$.

Note $H = C_i - x_i$. For $w \in V(H)$, a card $D' \in D$ contains both $C_i - w$ and $C_j - w$ only when $D' = D_{i,j}$ and $w = w_{i,j}$.
Thm. Connectedness (Manvel [1974]) and the degree list (Chernyak [1982]) are 2-reconstructible for $n \geq 6$. (Sharp by $C_4 + K_1$ and $K'_{1,3}$ having same 3-deck.)
Thm. Connectedness (Manvel [1974]) and the degree list (Chernyak [1982]) are 2-reconstructible for $n \geq 6$.
(Sharp by $C_4 + K_1$ and $K'_{1,3}$ having same 3-deck.)

Thm. Kostochka-Nahvi-West-Zirlin [2020]: Connectedness & the degree list are 3-reconstructible for $n \geq 7$.
(Sharp by $C_5 + K_1$ and $K''_{1,3}$ having same 3-deck.)
Thm. Connectedness (Manvel [1974]) and the degree list (Chernyak [1982]) are 2-reconstructible for $n \geq 6$. (Sharp by $C_4 + K_1$ and $K_{1,3}'$ having same 3-deck.)

Thm. Kostochka-Nahvi-West-Zirlin [2020]: Connectedness & the degree list are 3-reconstructible for $n \geq 7$. (Sharp by $C_5 + K_1$ and $K_{1,3}''$ having same 3.deck.)

Thm. Taylor [1990]: The degree list is l-reconstructible for $n \geq \ell(1 + o(1))$.
Degree Lists and Connectedness

Thm. Connectedness (Manvel [1974]) and the degree list (Chernyak [1982]) are 2-reconstructible for $n \geq 6$. (Sharp by $C_4 + K_1$ and $K'_{1,3}$ having same 3-deck.)

Thm. Kostochka-Nahvi-West-Zirlin [2020]: Connectedness & the degree list are 3-reconstructible for $n \geq 7$. (Sharp by $C_5 + K_1$ and $K''_{1,3}$ having same 3-deck.)

Thm. Taylor [1990]: The degree list is l-reconstructible for $n \geq el(1 + o(1))$.

Thm. Groenland–Johnston–Scott–Tan [2021+]: The degree list is reconstructible from $D_k(G)$ when $k \geq \sqrt{2n \log 2n}$.
Degree Lists and Connectedness

Thm. Connectedness (Manvel [1974]) and the degree list (Chernyak [1982]) are 2-reconstructible for $n \geq 6$. (Sharp by $C_4 + K_1$ and $K'_{1,3}$ having same 3-deck.)

Thm. Kostochka-Nahvi-West-Zirlin [2020]: Connectedness & the degree list are 3-reconstructible for $n \geq 7$. (Sharp by $C_5 + K_1$ and $K''_{1,3}$ having same 3-deck.)

Thm. Taylor [1990]: The degree list is l-reconstructible for $n \geq e\ell(1 + o(1))$.

Thm. Groenland–Johnston–Scott–Tan [2021+]: The degree list is reconstructible from $D_k(G)$ when $k \geq \sqrt{2n \log 2n}$.

Cor. Degree list is l-reconstr’ble when $n \geq l + O(\sqrt{l})$.
Degree Lists and Connectedness

Thm. Connectedness (Manvel [1974]) and the degree list (Chernyak [1982]) are 2-reconstructible for $n \geq 6$. (Sharp by $C_4 + K_1$ and $K'_{1,3}$ having same 3-deck.)

Thm. Kostochka-Nahvi-West-Zirlin [2020]: Connectedness & the degree list are 3-reconstructible for $n \geq 7$. (Sharp by $C_5 + K_1$ and $K''_{1,3}$ having same 3-deck.)

Thm. Taylor [1990]: The degree list is l-reconstructible for $n \geq e^\ell(1 + o(1))$.

Thm. Groenland–Johnston–Scott–Tan [2021+]: The degree list is reconstructible from $D_k(G)$ when $k \geq \sqrt{2n \log 2n}$.

Cor. Degree list is l-reconstr’ble when $n \geq \ell + O(\sqrt{\ell})$.

Thm. SW’19: Connectedness is l-reconstr. for $n > \ell^{(\ell+1)^2}$.
Theorem. Connectedness (Manvel [1974]) and the degree list (Chernyak [1982]) are 2-reconstructible for \(n \geq 6 \).
(Sharp by \(C_4 + K_1 \) and \(K'_{1,3} \) having same 3-deck.)

Theorem. Kostochka-Nahvi-West-Zirlin [2020]: Connectedness & the degree list are 3-reconstructible for \(n \geq 7 \).
(Sharp by \(C_5 + K_1 \) and \(K''_{1,3} \) having same 3-deck.)

Theorem. Taylor [1990]: The degree list is \(l \)-reconstructible for \(n \geq e\ell(1 + o(1)) \).

Theorem. Groenland–Johnston–Scott–Tan [2021+]: The degree list is reconstructible from \(D_k(G) \) when \(k \geq \sqrt{2n \log 2n} \).

Corollary. Degree list is \(l \)-reconstr’ble when \(n \geq l + O(\sqrt{l}) \).

Theorem. SW’19: Connectedness is \(l \)-reconstr. for \(n > l(l+1)^2 \).

Theorem. GJST’21: Connectedness is \(l \)-reconstr. for \(n \geq 10l \).
Degree Lists — via an algebraic result
Lem. Borwein–Ingalls [1999], GJST [2021+]: If α and β are distinct nonincreasing lists in $\{0, \ldots, n\}^m$ such that

$\binom{\alpha_1}{j} + \cdots + \binom{\alpha_m}{j} = \binom{\beta_1}{j} + \cdots + \binom{\beta_m}{j}$

for $0 \leq j \leq k$, then $k + 1 \leq \sqrt{2n \log(2m)}$.

\[\]
Lem. Borwein–Ingalls [1999], GJST [2021+]: If α and β are distinct nonincreasing lists in $\{0, \ldots, n\}^m$ such that

$$(\alpha_1^j) + \cdots + (\alpha_m^j) = (\beta_1^j) + \cdots + (\beta_m^j)$$

for $0 \leq j \leq k$, then $k + 1 \leq \sqrt{2n \log(2m)}$.

Thm. Groenland–Johnston–Scott–Tan [2021+]: The degree list is reconstructible from $\mathcal{D}_k(G)$ when $k \geq \sqrt{2n \log 2n}$.

Lem. Borwein–Ingalls [1999], GJST [2021+]: If α and β are distinct nonincreasing lists in $\{0,\ldots,n\}^m$ such that
\[
\binom{\alpha_1}{j} + \cdots + \binom{\alpha_m}{j} = \binom{\beta_1}{j} + \cdots + \binom{\beta_m}{j}
\]
for $0 \leq j \leq k$, then $k + 1 \leq \sqrt{2n \log(2m)}$.

Thm. Groenland–Johnston–Scott–Tan [2021+]: The degree list is reconstructible from $D_k(G)$ when $k \geq \sqrt{2n \log 2n}$.

Pf. From $D_k(G)$, get $c_j = \#$ copies of $K_{1,j}$ in G for $0 \leq j < k$.

Degree Lists — via an algebraic result

Lem. Borwein–Ingalls [1999], GJST [2021+]: If α and β are distinct nonincreasing lists in $\{0, \ldots, n\}^m$ such that

\[
\binom{\alpha_1}{j} + \cdots + \binom{\alpha_m}{j} = \binom{\beta_1}{j} + \cdots + \binom{\beta_m}{j}
\]

for $0 \leq j \leq k$, then $k + 1 \leq \sqrt{2n \log(2m)}$.

Thm. Groenland–Johnston–Scott–Tan [2021+]: The degree list is reconstructible from $\mathcal{D}_k(G)$ when $k \geq \sqrt{2n \log 2n}$.

Pf. From $\mathcal{D}_k(G)$, get $c_j = \#$ copies of $K_{1,j}$ in G for $0 \leq j < k$. Any vertex v yields $\binom{d(v)}{j}$ copies of $K_{1,j}$, so $\sum_v \binom{d(v)}{j} = c_j$.

Degree Lists — via an algebraic result

Lem. Borwein–Ingalls [1999], GJST [2021+]: If α and β are distinct nonincreasing lists in $\{0, \ldots, n\}^m$ such that
\[(\alpha_1^j) + \cdots + (\alpha_m^j) = (\beta_1^j) + \cdots + (\beta_m^j)\]
for $0 \leq j \leq k$, then $k + 1 \leq \sqrt{2n \log(2m)}$.

Thm. Groenland–Johnston–Scott–Tan [2021+]: The degree list is reconstructible from $D_k(G)$ when $k \geq \sqrt{2n \log 2n}$.

Pf. From $D_k(G)$, get $c_j = \#\text{copies of } K_{1,j} \text{ in } G$ for $0 \leq j < k$. Any vertex v yields $\binom{d(v)}{j}$ copies of $K_{1,j}$, so $\sum_v \binom{d(v)}{j} = c_j$. If graphs with distinct degree lists α and β both have k-deck $D_k(G)$, then $\sum_{i=1}^n \binom{\alpha_i}{j} = \sum_{i=1}^n \binom{\beta_i}{j}$ for $0 \leq j < k$.
Degree Lists — via an algebraic result

Lem. Borwein–Ingalls [1999], GJST [2021+]: If α and β are distinct nonincreasing lists in $\{0, \ldots, n\}^m$ such that
\[
(\alpha_j^1) + \cdots + (\alpha_j^m) = (\beta_j^1) + \cdots + (\beta_j^m)
\]
for $0 \leq j \leq k$, then $k + 1 \leq \sqrt{2n \log(2m)}$.

Thm. Groenland–Johnston–Scott–Tan [2021+]: The degree list is reconstructible from $\mathcal{D}_k(G)$ when $k \geq \sqrt{2n \log 2n}$.

Pf. From $\mathcal{D}_k(G)$, get $c_j = \#$ copies of $K_{1,j}$ in G for $0 \leq j < k$. Any vertex ν yields $\left(\begin{array}{c} d(\nu) \\ j \end{array}\right)$ copies of $K_{1,j}$, so $\sum_{\nu} \left(\begin{array}{c} d(\nu) \\ j \end{array}\right) = c_j$. If graphs with distinct degree lists α and β both have k-deck $\mathcal{D}_k(G)$, then $\sum_{i=1}^n \left(\begin{array}{c} \alpha_i \\ j \end{array}\right) = \sum_{i=1}^n \left(\begin{array}{c} \beta_i \\ j \end{array}\right)$ for $0 \leq j < k$. By the lemma, $k \leq \sqrt{2(n - 1) \log(2n)}$.

\[\blacksquare\]
Degree Lists — via an algebraic result

Lem. Borwein–Ingalls [1999], GJST [2021+]: If α and β are distinct nonincreasing lists in $\{0, \ldots, n\}^m$ such that $\alpha_1^j + \cdots + \alpha_m^j = \beta_1^j + \cdots + \beta_m^j$ for $0 \leq j \leq k$, then $k + 1 \leq \sqrt{2n \log(2m)}$.

Thm. Groenland–Johnston–Scott–Tan [2021+]: The degree list is reconstructible from $D_k(G)$ when $k \geq \sqrt{2n \log 2n}$.

Pf. From $D_k(G)$, get $c_j = \#$ copies of $K_{1,j}$ in G for $0 \leq j < k$. Any vertex v yields $d(v)_j$ copies of $K_{1,j}$, so $\sum_v \binom{d(v)_j}{j} = c_j$. If graphs with distinct degree lists α and β both have k-deck $D_k(G)$, then $\sum_{i=1}^n \binom{\alpha_i}{j} = \sum_{i=1}^n \binom{\beta_i}{j}$ for $0 \leq j < k$. By the lemma, $k \leq \sqrt{2(n - 1) \log(2n)}$.

Sharpness? GJST observe that when $k \in \Omega(\sqrt{\log n})$ there are more degree lists than possible k-decks.
Graphs with Max Degree 2 (Spinoza–West [2019])

Ques. When is the \(n \)-vertex cycle \(ℓ \)-reconstructible?
Graphs with Max Degree 2 (Spinoza–West [2019])

Ques. When is the n-vertex cycle ℓ-reconstructible?

Prob 11898 (Stanley [2016], Amer. Math. Monthly)
In an n-vertex graph whose components are cycles of length greater than k, the number of independent sets of size k depends only on n and k.
Ques. When is the n-vertex cycle l-reconstructible?

Prob 11898 (Stanley [2016], Amer. Math. Monthly)

In an n-vertex graph whose components are cycles of length greater than k, the number of independent sets of size k depends only on n and k.

Thm. Let G and G' be n-vertex graphs with maximum degree 2 and $|E(G)| = |E(G')|$. If every component in each graph is a cycle with more than k vertices or a path with at least $k - 1$ vertices, then $D_k(G) = D_k(G')$.

Graphs with Max Degree 2 (Spinoza–West [2019])
Graphs with Max Degree 2 (Spinoza–West [2019])

Ques. When is the \(n \)-vertex cycle \(l \)-reconstructible?

Prob 11898 (Stanley [2016], Amer. Math. Monthly)
In an \(n \)-vertex graph whose components are cycles of length greater than \(k \), the number of independent sets of size \(k \) depends only on \(n \) and \(k \).

Thm. Let \(G \) and \(G' \) be \(n \)-vertex graphs with maximum degree 2 and \(|E(G)| = |E(G')| \). If every component in each graph is a cycle with more than \(k \) vertices or a path with at least \(k - 1 \) vertices, then \(\mathcal{D}_k(G) = \mathcal{D}_k(G') \).

1. \(\mathcal{D}_k(C_{q+r}) = \mathcal{D}_k(C_q + C_r) \) if \(q, r \geq k + 1 \),
2. \(\mathcal{D}_k(P_{q+r}) = \mathcal{D}_k(C_q + P_r) \) if \(q \geq k + 1 \) and \(r \geq k - 1 \), and
3. \(\mathcal{D}_k(P_{q-1} + P_r) = \mathcal{D}_k(P_q + P_{r-1}) \) if \(q, r \geq k \).
Graphs with Max Degree 2 (Spinoza–West [2019])

Ques. When is the n-vertex cycle l-reconstructible?

Prob 11898 (Stanley [2016], Amer. Math. Monthly)
In an n-vertex graph whose components are cycles of length greater than k, the number of independent sets of size k depends only on n and k.

Thm. Let G and G' be n-vertex graphs with maximum degree 2 and $|E(G)| = |E(G')|$. If every component in each graph is a cycle with more than k vertices or a path with at least $k - 1$ vertices, then $D_k(G) = D_k(G')$.

1. $D_k(C_{q+r}) = D_k(C_q + C_r)$ if $q, r \geq k + 1$,
2. $D_k(P_{q+r}) = D_k(C_q + P_r)$ if $q \geq k + 1$ and $r \geq k - 1$, and
3. $D_k(P_{q-1} + P_r) = D_k(P_q + P_{r-1})$ if $q, r \geq k$.

Ex. $D_l(P_{2l}) = D_l(C_{l+1} + P_{l-1})$, so the threshold on n for l-reconstructibility of connectedness is at least $2l + 1$.
Key Ideas

(1) $\mathcal{D}_k(C_{q+r}) = \mathcal{D}_k(C_q + C_r)$ if $q, r \geq k + 1$,
(2) $\mathcal{D}_k(P_{q+r}) = \mathcal{D}_k(C_q + P_r)$ if $q \geq k + 1$ and $r \geq k - 1$, and
(3) $\mathcal{D}_k(P_{q-1} + P_r) = \mathcal{D}_k(P_q + P_{r-1})$ if $q, r \geq k$.
Key Ideas

(1) $\mathcal{D}_k(C_{q+r}) = \mathcal{D}_k(C_q + C_r)$ if $q, r \geq k + 1$,
(2) $\mathcal{D}_k(P_{q+r}) = \mathcal{D}_k(C_q + P_r)$ if $q \geq k + 1$ and $r \geq k - 1$, and
(3) $\mathcal{D}_k(P_{q-1} + P_r) = \mathcal{D}_k(P_q + P_{r-1})$ if $q, r \geq k$.

In fact, (1,2,3) suffice to prove the theorem, because:

Lem. If G, G', and H are graphs, then $\mathcal{D}_k(G) = \mathcal{D}_k(G')$ if and only if $\mathcal{D}_k(G + H) = \mathcal{D}_k(G' + H)$.
Key Ideas

(1) \(D_k(C_{q+r}) = D_k(C_q + C_r) \) if \(q, r \geq k + 1 \),
(2) \(D_k(P_{q+r}) = D_k(C_q + P_r) \) if \(q \geq k + 1 \) and \(r \geq k - 1 \), and
(3) \(D_k(P_{q-1} + P_r) = D_k(P_q + P_{r-1}) \) if \(q, r \geq k \).

In fact, (1,2,3) suffice to prove the theorem, because:

Lem. If \(G, G' \), and \(H \) are graphs, then
\(D_k(G) = D_k(G') \) if and only if \(D_k(G + H) = D_k(G' + H) \).

Idea: Let \(s(G, H) = \# \) induced copies of \(H \) in \(G \).
Key Ideas

(1) $D_k(C_{q+r}) = D_k(C_q + C_r)$ if $q, r \geq k + 1$,
(2) $D_k(P_{q+r}) = D_k(C_q + P_r)$ if $q \geq k + 1$ and $r \geq k - 1$, and
(3) $D_k(P_{q-1} + P_r) = D_k(P_q + P_{r-1})$ if $q, r \geq k$.

In fact, (1,2,3) suffice to prove the theorem, because:

Lem. If G, G', and H are graphs, then
$D_k(G) = D_k(G')$ if and only if $D_k(G + H) = D_k(G' + H)$.

Idea: Let $s(G, H) = \#$ induced copies of H in G.

Let $s'(G', H) = \#$ induced copies of $H + K_1$ in G' having a
named vertex z of G' as an isolated vertex.
Key Ideas

(1) $\mathcal{D}_k(C_{q+r}) = \mathcal{D}_k(C_q + C_r)$ if $q, r \geq k + 1$,
(2) $\mathcal{D}_k(P_{q+r}) = \mathcal{D}_k(C_q + P_r)$ if $q \geq k + 1$ and $r \geq k - 1$, and
(3) $\mathcal{D}_k(P_{q-1} + P_r) = \mathcal{D}_k(P_q + P_{r-1})$ if $q, r \geq k$.

In fact, (1,2,3) suffice to prove the theorem, because:

Lem. If G, G', and H are graphs, then $\mathcal{D}_k(G) = \mathcal{D}_k(G')$ if and only if $\mathcal{D}_k(G + H) = \mathcal{D}_k(G' + H)$.

Idea: Let $s(G, H) = \#$ induced copies of H in G.

Let $s'(G', H) = \#$ induced copies of $H + K_1$ in G' having a named vertex z of G' as an isolated vertex.

• Show $s'(P_n, H)$ is indep of z when z is far from ends.
Independent of the Named Vertex

Lem. Let L be the linear forest $\sum_{i=1}^{p} m_i P_{\ell_i}$ with k vertices, and let $P_n = \langle w_1, \ldots, w_n \rangle$. For all $z = w_h$ with $k + 1 \leq h \leq n - k$, the value $s'(P_n, L)$ is the same.
Independent of the Named Vertex

Lem. Let L be the linear forest $\sum_{i=1}^{p} m_i P_{\ell_i}$ with k vertices, and let $P_n = \langle w_1, \ldots, w_n \rangle$. For all $z = w_h$ with $k + 1 \leq h \leq n - k$, the value $s'(P_n, L)$ is the same.

Pf. Induction on k. If $k = 1$, then $s'(P_n, L) = n - 3$ when w_h is not an endpoint of P_n. (Avoid nbrs of w_h.)
Independent of the Named Vertex

Lem. Let L be the linear forest $\sum_{i=1}^{p} m_iP_{\ell_i}$ with k vertices, and let $P_n = \langle w_1, \ldots, w_n \rangle$. For all $z = w_h$ with $k + 1 \leq h \leq n - k$, the value $s'(P_n, L)$ is the same.

Pf. Induction on k. If $k = 1$, then $s'(P_n, L) = n - 3$ when w_h is not an endpoint of P_n. (Avoid nbrs of w_h.) Compare $s'(P_n, L)$ to $s'(C_n, L)$ by adding edge w_nw_1.
Independent of the Named Vertex

Lem. Let L be the linear forest $\sum_{i=1}^{p} m_i P_{\ell_i}$ with k vertices, and let $P_n = \langle w_1, \ldots, w_n \rangle$. For all $z = w_h$ with $k + 1 \leq h \leq n - k$, the value $s'(P_n, L)$ is the same.

Pf. Induction on k. If $k = 1$, then $s'(P_n, L) = n - 3$ when w_h is not an endpoint of P_n. (Avoid nbrs of w_h.) Compare $s'(P_n, L)$ to $s'(C_n, L)$ by adding edge $w_n w_1$. By symmetry, $s'(C_n, L)$ is independent of h.
Independent of the Named Vertex

Lem. Let L be the linear forest $\sum_{i=1}^{p} m_i P_{\ell_i}$ with k vertices, and let $P_n = \langle w_1, \ldots, w_n \rangle$. For all $z = w_h$ with $k + 1 \leq h \leq n - k$, the value $s'(P_n, L)$ is the same.

Pf. Induction on k. If $k = 1$, then $s'(P_n, L) = n - 3$ when w_h is not an endpoint of P_n. (Avoid nbrs of w_h.)

Compare $s'(P_n, L)$ to $s'(C_n, L)$ by adding edge $w_n w_1$.

By symmetry, $s'(C_n, L)$ is independent of h.

$s'(C_n, L)$ omits copies of $L + K_1$ in P_n using w_1 and w_n.

$s'(C_n, L)$ counts unwanted subgraphs using $w_n w_1$.
Independent of the Named Vertex

Lem. Let L be the linear forest $\sum_{i=1}^{p} m_i P_{l_i}$ with k vertices, and let $P_n = \langle w_1, \ldots, w_n \rangle$. For all $z = w_h$ with $k + 1 \leq h \leq n - k$, the value $s'(P_n, L)$ is the same.

Pf. Induction on k. If $k = 1$, then $s'(P_n, L) = n - 3$ when w_h is not an endpoint of P_n. (Avoid nbrs of w_h.)

Compare $s'(P_n, L)$ to $s'(C_n, L)$ by adding edge w_nw_1. By symmetry, $s'(C_n, L)$ is independent of h.

$s'(C_n, L)$ omits copies of $L + K_1$ in P_n using w_1 and w_n. $s'(C_n, L)$ counts unwanted subgraphs using w_nw_1.

$$s'(P_n, L) = s'(C_n, L) + \sum_{i,j} s'(P_{n-l_i-l_j-2}, L - P_{l_i} - P_{l_j})$$
$$- \sum_{i} (l_i - 1) s'(P_{n-l_i-2}, L - P_{l_i})$$

w_h is far enough from the ends to use induction hyp. ■
Let L be the linear forest $\sum_{i=1}^{p} m_i P_{\ell_i}$ with k vertices, and let $P_n = \langle w_1, \ldots, w_n \rangle$. For all $z = w_h$ with $k + 1 \leq h \leq n - k$, the value $s'(P_n, L)$ is the same.
Same k-deck, and Sharpness Claim

Lem. Let L be the linear forest $\sum_{i=1}^{p} m_i P_{\ell_i}$ with k vertices, and let $P_n = \langle w_1, \ldots, w_n \rangle$. For all $z = w_h$ with $k + 1 \leq h \leq n - k$, the value $s'(P_n, L)$ is the same.

Implies (3) $D_k(P_{q-1} + P_r) = D_k(P_q + P_{r-1})$ if $q, r \geq k$.

\[
\begin{array}{cccccccc}
q-1 & \bullet & r \\
\bullet & \bullet \\
q & \bullet & r-1
\end{array}
\]
Lem. Let L be the linear forest $\sum_{i=1}^{p} m_i P_{\ell_i}$ with k vertices, and let $P_n = \langle w_1, \ldots, w_n \rangle$. For all $z = w_h$ with $k + 1 \leq h \leq n - k$, the value $s'(P_n, L)$ is the same.

Implies (3) $D_k(P_{q-1} + P_r) = D_k(P_q + P_{r-1})$ if $q, r \geq k$.

By summing over cases, also (3) \Rightarrow (2) and (2) \Rightarrow (1).

(2) $D_k(P_{q+r}) = D_k(C_q + P_r)$ if $q \geq k + 1$ and $r \geq k - 1$.

(1) $D_k(C_{q+r}) = D_k(C_q + C_r)$ if $q, r \geq k + 1$.
Same k-deck, and Sharpness Claim

Lem. Let L be the linear forest $\sum_{i=1}^{\ell} m_i P_{\ell_i}$ with k vertices, and let $P_n = \langle w_1, \ldots, w_n \rangle$. For all $z = w_h$ with $k + 1 \leq h \leq n - k$, the value $s'(P_n, L)$ is the same.

Implies (3) $D_k(P_{q-1} + P_r) = D_k(P_q + P_{r-1})$ if $q, r \geq k$.

![Diagram]

By summing over cases, also (3) \Rightarrow (2) and (2) \Rightarrow (1).

(2) $D_k(P_{q+r}) = D_k(C_q + P_r)$ if $q \geq k + 1$ and $r \geq k - 1$.

(1) $D_k(C_{q+r}) = D_k(C_q + C_r)$ if $q, r \geq k + 1$.

Full solution for maxdegree 2:

Thm. If $\Delta(G) = 2$, and two largest components have m and m' vertices, then G is reconstructible from $D_k(G)$ iff $k \geq \max\{\lfloor m/2 \rfloor + \epsilon, m' + \epsilon'\}$, where $\epsilon \in \{0, 1\}$ and $\epsilon' \in \{0, 1, 2\}$. ($\epsilon = 1$ if largest component is P_m.)
Regular Graphs and Disconnected Graphs

Thm. Spinoza–West [2019]: For 2-regular graphs we know all l such that the graph is l-reconstructible.
Regular Graphs and Disconnected Graphs

Thm. Spinoza–West [2019]: For 2-regular graphs we know all l such that the graph is l-reconstructible.

Prop. All regular graphs are 1-reconstructible.
Regular Graphs and Disconnected Graphs

Thm. Spinoza–West [2019]: For 2-regular graphs we know all \(l \) such that the graph is \(l \)-reconstructible.

Prop. All regular graphs are 1-reconstructible.

Ques. Mohar: Are regular graphs 2-reconstructible?
Regular Graphs and Disconnected Graphs

Thm. Spinoza–West [2019]: For 2-regular graphs we know all \(l \) such that the graph is \(l \)-reconstructible.

Prop. All regular graphs are 1-reconstructible.

Ques. Mohar: Are regular graphs 2-reconstructible?

Thm. KNWZ’21: 3-regular graphs are 2-reconstr’ble.
Regular Graphs and Disconnected Graphs

Thm. Spinoza–West [2019]: For 2-regular graphs we know all \(l \) such that the graph is \(l \)-reconstructible.

Prop. All regular graphs are 1-reconstructible.

Ques. Mohar: Are regular graphs 2-reconstructible?

Thm. KNWZ’21: 3-regular graphs are 2-reconstructible.

Thm. Kelly’57: Disconnected graphs are 1-reconstructible.
Regular Graphs and Disconnected Graphs

Thm. Spinoza–West [2019]: For 2-regular graphs we know all \(l \) such that the graph is \(l \)-reconstructible.

Prop. All regular graphs are 1-reconstructible.

Ques. Mohar: Are regular graphs 2-reconstructible?

Thm. KNWZ’21: 3-regular graphs are 2-reconstructible.

Thm. Kelly’57: Disconnected graphs are 1-reconstructible.

Thm. KW’21: If \(n \geq 2l + 1 \) and every component of \(G \) has at most \(n - l \) vertices, then \(G \) is \(l \)-reconstructible.
Regular Graphs and Disconnected Graphs

Thm. Spinoza–West [2019]: For 2-regular graphs we know all \(l \) such that the graph is \(l \)-reconstructible.

Prop. All regular graphs are 1-reconstructible.

Ques. Mohar: Are regular graphs 2-reconstructible?

Thm. KNWZ’21: 3-regular graphs are 2-reconstructible.

Thm. Kelly’57: Disconnected graphs are 1-reconstructible.

Thm. KW’21: If \(n \geq 2l + 1 \) and every component of \(G \) has at most \(n - l \) vertices, then \(G \) is \(l \)-reconstructible.

Thm. KW’21: If \(\forall l \), graphs with \(n \geq l + 2 \) having one component with \(n - l + 1 \) vertices and the rest isolated are \(l \)-reconstructible, then the original RC holds.
The Counting Lemma

The Counting Lemma

Def. \(\mathcal{F} \)-subgraph = induced subgraph of \(G \) in family \(\mathcal{F} \).

\[
s(F, G) = \# \text{ induced copies of } F \text{ in } G.
\]

\[
m(F, G) = \# \text{ copies of } F \text{ as a maximal } \mathcal{F} \text{-subgraph of } G.
\]
The Counting Lemma

Def. \mathcal{F}-subgraph = induced subgraph of G in family \mathcal{F}.

$s(F,G) = \#$ induced copies of F in G.

$m(F,G) = \#$ copies of F as a maximal \mathcal{F}-subgraph of G.

\mathcal{F} is absorbing for G if every induced \mathcal{F}-subgraph of G lies in a unique maximal \mathcal{F}-subgraph of G.
The Counting Lemma

Def. \mathcal{F}-subgraph = induced subgraph of G in family \mathcal{F}.
$s(F, G) = \#$induced copies of F in G.
$m(F, G) = \#$copies of F as a maximal \mathcal{F}-subgraph of G.

\mathcal{F} is absorbing for G if every induced \mathcal{F}-subgraph of G lies in a unique maximal \mathcal{F}-subgraph of G.

Lem. If \mathcal{F} is absorbing for n-vertex G with $(n - \ell)$-deck \mathcal{D}, and $m(F, G)$ is known for each $F \in \mathcal{F}$ with at least $n - \ell$ vertices, then $m(F, G)$ is determined for all $F \in \mathcal{F}$.
The Counting Lemma

Def. \mathcal{F}-subgraph = induced subgraph of G in family \mathcal{F}.
$s(F, G) = \#$ induced copies of F in G.
$m(F, G) = \#$ copies of F as a maximal \mathcal{F}-subgraph of G.

\mathcal{F} is absorbing for G if every induced \mathcal{F}-subgraph of G lies in a unique maximal \mathcal{F}-subgraph of G.

Lem. If \mathcal{F} is absorbing for n-vertex G with $(n − \ell)$-deck \mathcal{D}, and $m(F, G)$ is known for each $F \in \mathcal{F}$ with at least $n − \ell$ vertices, then $m(F, G)$ is determined for all $F \in \mathcal{F}$.

Pf. By induction on $n − |V(F)|$; given when $|V(F)| \geq n − \ell$.
The Counting Lemma

Def. \mathcal{F}-subgraph = induced subgraph of G in family \mathcal{F}.
$s(F, G) = \#$ induced copies of F in G.
$m(F, G) = \#$ copies of F as a maximal \mathcal{F}-subgraph of G.

\mathcal{F} is absorbing for G if every induced \mathcal{F}-subgraph of G lies in a unique maximal \mathcal{F}-subgraph of G.

Lem. If \mathcal{F} is absorbing for n-vertex G with $(n - \ell)$-deck \mathcal{D}, and $m(F, G)$ is known for each $F \in \mathcal{F}$ with at least $n - \ell$ vertices, then $m(F, G)$ is determined for all $F \in \mathcal{F}$.

Pf. By induction on $n - |V(F)|$; given when $|V(F)| \geq n - \ell$.

For smaller F, group the copies of F by the unique maximal \mathcal{F}-subgraph H containing them.
The Counting Lemma

Def. \(\mathcal{F}\)-subgraph = induced subgraph of \(G\) in family \(\mathcal{F}\).
\[s(F, G) = \#\text{induced copies of } F \text{ in } G. \]
\[m(F, G) = \#\text{copies of } F \text{ as a maximal } \mathcal{F}-\text{subgraph of } G. \]

\(\mathcal{F}\) is absorbing for \(G\) if every induced \(\mathcal{F}\)-subgraph of \(G\) lies in a unique maximal \(\mathcal{F}\)-subgraph of \(G\).

Lem. If \(\mathcal{F}\) is absorbing for \(n\)-vertex \(G\) with \((n - \ell)\)-deck \(\mathcal{D}\), and \(m(F, G)\) is known for each \(F \in \mathcal{F}\) with at least \(n - \ell\) vertices, then \(m(F, G)\) is determined for all \(F \in \mathcal{F}\).

Pf. By induction on \(n - |V(F)|\); given when \(|V(F)| \geq n - \ell\).

For smaller \(F\), group the copies of \(F\) by the unique maximal \(\mathcal{F}\)-subgraph \(H\) containing them.

Now \(s(F, G) = \sum_{H \in \mathcal{F}} s(F, H)m(H, G)\), solve for \(m(F, G)\). \[\blacksquare\]
Easy Applications of the Counting Lemma

Cor. For $n > 2\ell$, every n-vertex graph having no component w. more than $n - \ell$ vertices is ℓ-reconstr’bl.
Cor. For $n > 2\ell$, every n-vertex graph having no component with more than $n - \ell$ vertices is ℓ-reconstructible.

Pf. \{connected graphs\} is absorbing for any G.
Cor. For $n > 2\ell$, every n-vertex graph having no component w. more than $n - \ell$ vertices is ℓ-reconstr’bl.

Pf. \{connected graphs\} is absorbing for any G. All components $\leq n - \ell$ verts $\iff \leq 1$ connected card.
Cor. For $n > 2\ell$, every n-vertex graph having no component w. more than $n - \ell$ vertices is ℓ-reconstr’bl.

Pf. {connected graphs} is absorbing for any G. All components $\leq n - \ell$ verts $\iff \leq 1$ connected card.

$m(F, G) = 1$ if F is a component of G with $n - \ell$ vertices. $m(F, G) = 0$ otherwise if $|V(F)| \geq n - \ell$.
Easy Applications of the Counting Lemma

Cor. For $n > 2\ell$, every n-vertex graph having no component w. more than $n - \ell$ vertices is ℓ-reconstructible.

Pf. \{connected graphs\} is absorbing for any G. All components $\leq n - \ell$ verts $\iff \leq 1$ connected card.

$m(F, G) = 1$ if F is a component of G with $n - \ell$ vertices.

$m(F, G) = 0$ otherwise if $|V(F)| \geq n - \ell$.

$.\quad$ Counting Lemma applies to give all components.
Cor. For \(n > 2\ell \), every \(n \)-vertex graph having no component w. more than \(n - \ell \) vertices is \(\ell \)-reconstr’bl.

Pf. \{connected graphs\} is absorbing for any \(G \).

All components \(\leq n - \ell \) verts \(\iff \leq 1 \) connected card.

\[m(F, G) = 1 \text{ if } F \text{ is a component of } G \text{ with } n - \ell \text{ vertices.} \]

\[m(F, G) = 0 \text{ otherwise if } |V(F)| \geq n - \ell . \]

∴ Counting Lemma applies to give all components.

Sharpness by \(P_{\ell} + P_{\ell} \) vs. \(P_{\ell+1} + P_{\ell-1} \) when \(n = 2\ell \).
Easy Applications of the Counting Lemma

Cor. For $n > 2\ell$, every n-vertex graph having no component w. more than $n - \ell$ vertices is ℓ-reconstr’bl.

Pf. \{connected graphs\} is absorbing for any G. All components $\leq n - \ell$ verts $\iff\leq 1$ connected card.

$m(F, G) = 1$ if F is a component of G with $n - \ell$ vertices. $m(F, G) = 0$ otherwise if $|V(F)| \geq n - \ell$.

∴ Counting Lemma applies to give all components.

Sharpness by $P_\ell + P_\ell$ vs. $P_{\ell+1} + P_{\ell-1}$ when $n = 2\ell$.

Cor. Manvel [1974] If $k \geq \Delta(G) + 2$, then $D_k(G)$ determines the degree list of G.

Easy Applications of the Counting Lemma

Cor. For $n > 2\ell$, every n-vertex graph having no component w. more than $n - \ell$ vertices is ℓ-reconstr’bl.

Pf. \{connected graphs\} is absorbing for any G. All components $\leq n - \ell$ verts $\iff \leq 1$ connected card.
$m(F, G) = 1$ if F is a component of G with $n - \ell$ vertices.
$m(F, G) = 0$ otherwise if $|V(F)| \geq n - \ell$.

∴ Counting Lemma applies to give all components. **Sharpness** by $P_\ell + P_\ell$ vs. $P_{\ell+1} + P_{\ell-1}$ when $n = 2\ell$.

Cor. Manvel [1974] If $k \geq \Delta(G) + 2$, then $D_k(G)$ determines the degree list of G.

Pf. \{stars w. ≥ 3 vertices\} is absorbing for any G.

Easy Applications of the Counting Lemma

Cor. For $n > 2\ell$, every n-vertex graph having no component w. more than $n - \ell$ vertices is ℓ-reconstr’bl.

Pf. \{connected graphs\} is absorbing for any G. All components $\leq n - \ell$ verts $\iff \leq 1$ connected card.

$m(F, G) = 1$ if F is a component of G with $n - \ell$ vertices.
$m(F, G) = 0$ otherwise if $|V(F)| \geq n - \ell$.

\therefore Counting Lemma applies to give all components.

Sharpness by $P_\ell + P_\ell$ vs. $P_{\ell+1} + P_{\ell-1}$ when $n = 2\ell$.

Cor. Manvel [1974] If $k \geq \Delta(G) + 2$, then $D_k(G)$ determines the degree list of G.

Pf. \{stars w. ≥ 3 vertices\} is absorbing for any G.

vertices \iff maximal stars; none have $\geq k$ vertices.
Easy Applications of the Counting Lemma

Cor. For $n > 2\ell$, every n-vertex graph having no component w. more than $n - \ell$ vertices is ℓ-reconstr’bl.

Pf. $\{\text{connected graphs}\}$ is absorbing for any G. All components $\leq n - \ell$ verts $\iff \leq 1$ connected card.

$m(F, G) = 1$ if F is a component of G with $n - \ell$ vertices. $m(F, G) = 0$ otherwise if $|V(F)| \geq n - \ell$.

∴ Counting Lemma applies to give all components.

Sharpness by $P_{\ell} + P_{\ell}$ vs. $P_{\ell+1} + P_{\ell-1}$ when $n = 2\ell$.

Cor. Manvel [1974] If $k \geq \Delta(G) + 2$, then $D_k(G)$ determines the degree list of G.

Pf. $\{\text{stars w. } \geq 3 \text{ vertices}\}$ is absorbing for any G. vertices \iff maximal stars; none have $\geq k$ vertices. Counting Lemma yields $\#\text{max’l stars of degrees } \geq 2$.

Trees - I

Thm. Kelly [1957]: Trees with at least 3 vertices are 1-reconstructible.
Trees - I

Thm. Kelly [1957]: Trees with at least 3 vertices are 1-reconstructible.

Thm. Giles [1976]: Trees with at least 6 vertices are 2-reconstructible.
Trees - I

Thm. Kelly [1957]: Trees with at least 3 vertices are 1-reconstructible.

Thm. Giles [1976]: Trees with at least 6 vertices are 2-reconstructible.

Thm. Nýdl [1981]: ∃ trees with \(n = 2\ell \) and same \(\ell \)-deck.
Trees - I

Thm. Kelly [1957]: Trees with at least 3 vertices are 1-reconstructible.

Thm. Giles [1976]: Trees with at least 6 vertices are 2-reconstructible.

Thm. Nýdl [1981]: \(\exists \) trees with \(n = 2l \) and same \(l \)-deck.

Two steps to reconstruction of graphs in a family \(\mathcal{F} \).

1. **Recognition**: Every graph with deck \(D \) lies in \(\mathcal{F} \).
2. **Weak reconstruction**: Given that \(D \) is the deck of a graph in \(\mathcal{F} \), the deck determines which \(F \in \mathcal{F} \).
Trees - I

Thm. Kelly [1957]: Trees with at least 3 vertices are 1-reconstructible.

Thm. Giles [1976]: Trees with at least 6 vertices are 2-reconstructible.

Thm. Nýdl [1981]: ∃ trees with \(n = 2\ell \) and same \(\ell \)-deck.

Two steps to reconstruction of graphs in a family \(\mathcal{F} \).

1. **Recognition**: Every graph with deck \(\mathcal{D} \) lies in \(\mathcal{F} \).
2. **Weak reconstruction**: Given that \(\mathcal{D} \) is the deck of a graph in \(\mathcal{F} \), the deck determines which \(F \in \mathcal{F} \).

Conj. Nýdl [1981]: Trees with \(n \geq 2\ell + 1 \) are weakly \(\ell \)-reconstructible.
Trees - II

Thm. Kostochka-Nahvi-West-Zirlin [2021+]: For $n \geq 2\ell + 1$, n-vertex acyclic graphs are ℓ-recognizable.
Thm. Kostochka-Nahvi-West-Zirlin [2021+]: For $n \geq 2\ell + 1$, n-vertex acyclic graphs are ℓ-recognizable. (not (5,2))
Thm. Kostochka-Nahvi-West-Zirlin [2021+]: For $n \geq 2\ell + 1$, n-vertex acyclic graphs are ℓ-recognizable. (not (5,2))

Conj. Trees with $n \geq 2\ell + 1$ are ℓ-reconstr’ble.
Thm. Kostochka-Nahvi-West-Zirlin [2021+]: For \(n \geq 2\ell + 1 \), \(n \)-vertex acyclic graphs are \(\ell \)-recognizable. (not (5,2))

Conj. Trees with \(n \geq 2\ell + 1 \) are \(\ell \)-reconstr’ble. But

GJST: 13 vertices, same 7-deck
Thm. Kostochka-Nahvi-West-Zirlin [2021+]: For $n \geq 2\ell + 1$, n-vertex acyclic graphs are ℓ-recognizable. (not (5,2))

Conj. Trees with $n \geq 2\ell + 1$ are ℓ-reconstr’ble. But

Thm. GJST’21: n-vertex trees are reconstructible from their k-decks when $k \geq \frac{8}{9}n + \frac{4}{9}\sqrt{8n+5} + 1$.

GJST: 13 vertices, same 7-deck
Thm. Kostochka-Nahvi-West-Zirlin [2021+]: For \(n \geq 2l + 1 \), \(n \)-vertex acyclic graphs are \(l \)-recognizable. (not \((5, 2) \))

Conj. Trees with \(n \geq 2l + 1 \) are \(l \)-reconstr’ble. But

GJST: 13 vertices, same 7-deck

Thm. GJST’21: \(n \)-vertex trees are reconstructible from their \(k \)-decks when \(k \geq \frac{8}{9}n + \frac{4}{9}\sqrt{8n + 5} + 1 \).

Cor. Trees \(l \)-reconstr’ble for \(n \geq 9l + 24\sqrt{2l} + o(\sqrt{l}) \).
Thm. Kostochka-Nahvi-West-Zirlin [2021+]: For $n \geq 2l+1$, n-vertex acyclic graphs are l-recognizable. (not (5,2))

Conj. Trees with $n \geq 2l+1$ are l-reconstr’ble. But

![Diagram of trees with labels](image)

GJST: 13 vertices, same 7-deck

Thm. GJST’21: n-vertex trees are reconstructible from their k-decks when $k \geq \frac{8}{9}n + \frac{4}{9}\sqrt{8n+5+1}$.

Cor. Trees l-reconstr’ble for $n \geq 9l + 24\sqrt{2l} + o(\sqrt{l})$.

Thm. KNWZ’21+: Trees are 3-reconstr’ble for $n \geq 25$.
Thm. Kostochka-Nahvi-West-Zirlin [2021+]: For $n \geq 2\ell + 1$, n-vertex acyclic graphs are ℓ-recognizable. (not $(5,2)$)

Conj. Trees with $n \geq 2\ell + 1$ are ℓ-reconstr’ble. But

Thm. GJST’21: n-vertex trees are reconstructible from their k-decks when $k \geq \frac{8}{9}n + \frac{4}{9}\sqrt{8n + 5} + 1$.

Cor. Trees ℓ-reconstr’ble for $n \geq 9\ell + 24\sqrt{2\ell} + o(\sqrt{\ell})$.

Thm. KNWZ’21+: Trees are 3-reconstr’ble for $n \geq 25$. The case $\ell = 3$ of GJST covers $n \geq 194$.

GJST: 13 vertices, same 7-deck
Trees - II

Thm. Kostochka-Nahvi-West-Zirlin [2021+] : For \(n \geq 2l+1 \), \(n \)-vertex acyclic graphs are \(l \)-recognizable. (not (5,2))

Conj. Trees with \(n \geq 2l+1 \) are \(l \)-reconstr’ble. But

![Diagram](image)

Thm. GJST’21: \(n \)-vertex trees are reconstructible from their \(k \)-decks when \(k \geq \frac{8}{9}n + \frac{4}{9}\sqrt{8n+5+1} \).

Cor. Trees \(l \)-reconstr’ble for \(n \geq 9l + 24\sqrt{2l} + o(\sqrt{l}) \).

Thm. KNWZ’21+: Trees are 3-reconstr’ble for \(n \geq 25 \).

The case \(l = 3 \) of GJST covers \(n \geq 194 \).

Ours, only for \(l = 3 \), takes 48 pages (uses rooted trees).
Recognizing Acyclic Graphs

Thm. For $n \geq 2l + 2$, the $(n - l)$-deck D of an n-vertex graph G determines whether G has a cycle.
Recognizing Acyclic Graphs

Thm. For \(n \geq 2\ell + 2 \), the \((n - \ell)\)-deck \(\mathcal{D} \) of an \(n \)-vertex graph \(G \) determines whether \(G \) has a cycle.

Def. \(j \)-vine = a tree with diameter \(2j \).
\(j \)-center = the center of a \(j \)-vine.
Recognizing Acyclic Graphs

Thm. For $n \geq 2\ell + 2$, the $(n - \ell)$-deck D of an n-vertex graph G determines whether G has a cycle.

Def. j-vine = a tree with diameter $2j$.

j-center = the center of a j-vine.

Idea: for suitable j, show D determines $\#j$-centers in any reconstruction.

Acyclic reconstruction has $\#j$-centers $\leq a$.

Non-acyclic reconstruction has j-centers $\geq b$.

Use $b \leq a$ to show $n \leq 2\ell + 1$ if both types occur.
Recognizing Acyclic Graphs

Thm. For $n \geq 2\ell + 2$, the $(n - \ell)$-deck D of an n-vertex graph G determines whether G has a cycle.

Def. j-vine = a tree with diameter $2j$.

j-center = the center of a j-vine.

Idea: for suitable j, show D determines $\#j$-centers in any reconstruction.

Acyclic reconstruction has $\#j$-centers $\leq a$.

Non-acyclic reconstruction has j-centers $\geq b$.

Use $b \leq a$ to show $n \leq 2\ell + 1$ if both types occur.

Lem. In a graph G with girth at least $2j + 2$, every j-vine is contained in a unique maximal j-vine.

(Thus j-centers correspond to maximal j-vines.)
Recognizing Acyclic Graphs

Thm. For \(n \geq 2\ell + 2 \), the \((n − \ell)\)-deck \(\mathcal{D} \) of an \(n \)-vertex graph \(G \) determines whether \(G \) has a cycle.

Def. \(j \)-vine = a tree with diameter \(2j \).
\(j \)-center = the center of a \(j \)-vine.

Idea: for suitable \(j \), show \(\mathcal{D} \) determines \#\(j \)-centers in any reconstruction.
Acyclic reconstruction has \#\(j \)-centers \(\leq a \).
Non-acyclic reconstruction has \(j \)-centers \(\geq b \).
Use \(b \leq a \) to show \(n \leq 2\ell + 1 \) if both types occur.

Lem. In a graph \(G \) with girth at least \(2j + 2 \), every \(j \)-vine is contained in a unique maximal \(j \)-vine.
(Thus \(j \)-centers correspond to maximal \(j \)-vines.)

Pf. Girth \(\geq 2j+2 \) \implies a \(j \)-vine \(B \) is an induced subgraph.
Diameter \(2j \) \implies \(B \) has unique center \(v \).
No \(j \)-vine with another center contains \(B \).
\(\therefore \) unique maximal \(j \)-vine containing \(B \) is the \(j \)-ball at \(v \).
Counting the j-Centers

Lem. (restated) If G has girth $\geq 2j + 2$, then \{j-vines\} is absorbing for G and j-centers \iff maximal j-vines.
Counting the j-Centers

Lem. (restated) If G has girth $\geq 2j + 2$, then $\{j$-vines\} is absorbing for G and j-centers \iff maximal j-vines.

Lem. If D is an $(n - \ell)$-deck where every card is acyclic and has radius greater than j, then all n-vertex reconstructions have the same number of j-centers.
Counting the j-Centers

Lem. (restated) If G has girth $\geq 2j + 2$, then $\{j$-vines$\}$ is absorbing for G and j-centers \iff maximal j-vines.

Lem. If D is an $(n − \ell)$-deck where every card is acyclic and has radius greater than j, then all n-vertex reconstructions have the same number of j-centers.

Pf. all cards acyclic with radius $> j$
- connected cards contain P_{2j+2}
- $n − \ell \geq 2j + 2$
- girth $\geq 2j + 3$ (shorter cycles would be in cards).
Counting the j-Centers

Lem. (restated) If G has girth $\geq 2j + 2$, then \{j-vines\} is absorbing for G and $\ j$-centers \iff maximal j-vines.

Lem. If D is an $(n - \ell)$-deck where every card is acyclic and has radius greater than j, then all n-vertex reconstructions have the same number of j-centers.

Pf. all cards acyclic with radius $> j$
 \implies connected cards contain P_{2j+2}
 $\implies n - \ell \geq 2j + 2$
 \implies girth $\geq 2j + 3$ (shorter cycles would be in cards).

Previous Lemma \implies Family of j-vines is absorbing.
Counting the j-Centers

Lem. (restated) If G has girth $\geq 2j + 2$, then $\{j$-vines$\}$ is absorbing for G and j-centers \iff maximal j-vines.

Lem. If D is an $(n - \ell)$-deck where every card is acyclic and has radius greater than j, then all n-vertex reconstructions have the same number of j-centers.

Pf. all cards acyclic with radius $> j$
\[\Rightarrow \text{ connected cards contain } P_{2j+2} \]
\[\Rightarrow \ n - \ell \geq 2j + 2 \]
\[\Rightarrow \ \text{girth } \geq 2j + 3 \text{ (shorter cycles would be in cards).} \]

Previous Lemma \Rightarrow Family of j-vines is absorbing.

j-vine with $\geq n - \ell$ vertices
\[\Rightarrow \text{ connected card with radius } \leq j, \text{ so no such } j$-vine. \]
Counting the j-Centers

Lem. (restated) If G has girth $\geq 2j + 2$, then \{$_j$-vines\} is absorbing for G and j-centers \iff maximal j-vines.

Lem. If D is an $(n - \ell)$-deck where every card is acyclic and has radius greater than j, then all n-vertex reconstructions have the same number of j-centers.

Pf. all cards acyclic with radius $> j$

\Rightarrow connected cards contain P_{2j+2}

\Rightarrow $n - \ell \geq 2j + 2$

\Rightarrow girth $\geq 2j + 3$ (shorter cycles would be in cards).

Previous Lemma \Rightarrow Family of j-vines is absorbing.

j-vine with $\geq n - \ell$ vertices

\Rightarrow connected card with radius $\leq j$, so no such j-vine.

\therefore Counting Lemma yields $\#$ maximal j-vines.
Counting the j-Centers

Lem. (restated) If G has girth $\geq 2j + 2$, then \{\textit{j-vines}\} is absorbing for G and j-centers \iff maximal j-vines.

Lem. If D is an $(n - \ell)$-deck where every card is acyclic and has radius greater than j, then all n-vertex reconstructions have the same number of j-centers.

Pf. all cards acyclic with radius $> j$
⇒ connected cards contain P_{2j+2}
⇒ $n - \ell \geq 2j + 2$
⇒ girth $\geq 2j + 3$ (shorter cycles would be in cards).

Previous Lemma \Rightarrow Family of j-vines is absorbing.

j-vine with $\geq n - \ell$ vertices
⇒ connected card with radius $\leq j$, so no such j-vine.

\therefore Counting Lemma yields $\#\text{maximal } j$-vines.

These correspond bijectively to j-centers.
Ambiguous Decks

Def. ambiguous deck $\mathcal{D} = \text{the } (n - \ell)\text{-deck of both an acyclic } F \text{ and non-acyclic } H \text{ with } n \text{ vertices.}$

Def. Let k be one less than minimum radius of cards.
Ambiguous Decks

Def. ambiguous deck $\mathcal{D} = \text{the } (n - \ell)\text{-deck of both an acyclic } F \text{ and non-acyclic } H \text{ with } n \text{ vertices.}

Def. Let k be one less than minimum radius of cards.

Already all reconstructions have same #k-centers.
Ambiguous Decks

Def. ambiguous deck $\mathcal{D} = \text{the } (n - \ell)\text{-deck of both an acyclic } F \text{ and non-acyclic } H \text{ with } n \text{ vertices.}$

Def. Let k be one less than minimum radius of cards. Already all reconstructions have same $\#k$-centers.

All cards from F are acyclic, so H has girth $\geq n - \ell + 1$.
Ambiguous Decks

Def. ambiguous deck $\mathcal{D} = $ the $(n - \ell)$-deck of both an acyclic F and non-acyclic H with n vertices.

Def. Let k be one less than minimum radius of cards.

Already all reconstructions have same $\#k$-centers. All cards from F are acyclic, so H has girth $\geq n - \ell + 1$.

Lem. ambiguous \mathcal{D} and $n \geq 2\ell + 2 \Rightarrow k \geq 1$.
Ambiguous Decks

Def. ambiguous deck $\mathcal{D} = \text{the } (n - \ell)\text{-deck of both an acyclic } F \text{ and non-acyclic } H \text{ with } n \text{ vertices.}

Def. Let k be one less than minimum radius of cards.

Already all reconstructions have same $\#k$-centers. All cards from F are acyclic, so H has girth $\geq n - \ell + 1$.

Lem. ambiguous \mathcal{D} and $n \geq 2\ell + 2 \Rightarrow k \geq 1$.

Pf. If $k = 0$, then some card is a star with $n - \ell$ vertices.
Ambiguous Decks

Def. ambiguous deck $D = \text{the } (n - \ell)\text{-deck of both an acyclic } F \text{ and non-acyclic } H \text{ with } n \text{ vertices.}

Def. Let k be one less than minimum radius of cards. Already all reconstructions have same $\#k$-centers.

All cards from F are acyclic, so H has girth $\geq n - \ell + 1$.

Lem. ambiguous D and $n \geq 2\ell + 2 \Rightarrow k \geq 1$.

Pf. If $k = 0$, then some card is a star with $n - \ell$ vertices. $2n - 2\ell + 1 \geq n + 3 \Rightarrow$ star & cycle in same component of H.

Ambiguous Decks

Def. ambiguous deck $\mathcal{D} = \text{the (}n - \ell\text{)-deck of both an acyclic } F \text{ and non-acyclic } H \text{ with } n \text{ vertices.}

Def. Let k be one less than minimum radius of cards. Already all reconstructions have same $\#k$-centers. All cards from F are acyclic, so H has girth $\geq n - \ell + 1$.

Lem. ambiguous \mathcal{D} and $n \geq 2\ell + 2 \Rightarrow k \geq 1.$

Pf. If $k = 0$, then some card is a star with $n - \ell$ vertices. $2n - 2\ell + 1 \geq n + 3 \Rightarrow \text{star & cycle in same component of } H.$ 2-deck $\Rightarrow \leq n - 1 \text{ edges} \Rightarrow H \text{ is disconnected.}$
Ambiguous Decks

Def. ambiguous deck \(D \) = the \((n - l)\)-deck of both an acyclic \(F \) and non-acyclic \(H \) with \(n \) vertices.

Def. Let \(k \) be one less than minimum radius of cards.

Already all reconstructions have same \#\(k \)-centers.

All cards from \(F \) are acyclic, so \(H \) has girth \(\geq n - l + 1 \).

Lem. ambiguous \(D \) and \(n \geq 2l + 2 \) \(\Rightarrow \) \(k \geq 1 \).

Pf. If \(k = 0 \), then some card is a star with \(n - l \) vertices.

\[2n - 2l + 1 \geq n + 3 \Rightarrow \text{star & cycle in same component of } H. \]

2-deck \(\Rightarrow \) \(\leq n - 1 \) edges \(\Rightarrow \) \(H \) is disconnected.

Girth \(\geq n - l + 1 \geq 4 \) \(\Rightarrow \) star & shortest cycle share \(\leq 3 \) verts.
Ambiguous Decks

Def. ambiguous deck $\mathcal{D} = \text{the } (n - l)\text{-deck of both an acyclic } F \text{ and non-acyclic } H \text{ with } n \text{ vertices.}

Def. Let k be one less than minimum radius of cards.

Already all reconstructions have same $\#k$-centers.

All cards from F are acyclic, so H has girth $\geq n - l + 1$.

Lem. ambiguous \mathcal{D} and $n \geq 2l + 2 \Rightarrow k \geq 1$.

Pf. If $k = 0$, then some card is a star with $n - l$ vertices.

$2n - 2l + 1 \geq n + 3 \Rightarrow$ star & cycle in same component of H.

2-deck $\Rightarrow \leq n - 1$ edges $\Rightarrow H$ is disconnected.

Girth $\geq n - l + 1 \geq 4 \Rightarrow$ star & shortest cycle share ≤ 3 verts.

Now $(n - l + 1) + (n - l) - 3 \leq n - 1 \Rightarrow n \leq 2l + 1$. ■
The Marking Lemma

Def. Marking process: From forest F, let C be a card with radius $j + 1$ and central vertex z. Each j-center x other than z marks a vertex x' at distance j from x (in the direction away from z).

![Diagram of the marking process]

- $j = 2$
- $d = 3 = \#\text{paths}$
The Marking Lemma

Def. Marking process: From forest F, let C be a card with radius $j + 1$ and central vertex z. Each j-center x other than z marks a vertex x' at distance j from x (in the direction away from z).

$Lem.$ With C as above, F has $\leq 1 + d + \ell$ j-centers, with $d = \#edge-disjoint paths of length $j + 1$ leaving z in C.
The Marking Lemma

Def. Marking process: From forest F, let C be a card with radius $j + 1$ and central vertex z. Each j-center x other than z marks a vertex x' at distance j from x (in the direction away from z).

Lem. With C as above, F has $\leq 1 + d + \ell j$-centers, with $d = \#$ edge-disjoint paths of length $j + 1$ leaving z in C.

Pf. j-centers not adj. to z mark vertices outside C, and each outside vert. (at most ℓ) is marked at most once. ■
Cards of Diameter $2k + 1$

Trees with radius $k + 1$ may have diam $2k+1$ or $2k+2$.
Cards of Diameter $2k + 1$

Trees with radius $k + 1$ may have diam $2k+1$ or $2k+2$.

Cases: (1) some card has diam $2k + 1$; (2) none do.
Cards of Diameter $2k + 1$

Trees with radius $k + 1$ may have diam $2k + 1$ or $2k + 2$.

Cases: (1) some card has diam $2k + 1$; (2) none do.

Lem. ambiguous deck D and $n \geq 2\ell + 2 \Rightarrow$ no card has diameter $2k + 1$.
Cards of Diameter $2k + 1$

Trees with radius $k + 1$ may have diam $2k+1$ or $2k+2$. **Cases:** (1) some card has diam $2k + 1$; (2) none do.

Lem. ambiguous deck D and $n \geq 2\ell + 2 \Rightarrow$ no card has diameter $2k + 1$.

Pf. F and H have same number of k-centers.
Cards of Diameter $2k+1$

Trees with radius $k+1$ may have diam $2k+1$ or $2k+2$.

Cases: (1) some card has diam $2k+1$; (2) none do.

Lem. ambiguous deck \mathcal{D} and $n \geq 2\ell + 2 \Rightarrow$ no card has diameter $2k+1$.

Pf. F and H have same number of k-centers.

For card C with diameter $2k+1$, we have $d = 1$. (\exists One path of length $k+1$ from z in C.)

![Diagram](image)
Cards of Diameter $2k + 1$

Trees with radius $k + 1$ may have diam $2k+1$ or $2k+2$.

Cases: (1) some card has diam $2k + 1$; (2) none do.

Lem. ambiguous deck D and $n \geq 2\ell + 2 \implies$ no card has diameter $2k + 1$.

Pf. F and H have same number of k-centers.

For card C with diameter $2k + 1$, we have $d = 1$.
(\exists One path of length $k + 1$ from z in C.)

\therefore Marking Lemma $\implies \#k$-centers in F is at most $2 + \ell$.

![Diagram of a graph with nodes z, z', and an edge labeled k+1]
Cards of Diameter \(2k + 1\)

Trees with radius \(k + 1\) may have diam \(2k + 1\) or \(2k + 2\).

Cases: (1) some card has diam \(2k + 1\); (2) none do.

Lem. ambiguous deck \(D\) and \(n \geq 2\ell + 2 \Rightarrow\) no card has diameter \(2k + 1\).

Pf. \(F\) and \(H\) have same number of \(k\)-centers.
For card \(C\) with diameter \(2k + 1\), we have \(d = 1\).

(∃ One path of length \(k + 1\) from \(z\) in \(C\).)

\[\therefore \text{Marking Lemma} \Rightarrow \#k\text{-centers in } F \text{ is at most } 2 + \ell.\]

Since girth \(\geq 2k + 3\), all vertices on a cycle are \(k\)-centers,
\[\therefore \#k\text{-centers in } H \text{ is at least } n - \ell + 1.\]
Cards of Diameter $2k + 1$

Trees with radius $k + 1$ may have diam $2k + 1$ or $2k + 2$.

Cases: (1) some card has diam $2k + 1$; (2) none do.

Lem. ambiguous deck D and $n \geq 2\ell + 2 \implies$ no card has diameter $2k + 1$.

Pf. F and H have same number of k-centers. For card C with diameter $2k + 1$, we have $d = 1$. (∃ One path of length $k + 1$ from z in C.)

\[\therefore \text{Marking Lemma} \implies \#k\text{-centers in } F \text{ is at most } 2 + \ell. \]

Since girth $\geq 2k + 3$, all vertices on a cycle are k-centers,

\[\therefore \#k\text{-centers in } H \text{ is at least } n - \ell + 1. \]

Now $n - \ell + 1 \leq 2 + \ell \implies n \leq 2\ell + 1$. \[\blacksquare \]
k-Central Edges and Cards of Diameter \(2k + 2\)

Def. \(k\)-evine = a tree with diameter \(2k + 1\).

\(k\)-central edge = the central edge of a \(k\)-evine.
Def. k-evine = a tree with diameter $2k + 1$. k-central edge = the central edge of a k-evine.

Lem. If all cards acyclic w. radius $> k$ and none have diameter $2k + 1$, then D determines $\#k$-central edges.
Def. k-evine = a tree with diameter $2k + 1$.
k-central edge = the central edge of a k-evine.

Lem. If all cards acyclic w. radius $> k$ and none have diameter $2k + 1$, then \mathcal{D} determines $\#k$-central edges.

Pf. No card w. diam $2k + 1 \Rightarrow$ no k-evine has $\geq n - ℓ$ vrts.
Girth $\geq 2k + 3 \Rightarrow \{k$-evines$\}$ absorbing; Counting Lem. ■
k-Central Edges and Cards of Diameter 2k + 2

Def. *k-evine* = a tree with diameter $2k + 1$.

k-central edge = the central edge of a *k-evine*.

Lem. If all cards acyclic w. radius $> k$ and none have diameter $2k + 1$, then \mathcal{D} determines $\#k$-central edges.

Pf. No card w. diam $2k+1$ ⇒ no *k-evine* has $\geq n - \ell$ vrts.

Girth $\geq 2k + 3$ ⇒ \{*k-evines*\} absorbing; Counting Lem. ■

Thm. For $n \geq 2\ell + 2$, acyclicity is ℓ-recognizable.
k-Central Edges and Cards of Diameter 2k + 2

Def. *k-evine* = a tree with diameter $2k + 1$.

k-central edge = the central edge of a *k-evine*.

Lem. If all cards acyclic w. radius $> k$ and none have diameter $2k + 1$, then \mathcal{D} determines $\#k$-central edges.

Pf. No card w. diam $2k + 1 \Rightarrow$ no *k-evine* has $\geq n - \ell$ vrts.

Girth $\geq 2k + 3 \Rightarrow \{k$-evines\} absorbing; Counting Lem. ■

Thm. For $n \geq 2\ell + 2$, acyclicity is ℓ-recognizable.

Pf. No cards of diam $2k + 1 \Rightarrow \#k$-central edges known.
k-Central Edges and Cards of Diameter 2k + 2

Def.
k-evine = a tree with diameter $2k + 1$.
k-central edge = the central edge of a k-evine.

Lem. If all cards acyclic w. radius $> k$ and none have diameter $2k+1$, then \mathcal{D} determines $\#k$-central edges.

Pf. No card w. diam $2k+1$ ⇒ no k-evine has $\geq n-\ell$ vrts.
Girth $\geq 2k+3$ ⇒ $\{k$-evines$\}$ absorbing; Counting Lem.

Thm. For $n \geq 2\ell + 2$, acyclicity is ℓ-recognizable.

Pf. No cards of diam $2k+1$ ⇒ $\#k$-central edges known.
Short card shows d k-central edges w. common endpt.
k-Central Edges and Cards of Diameter $2k + 2$

Def. k-evine = a tree with diameter $2k + 1$.
k-central edge = the central edge of a k-evine.

Lem. If all cards acyclic w. radius $> k$ and none have diameter $2k + 1$, then D determines $\#k$-central edges.

Pf. No card w. diam $2k + 1 \Rightarrow$ no k-evine has $\geq n - l$ vrts.
Girth $\geq 2k + 3 \Rightarrow \{k$-evines$\}$ absorbing; Counting Lem. ■

Thm. For $n \geq 2l + 2$, acyclicity is l-recognizable.

Pf. No cards of diam $2k + 1 \Rightarrow \#k$-central edges known.
Short card shows $d \ k$-central edges w. common endpt.

In F, edge is k-central \iff end away from z is k-cntr.

$\therefore \#k$-centers $\leq 1 + d + l \Rightarrow \#k$-central edges $\leq d + l$.
Def. k-evine = a tree with diameter $2k + 1$.
k-central edge = the central edge of a k-evine.

Lem. If all cards acyclic w. radius $> k$ and none have diameter $2k+1$, then \mathcal{D} determines $\#k$-central edges.

Pf. No card w. diam $2k+1$ \Rightarrow no k-evine has $\geq n-\ell$ vrts.
Girth $\geq 2k+3$ \Rightarrow \{k-evines\} absorbing; Counting Lem. ■

Thm. For $n \geq 2\ell + 2$, acyclicity is ℓ-recognizable.

Pf. No cards of diam $2k+1$ \Rightarrow $\#k$-central edges known.
Short card shows d k-central edges w. common endpt.
In F, edge is k-central \iff end away from z is k-cntr.
\therefore $\#k$-centers $\leq 1+d+\ell$ \Rightarrow $\#k$-central edges $\leq d+\ell$.
In H, all edges in cycle (girth $\geq n - \ell + 1$) are k-central, plus $\geq d - 2$ with common endpoint.
Def. k-evine = a tree with diameter $2k + 1$.
k-central edge = the central edge of a k-evine.

Lem. If all cards acyclic w. radius $> k$ and none have diameter $2k + 1$, then \mathcal{D} determines $\#k$-central edges.

Pf. No card w. diam $2k + 1 \Rightarrow$ no k-evine has $\geq n - \ell$ vrtx.
Girth $\geq 2k + 3 \Rightarrow \{k$-evines$\}$ absorbing; Counting Lem. □

Thm. For $n \geq 2\ell + 2$, acyclicity is ℓ-recognizable.

Pf. No cards of diam $2k + 1 \Rightarrow$ $\#k$-central edges known.
Short card shows d k-central edges w. common endpt.
In F, edge is k-central \iff end away from z is k-cntr.
\therefore $\#k$-centers $\leq 1 + d + \ell \Rightarrow \#k$-central edges $\leq d + \ell$.
In H, all edges in cycle (girth $\geq n - \ell + 1$) are k-central,
plus $\geq d - 2$ with common endpoint.
Now $(n - \ell + 1) + (d - 2) \leq d + \ell \Rightarrow n \leq 2\ell + 1$. □
Open Questions

Conj. Trees with $n \geq 2\ell + 1$ are ℓ-reconstructible. (Not for $(5, 2)$ or $(13, 6)$; OK for $n \geq 9\ell + O(\sqrt{\ell})$ [GJST].)
Conj. Trees with \(n \geq 2l + 1 \) are \(l \)-reconstructible. (Not for \((5, 2)\) or \((13, 6)\); OK for \(n \geq 9l + O(\sqrt{l}) \) [GJST].)

Conj. Connectedness is \(l \)-recognizable for \(n \geq 2l + 1 \). (True for \(l = 3 \) [KNWZ’20]; OK for \(n \geq 10l \) [GJST].)
Open Questions

Conj. Trees with $n \geq 2\ell + 1$ are ℓ-reconstructible. (Not for $(5, 2)$ or $(13, 6)$; OK for $n \geq 9\ell + O(\sqrt{\ell})$ [GJST].)

Conj. Connectedness is ℓ-recognizable for $n \geq 2\ell + 1$. (True for $\ell = 3$ [KNWZ’20]; OK for $n \geq 10\ell$ [GJST].)

Ques. Are d-regular graphs ℓ-reconstructible? (3-regular graphs are 2-reconstructible [KNWZ’21].)
Open Questions

Conj. Trees with $n \geq 2\ell + 1$ are ℓ-reconstructible. (Not for $(5, 2)$ or $(13, 6)$; OK for $n \geq 9\ell + O(\sqrt{\ell})$ [GJST].)

Conj. Connectedness is ℓ-recognizable for $n \geq 2\ell + 1$. (True for $\ell = 3$ [KNWZ’20]; OK for $n \geq 10\ell$ [GJST].)

Ques. Are d-regular graphs ℓ-reconstructible? (3-regular graphs are 2-reconstructible [KNWZ’21].)

Ques. Are bipartite graphs 2-reconstructible ($n \geq 6$)? (For 1-reconstructibility, see [Monikandan–Balakumar’12].)
Open Questions

Conj. Trees with \(n \geq 2\ell + 1 \) are \(\ell \)-reconstructible. (Not for (5, 2) or (13, 6); OK for \(n \geq 9\ell + O(\sqrt{\ell}) \) [GJST].)

Conj. Connectedness is \(\ell \)-recognizable for \(n \geq 2\ell + 1 \). (True for \(\ell = 3 \) [KNWZ’20]; OK for \(n \geq 10\ell \) [GJST].)

Ques. Are \(d \)-regular graphs \(\ell \)-reconstructible? (3-regular graphs are \(2 \)-reconstructible [KNWZ’21].)

Ques. Are bipartite graphs \(2 \)-reconstructible (\(n \geq 6 \))? (For \(1 \)-reconstructibility, see [Monikandan–Balakumar’12].)

Ques. Least \(k \) so degree list determined by \(\mathcal{D}_k(G) \)? (Between \(\Omega(\log n) \) and \(\sqrt{2n\log(2n)} \) [GJST].)
Open Questions

Conj. Trees with $n \geq 2\ell + 1$ are ℓ-reconstructible.
(Not for $(5, 2)$ or $(13, 6)$; OK for $n \geq 9\ell + O(\sqrt{\ell})$ [GJST].)

Conj. Connectedness is ℓ-recognizable for $n \geq 2\ell + 1$.
(True for $\ell = 3$ [KNWZ’20]; OK for $n \geq 10\ell$ [GJST].)

Ques. Are d-regular graphs ℓ-reconstructible?
(3-regular graphs are 2-reconstructible [KNWZ’21].)

Ques. Are bipartite graphs 2-reconstructible ($n \geq 6$)?
(For 1-reconstructibility, see [Monikandan–Balakumar’12].)

Ques. Least k so degree list determined by $\mathcal{D}_k(G)$?
(Between $\Omega(\log n)$ and $\sqrt{2n \log(2n)}$ [GJST].)

Ques. What is the max n such that every n-vertex complete multipartite G is determined by its k-deck?
(Nýdl [1985]: it is between $k \ln(k/2)$ and $(k + 1)2^{k-1}$.)

Open Questions

Conj. Trees with \(n \geq 2\ell + 1 \) are \(\ell \)-reconstructible. (Not for \((5, 2)\) or \((13, 6)\); OK for \(n \geq 9\ell + O(\sqrt{\ell}) \) [GJST].)

Conj. Connectedness is \(\ell \)-recognizable for \(n \geq 2\ell + 1 \). (True for \(\ell = 3 \) [KNWZ’20]; OK for \(n \geq 10\ell \) [GJST].)

Ques. Are \(d \)-regular graphs \(\ell \)-reconstructible? (3-regular graphs are \(2 \)-reconstructible [KNWZ’21].)

Ques. Are bipartite graphs \(2 \)-reconstructible \((n \geq 6)\)? (For \(1 \)-reconstructibility, see [Monikandan–Balakumar’12].)

Ques. Least \(k \) so degree list determined by \(D_k(G) \)? (Between \(\Omega(\log n) \) and \(\sqrt{2n\log(2n)} \) [GJST].)

Ques. What is the max \(n \) such that every \(n \)-vertex complete multipartite \(G \) is determined by its \(k \)-deck? (Nýdl [1985]: it is between \(k \ln (k/2) \) and \((k + 1)2^{k-1}\).)

Prob. Find thresholds on \(n \) for \(\ell \)-reconstructibility of connectivity, matching number, \(\chi(G) \), planarity, etc.