Reconstruction of graphs from their k-vertex Induced Subgraphs

Douglas B. West

Departments of Mathematics
Zhejiang Normal University and
University of Illinois at Urbana-Champaign
dwest@illinois.edu

slides and papers on preprint page
https://faculty.math.illinois.edu/~west/pubs/publink.html

Joint work with
Hannah Spinoza
and
Alexandr V. Kostochka, Mina Nahvi, Dara Zirlin
A Matrix Question

Is a symmetric matrix determined by the isomorphism types of its principal submatrices (simultaneous permutation of rows and columns allowed)?
A Matrix Question

Is a symmetric matrix determined by the isomorphism types of its principal submatrices (simultaneous permutation of rows and columns allowed)?

Reconstructing the matrix is hardest when every entry takes one of two values and the diagonal is constant.
A Matrix Question

Is a symmetric matrix determined by the isomorphism types of its principal submatrices (simultaneous permutation of rows and columns allowed)?

Reconstructing the matrix is hardest when every entry takes one of two values and the diagonal is constant.

Such matrices, with the two values written as 0 and 1 and the diagonal constant as 0, are just the adjacency matrices of graphs, and the principal submatrices correspond to the induced subgraphs.
A Matrix Question

Is a symmetric matrix determined by the isomorphism types of its principal submatrices (simultaneous permutation of rows and columns allowed)?

Reconstructing the matrix is hardest when every entry takes one of two values and the diagonal is constant.

Such matrices, with the two values written as 0 and 1 and the diagonal constant as 0, are just the adjacency matrices of graphs, and the principal submatrices correspond to the induced subgraphs.

Hence the matrix question reduces to the classical Reconstruction Problem in graph theory.
The Classical Problem

Def. A card of a graph G is an induced subgraph $G - v$.
The deck of a graph is the multiset of its cards.
The Classical Problem

Def. A card of a graph G is an induced subgraph $G - \nu$. The deck of a graph is the multiset of its cards.
The Classical Problem

Def. A card of a graph G is an induced subgraph $G - v$. The deck of a graph is the multiset of its cards.

Reconstruction Conj: Kelly [1957], Ulam [1960]
Any graph with ≥ 3 vertices is determined by its deck.
The Classical Problem

Def. A card of a graph G is an induced subgraph $G - v$. The deck of a graph is the multiset of its cards.

Reconstruction Conj: Kelly [1957], Ulam [1960]
Any graph with ≥ 3 vertices is determined by its deck. Posed earlier in Kelly’s thesis, 1942.
The Classical Problem

Def. A card of a graph G is an induced subgraph $G - v$. The deck of a graph is the multiset of its cards.

![Diagram of cards and decks]

Reconstruction Conj: Kelly [1957], Ulam [1960]
Any graph with ≥ 3 vertices is determined by its deck.

- **Surveys:** Bondy-Hemminger ['77], Lauri ['87], Ellingham ['88], Manvel ['88], Bondy ['91], Lauri ['97], Nýdl ['01], Maccari-Rueda-Viazzi ['02], Asciak-Francalanza-Lauri-Myrvold['10]
The Classical Problem

Def. A card of a graph G is an induced subgraph $G - v$. The deck of a graph is the multiset of its cards.

Reconstruction Conj: Kelly [1957], Ulam [1960]
Any graph with ≥ 3 vertices is determined by its deck.

- **Surveys:** Bondy-Hemminger ['77], Lauri ['87], Ellingham ['88], Manvel ['88], Bondy ['91], Lauri ['97], Nýdl ['01], Maccari-Rueda-Viazzii ['02], Asciak-Francalanza-Lauri-Myrvold['10]

Ex. K^-_4 is determined by three of its cards.
The Classical Problem

Def. A card of a graph G is an induced subgraph $G - v$. The deck of a graph is the multiset of its cards.

Reconstruction Conj: Kelly [1957], Ulam [1960]
Any graph with ≥ 3 vertices is determined by its deck.

• Surveys: Bondy-Hemminger ['77], Lauri ['87], Ellingham ['88], Manvel ['88], Bondy ['91], Lauri ['97], Nýdl ['01], Maccari-Rueda-Viazzii ['02], Asciak-Francalanza-Lauri-Myrvold['10]

Ex. K_4 is determined by three cards. Which three?
The Classical Problem

Def. A **card** of a graph G is an induced subgraph $G - v$. The **deck** of a graph is the multiset of its cards.

![Graph Diagram]

Reconstruction Conj: Kelly [1957], Ulam [1960]
Any graph with ≥ 3 vertices is determined by its deck.

- **Surveys:** Bondy-Hemminger ['77], Lauri ['87], Ellingham ['88], Manvel ['88], Bondy ['91], Lauri ['97], Nýdl ['01], Maccari-Rueda-Viazi ['02], Asciak-Francalanza-Lauri-Myrvold ['10]

Ex. K_4^- is determined by three cards. **Which** three?

Def. Harary-Plantholt [1985]: The **reconstruction number** $\text{rn}(G)$ is the least number of cards that determine G.
Reconstruction numbers

- (Myrvold [1989]) \(\text{rn}(G) = 3 \) for disconnected graphs with (at least) two nonisomorphic components.

- (Myrvold [1990]) \(\text{rn}(G) = 3 \) for trees with \(\geq 5 \) vertices.
Reconstruction numbers

- (Myrvold [1989]) $\text{rn}(G) = 3$ for disconnected graphs with (at least) two nonisomorphic components.

- (Myrvold [1990]) $\text{rn}(G) = 3$ for trees with ≥ 5 vertices.

- (Müller [1976], Bollobás [1990]) $\text{rn}(G) = 3$ almost always.
Reconstruction numbers

- (Myrvold [1989]) $\text{rn}(G) = 3$ for disconnected graphs with (at least) two nonisomorphic components.

- (Myrvold [1990]) $\text{rn}(G) = 3$ for trees with ≥ 5 vertices.

- (Müller [1976], Bollobás [1990]) $\text{rn}(G) = 3$ almost always.

- (Myrvold [1989]) $\text{rn}(mK_r) = r + 2 = \text{rn}(K_{r,\ldots,r})$.
Reconstruction numbers

- (Myrvold [1989]) \(r_n(G) = 3 \) for disconnected graphs with (at least) two nonisomorphic components.

- (Myrvold [1990]) \(r_n(G) = 3 \) for trees with \(\geq 5 \) vertices.

- (Müller [1976], Bollobás [1990]) \(r_n(G) = 3 \) almost always.

- (Myrvold [1989]) \(r_n(mK_r) = r + 2 = r_n(K_r,\ldots,r) \).

\(K_{n/2,n/2} \) shares \(\frac{n}{2} + 1 \) cards with \(K_{n/2+1,n/2-1} \).
Reconstruction numbers

- (Myrvold [1989]) $\text{rn}(G) = 3$ for disconnected graphs with (at least) two nonisomorphic components.

- (Myrvold [1990]) $\text{rn}(G) = 3$ for trees with ≥ 5 vertices.

- (Müller [1976], Bollobás [1990]) $\text{rn}(G) = 3$ almost always.

- (Myrvold [1989]) $\text{rn}(mK_r) = r + 2 = \text{rn}(K_r, \ldots, r)$.

$K_{n/2, n/2}$ shares $\frac{n}{2} + 1$ cards with $K_{n/2+1, n/2-1}$.

Conj. (Harary–Plantholt [1985]) $\text{rn}(G) \leq \frac{n}{2} + 2$, with equality only for $K_{n/2, n/2}$ and $2K_{n/2}$ when $n > 4$.
Reconstruction numbers

• (Myrvold [1989]) $\text{rn}(G) = 3$ for disconnected graphs with (at least) two nonisomorphic components.

• (Myrvold [1990]) $\text{rn}(G) = 3$ for trees with ≥ 5 vertices.

• (Müller [1976], Bollobás [1990]) $\text{rn}(G) = 3$ almost always.

• (Myrvold [1989]) $\text{rn}(mK_r) = r + 2 = \text{rn}(K_r, \ldots, r)$.

$K_{n/2, n/2}$ shares $\frac{n}{2} + 1$ cards with $K_{n/2+1, n/2-1}$.

Conj. (Harary–Plantholt [1985]) $\text{rn}(G) \leq \frac{n}{2} + 2$, with equality only for $K_{n/2, n/2}$ and $2K_{n/2}$ when $n > 4$.

• Much work has studied the number of cards needed to reconstruct $|E(G)|$: Myrvold [1992], Woodall [2015], Monikandan–Balakumar [2016], Brown–Fenner [2018].
Reconstruction numbers

- (Myrvold [1989]) \(\text{rn}(G) = 3 \) for disconnected graphs with (at least) two nonisomorphic components.

- (Myrvold [1990]) \(\text{rn}(G) = 3 \) for trees with \(\geq 5 \) vertices.

- (Müller [1976], Bollobás [1990]) \(\text{rn}(G) = 3 \) almost always.

- (Myrvold [1989]) \(\text{rn}(mK_r) = r + 2 = \text{rn}(K_r, \ldots, r) \).

\(K_{n/2, n/2} \) shares \(\frac{n}{2} + 1 \) cards with \(K_{n/2+1, n/2-1} \).

Conj. (Harary–Plantholt [1985]) \(\text{rn}(G) \leq \frac{n}{2} + 2 \), with equality only for \(K_{n/2, n/2} \) and \(2K_{n/2} \) when \(n > 4 \).

- Much work has studied the number of cards needed to reconstruct \(|E(G)| \): Myrvold [1992], Woodall [2015], Monikandan–Balakumar [2016], Brown–Fenner [2018].

Groenland–Guggiari–Scott [2018arXiv] proved that \(|E(G)| \) is determined by any \(n - \sqrt{n}/20 \) cards when \(n \) is large.
Another Direction

Conj. Kelly [1957], Manvel [1969]: For \(\ell \in \mathbb{N} \), \(\exists M_\ell \in \mathbb{N} \) s.t. \(|\mathcal{V}(G)| \geq M_\ell \) \(\implies \) \(G \) is reconstructible from the deck obtained by deleting \(\ell \) vertices.
Another Direction

Conj. Kelly [1957], Manvel [1969]: For $\ell \in \mathbb{N}$, $\exists M_\ell \in \mathbb{N}$ s.t. $|V(G)| \geq M_\ell \Rightarrow G$ is reconstructible from the deck obtained by deleting ℓ vertices. “ℓ-reconstructible”
Another Direction

Conj. Kelly [1957], Manvel [1969]: For $\ell \in \mathbb{N}$, $\exists M_\ell \in \mathbb{N}$ s.t. $|V(G)| \geq M_\ell \Rightarrow G$ is reconstructible from the deck obtained by deleting ℓ vertices. “ℓ-reconstructible”

RC: $M_1 = 3$.
Another Direction

Conj. Kelly [1957], Manvel [1969]: For \(\ell \in \mathbb{N}, \exists M_\ell \in \mathbb{N} \) s.t. \(|V(G)| \geq M_\ell \Rightarrow G\) is reconstructible from the deck obtained by deleting \(\ell \) vertices. “\(\ell \)-reconstructible”

RC: \(M_1 = 3. \quad M_2 = 6? \) McMullen–Radziszowski [2007]
Another Direction

Conj. Kelly [1957], Manvel [1969]: For $\ell \in \mathbb{N}$, $\exists M_\ell \in \mathbb{N}$ such that $|V(G)| \geq M_\ell \Rightarrow G$ is reconstructible from the deck obtained by deleting ℓ vertices. "ℓ-reconstructible"

RC: $M_1 = 3$. $M_2 = 6$? McMullen–Radziszowski [2007] (C_4+K_1 and the tree $K'_{1,3}$ are not 2-reconstructible.)

![Diagram](image)
Another Direction

Conj. Kelly [1957], Manvel [1969]: For $\ell \in \mathbb{N}$, $\exists M_\ell \in \mathbb{N}$ s.t. $|V(G)| \geq M_\ell \Rightarrow G$ is reconstructible from the deck obtained by deleting ℓ vertices. “ℓ-reconstructible”

RC: $M_1 = 3$. $M_2 = 6$? McMullen–Radziszowski [2007] ($C_4 + K_1$ and the tree $K_{1,3}'$ are not 2-reconstructible.)

Def. k-deck $D_k(G) = \text{set of } k\text{-vertex induced subgrs.}$
Another Direction

Conj. Kelly [1957], Manvel [1969]: For \(l \in \mathbb{N} \), \(\exists M_l \in \mathbb{N} \) s.t. \(|V(G)| \geq M_l \Rightarrow G \) is reconstructible from the deck obtained by deleting \(l \) vertices. “\(l \)-reconstructible”

RC: \(M_1 = 3 \). \(M_2 = 6 \)? McMullen–Radziszowski [2007] (\(C_4 + K_1 \) and the tree \(K'_{1,3} \) are not 2-reconstructible.)

Def. \(k \)-deck \(D_k(G) = \) set of \(k \)-vertex induced subgrs.

Obs. \(D_k(G) \) determines \(D_{k-1}(G) \).
Another Direction

Conj. Kelly [1957], Manvel [1969]: For $\ell \in \mathbb{N}$, $\exists M_\ell \in \mathbb{N}$ s.t. $|V(G)| \geq M_\ell \Rightarrow G$ is reconstructible from the deck obtained by deleting ℓ vertices. “ℓ-reconstructible”

RC: $M_1 = 3$. $M_2 = 6$? McMullen–Radziszowski [2007] ($C_4 + K_1$ and the tree $K'_{1,3}$ are not 2-reconstructible.)

- - - - - - - -

Def. k-deck $\mathcal{D}_k(G) =$ set of k-vertex induced subgraphs.

Obs. $\mathcal{D}_k(G)$ determines $\mathcal{D}_{k-1}(G)$.

Pf. Each graph in \mathcal{D}_{k-1} arises $n - k + 1$ times by deleting one vertex from a graph in $\mathcal{D}_k(G)$. □
Another Direction

Conj. Kelly [1957], Manvel [1969]: For \(\ell \in \mathbb{N} \), \(\exists M_\ell \in \mathbb{N} \) s.t. \(|V(G)| \geq M_\ell \ \Rightarrow \ G \) is reconstructible from the deck obtained by deleting \(\ell \) vertices. “\(\ell \)-reconstructible”

RC: \(M_1 = 3. \quad M_2 = 6 \)? McMullen–Radziszowski [2007] (\(C_4 + K_1 \) and the tree \(K'_{1,3} \) are not 2-reconstructible.)

Def. \(k \)-deck \(\mathcal{D}_k(G) \) = set of \(k \)-vertex induced subgraphs.

Obs. \(\mathcal{D}_k(G) \) determines \(\mathcal{D}_{k-1}(G) \).

Pf. Each graph in \(\mathcal{D}_{k-1} \) arises \(n-k+1 \) times by deleting one vertex from a graph in \(\mathcal{D}_k(G) \).

Aim: Find the least \(k \) s.t. \(G \) is \(k \)-deck reconstructible.
Another Direction

Conj. Kelly [1957], Manvel [1969]: For \(l \in \mathbb{N}, \ \exists \ M_l \in \mathbb{N} \) s.t. \(|V(G)| \geq M_l \ \Rightarrow \ G \) is reconstructible from the deck obtained by deleting \(l \) vertices. “\(l \)-reconstructible”

RC: \(M_1 = 3, \ M_2 = 6? \) McMullen–Radziszowski [2007] (\(C_4 + K_1 \) and the tree \(K'_{1,3} \) are not 2-reconstructible.)

Def. \(k \)-deck \(D_k(G) = \) set of \(k \)-vertex induced subgraphs.

Obs. \(D_k(G) \) determines \(D_{k-1}(G) \).

Pf. Each graph in \(D_{k-1} \) arises \(n - k + 1 \) times by deleting one vertex from a graph in \(D_k(G) \).

Aim: Find the least \(k \) s.t. \(G \) is \(k \)-deck reconstructible. (Same as \(l \)-reconstructible when \(k + l = |V(G)| \).)
Another Direction

Conj. Kelly [1957], Manvel [1969]: For \(l \in \mathbb{N}, \exists M_l \in \mathbb{N} \) s.t. \(|V(G)| \geq M_l \ \Rightarrow \ G \) is reconstructible from the deck obtained by deleting \(l \) vertices. “\(l \)-reconstructible”

RC: \(M_1 = 3. \quad M_2 = 6? \) McMullen–Radziszowski [2007] (\(C_4+K_1 \) and the tree \(K_{1,3}' \) are not 2-reconstructible.)

\[
\begin{array}{c}
\begin{array}{c}
\text{Def. } \ k\text{-deck } D_k(G) = \text{set of } k\text{-vertex induced subgrs.}
\end{array}
\end{array}
\]

Obs. \(D_k(G) \) determines \(D_{k-1}(G) \).

Pf. Each graph in \(D_{k-1} \) arises \(n-k+1 \) times by deleting one vertex from a graph in \(D_k(G) \).

Aim: Find the least \(k \) s.t. \(G \) is \(k \)-deck reconstructible. (Same as \(l \)-reconstructible when \(k + l = |V(G)| \).)

- Another way to ask how hard it is to reconstruct \(G \).
What is known?

Spinoza–West [2019]: $D_l(P_{2l}) = D_l(C_{l+1} + P_{l-1})$, so $M_l > 2l$.
What is known?

Spinoza–West [2019]: $\mathcal{D}_l(P_{2l}) = \mathcal{D}_l(C_{\ell+1}+P_{\ell-1})$, so $M_\ell > 2\ell$.

Thm. Nýdl [1992]: For $\epsilon > 0$, \exists arb. large graphs not ϵn-reconstructible. $\therefore M_\ell$ grows superlinearly.
What is known?

Spinoza–West [2019]: $D_\ell(P_{2\ell}) = D_\ell(C_{\ell+1} + P_{\ell-1})$, so $M_\ell > 2\ell$.

Thm. Nýdl [1992]: For $\varepsilon > 0$, \exists arb. large graphs not εn-reconstructible. $\therefore M_\ell$ grows superlinearly.

Cor. Connectedness is not $n/2$-reconstructible.
What is known?

Spinoza–West [2019]: $D_\ell(P_{2\ell}) = D_\ell(C_{\ell+1} + P_{\ell-1})$, so $M_\ell > 2\ell$.

Thm. Nýdl [1992]: For $\epsilon > 0$, \exists arb. large graphs not ϵn-reconstructible. $\therefore M_\ell$ grows superlinearly.

Cor. Connectedness is not $n/2$-reconstructible.

Thm. Connectedness (Manvel [1974]) and the degree list (Chernyak [1982]) are 2-reconstructible for $n \geq 6$.
What is known?

Spinoza–West [2019]: \(D_l(P_{2l}) = D_l(C_{l+1}+P_{l-1}) \), so \(M_l > 2l \).

Thm. Nýdl [1992]: For \(\epsilon > 0 \), \(\exists \) arb. large graphs not \(\epsilon n \)-reconstructible. \(\therefore \) \(M_l \) grows superlinearly.

Cor. Connectedness is not \(n/2 \)-reconstructible.

Thm. Connectedness (Manvel [1974]) and the degree list (Chernyak [1982]) are 2-reconstructible for \(n \geq 6 \). (Sharp by \(C_4 + K_1 \) and \(K'_{1,3} \) having same 3-deck.)
What is known?

Spinoza–West [2019]: \(D_\ell(P_{2\ell}) = D_\ell(C_{\ell+1} + P_{\ell-1}) \), so \(M_\ell > 2\ell \).

Thm. Nýdl [1992]: For \(\epsilon > 0 \), \(\exists \) arb. large graphs not \(\epsilon n \)-reconstructible. \(\therefore M_\ell \) grows superlinearly.

Cor. Connectedness is not \(n/2 \)-reconstructible.

Thm. Connectedness (Manvel [1974]) and the degree list (Chernyak [1982]) are \(2 \)-reconstructible for \(n \geq 6 \). (Sharp by \(C_4 + K_1 \) and \(K'_{1,3} \) having same 3-deck.)

Thm. Taylor [1990]: The degree list is \(l \)-reconstructible for \(n \geq e\ell(1 + o(1)) \).
What is known?

Spinoza–West [2019]: \(D_\ell(P_2\ell) = D_\ell(C_{\ell+1} + P_{\ell-1}) \), so \(M_\ell > 2\ell \).

Thm. Nýdl [1992]: For \(\epsilon > 0 \), \(\exists \) arb. large graphs not \(\epsilon n \)-reconstructible. \(\therefore M_\ell \) grows superlinearly.

Cor. Connectedness is not \(n/2 \)-reconstructible.

Thm. Connectedness (Manvel [1974]) and the degree list (Chernyak [1982]) are 2-reconstructible for \(n \geq 6 \). (Sharp by \(C_4 + K_1 \) and \(K'_{1,3} \) having same 3-deck.)

Thm. Taylor [1990]: The degree list is \(\ell \)-reconstructible for \(n \geq \ell(1 + o(1)) \).

Thm. SW’19: Connectedness is \(\ell \)-reconstr. for \(n > \ell(\ell+1)^2 \).
What is known?

Spinoza–West [2019]: \(D_\ell(P_{2\ell}) = D_\ell(C_{\ell+1} + P_{\ell-1}) \), so \(M_\ell > 2\ell \).

Thm. Nýdl [1992]: For \(\epsilon > 0 \), \(\exists \) arb. large graphs not \(\epsilon n \)-reconstructible. \(\therefore M_\ell \) grows superlinearly.

Cor. Connectedness is not \(n/2 \)-reconstructible.

Thm. Connectedness (Manvel [1974]) and the degree list (Chernyak [1982]) are \(2 \)-reconstructible for \(n \geq 6 \). (Sharp by \(C_4 + K_1 \) and \(K'_{1,3} \) having same 3-deck.)

Thm. Taylor [1990]: The degree list is \(\ell \)-reconstructible for \(n \geq e\ell(1 + o(1)) \).

Thm. SW’19: Connectedness is \(\ell \)-reconstr. for \(n > \ell^{(\ell+1)^2} \).

Thm. Kostochka-Nahvi-West-Zirlin [2020]: Connectedness & the degree list are \(3 \)-reconstructible for \(n \geq 7 \).
What is known?

Spinoza–West [2019]: $D_\ell(P_{2\ell}) = D_\ell(C_{\ell+1} + P_{\ell-1})$, so $M_\ell > 2\ell$.

Thm. Nýdl [1992]: For $\varepsilon > 0$, \exists arb. large graphs not εn-reconstructible. $\therefore M_\ell$ grows superlinearly.

Cor. Connectedness is not $n/2$-reconstructible.

Thm. Connectedness (Manvel [1974]) and the degree list (Chernyak [1982]) are 2-reconstructible for $n \geq 6$. (Sharp by $C_4 + K_1$ and $K_{1,3}'$ having same 3-deck.)

Thm. Taylor [1990]: The degree list is ℓ-reconstructible for $n \geq \ell(1 + o(1))$.

Thm. SW'19: Connectedness is ℓ-reconstr. for $n > \ell^{(\ell+1)^2}$.

Thm. Kostochka-Nahvi-West-Zirlin [2020]: Connectedness & the degree list are 3-reconstructible for $n \geq 7$. (Sharp by $C_5 + K_1$ and $K_{1,3}''$ having same 3-deck.)
More Results

Connectedness is not $\frac{n}{2}$-reconstructible, but . . .
More Results

Connectedness is not \(n/2 \)-reconstructible, but . . .

Thm. Müller [1976], S-W [2019]: For \(\ell \leq (1 - o(1))\frac{n}{2} \), almost every graph is \(\ell \)-reconstr’bl.
More Results

Connectedness is not $n/2$-reconstructible, but . . .

Thm. Müller [1976], S-W [2019]: For $\ell \leq (1 - o(1))\frac{n}{2}$, almost every graph is ℓ-reconstr’bl. (From $\binom{\ell+2}{2}$ cards.)
More Results

Connectedness is not $n/2$-reconstructible, but . . .

Thm. Müller [1976], S-W [2019]: For $\ell \leq (1 - o(1))\frac{n}{2}$, almost every graph is ℓ-reconstr’bl. (From $\binom{l+2}{2}$ cards.)

Generalizes Chinn ’71, Müller ’76, Bollobás ’90 for $\ell = 1$.
More Results

Connectedness is not \(n/2 \)-reconstructible, but . . .

Thm. Müller [1976], S-W [2019]: For \(\ell \leq (1 - o(1)) \frac{n}{2} \), almost every graph is \(\ell \)-reconstr’bl. (From \(\binom{\ell + 2}{2} \) cards.)

Generalizes Chinn ’71, Müller ’76, Bollobás ’90 for \(\ell = 1 \).

Thm. Spinoza-West’19: When \(\text{maxdeg}(G) \leq 2 \), we know \(\max\{\ell : G \text{ is } \ell\text{-reconstructible}\} \).
More Results

Connectedness is not $n/2$-reconstructible, but . . .

Thm. Müller [1976], S-W [2019]: For $\ell \leq (1 - o(1))\frac{n}{2}$, almost every graph is ℓ-reconstr’bl. (From $\binom{\ell + 2}{2}$ cards.)

Generalizes Chinn ’71, Müller ’76, Bollobás ’90 for $\ell = 1$.

Thm. Spinoza-West’19: When $\text{maxdeg}(G) \leq 2$, we know $\max\{\ell : G \text{ is } \ell\text{-reconstructible}\}$. Always $\geq (n - 1)/2$.
More Results

Connectedness is not $n/2$-reconstructible, but . . .

Thm. Müller [1976], S-W [2019]: For $\ell \leq (1 - o(1))\frac{n}{2}$, almost every graph is ℓ-reconstructible. (From $\binom{\ell + 2}{2}$ cards.)

Generalizes Chinn ’71, Müller ’76, Bollobás ’90 for $\ell = 1$.

Thm. Spinoza-West’19: When $\text{maxdeg}(G) \leq 2$, we know $\max\{\ell: G \text{ is } \ell\text{-reconstructible}\}$. Always $\geq (n - 1)/2$.

Thm. Nýdl’81: \exists trees with $n = 2\ell$ and same ℓ-deck.
More Results

Connectedness is not \(n/2 \)-reconstructible, but . . .

Thm. Müller [1976], S-W [2019]: For \(\ell \leq (1 - o(1)) \frac{n}{2} \), almost every graph is \(\ell \)-reconstructible. (From \(\binom{\ell+2}{2} \) cards.) Generalizes Chinn ’71, Müller ’76, Bollobás ’90 for \(\ell = 1 \).

Thm. Spinoza-West’19: When \(\text{maxdeg}(G) \leq 2 \), we know \(\max\{\ell : G \text{ is } \ell\text{-reconstructible}\} \). Always \(\geq (n - 1)/2 \).

Thm. Nýdl’81: \(\exists \) trees with \(n = 2\ell \) and same \(\ell \)-deck.

Thm. Kostochka-Nahvi-West-Zirlin [2021+]: For \(n \geq 2\ell + 3 \), \(n \)-vertex acyclic graphs are \(\ell \)-recognizable.
More Results

Connectedness is not $n/2$-reconstructible, but . . .

Thm. Müller [1976], S-W [2019]: For $\ell \leq (1 - o(1))\frac{n}{2}$, almost every graph is ℓ-reconstr’bl. (From $\binom{\ell+2}{2}$ cards.) Generalizes Chinn ’71, Müller ’76, Bollobás ’90 for $\ell = 1$.

Thm. Spinoza-West’19: When $\max\deg(G) \leq 2$, we know $\max\{\ell : G \text{ is } \ell\text{-reconstructible}\}$. Always $\geq (n - 1)/2$.

Thm. Nýdl’81: \exists trees with $n = 2\ell$ and same ℓ-deck.

Thm. Kostochka-Nahvi-West-Zirlin [2021+]: For $n \geq 2\ell + 3$, n-vertex acyclic graphs are ℓ-recognizable. (soon $2\ell + 1$)
More Results

Connectedness is not $n/2$-reconstructible, but . . .

Thm. Müller [1976], S-W [2019]: For $\ell \leq (1 - o(1))\frac{n}{2}$, almost every graph is ℓ-reconstr’bl. (From $\binom{\ell+2}{2}$ cards.)

Generalizes Chinn ’71, Müller ’76, Bollobás ’90 for $\ell = 1$.

Thm. Spinoza-West’19: When $\text{maxdeg}(G) \leq 2$, we know $\max\{\ell : G \text{ is } \ell\text{-reconstructible}\}$. Always $\geq (n - 1)/2$.

Thm. Nýdl’81: \exists trees with $n = 2\ell$ and same ℓ-deck.

Thm. Kostochka-Nahvi-West-Zirlin [2021+]: For $n \geq 2\ell + 3$, n-vertex acyclic graphs are ℓ-recognizable. (soon $2\ell + 1$)

Conj. Trees with $n \geq 2\ell + 1$ are ℓ-reconstr’bl’e.
More Results

Connectedness is not $n/2$-reconstructible, but . . .

Thm. Müller [1976], S-W [2019]: For $\ell \leq (1 - o(1)) \frac{n}{2}$, almost every graph is ℓ-reconstr’bl. (From $\binom{\ell+2}{2}$ cards.)

Generalizes Chinn ’71, Müller ’76, Bollobás ’90 for $\ell = 1$.

Thm. Spinoza-West’19: When $\maxdeg(G) \leq 2$, we know $\max\{\ell : G \text{ is } \ell\text{-reconstructible}\}$. Always $\geq (n - 1)/2$.

Thm. Nýdl’81: \exists trees with $n = 2\ell$ and same ℓ-deck.

Thm. Kostochka-Nahvi-West-Zirlin [2021+]: For $n \geq 2\ell + 3$, n-vertex acyclic graphs are ℓ-recognizable. (soon $2\ell + 1$)

Conj. Trees with $n \geq 2\ell + 1$ are ℓ-reconstr’ble.

Thm. KNWZ’21+: Trees with $n \geq 22$ are 3-reconstr’ble.
More Results

Connectedness is not $n/2$-reconstructible, but . . .

Thm. Müller [1976], S-W [2019]: For $\ell \leq (1 - o(1)) \frac{n}{2}$, almost every graph is ℓ-reconstr’bl. (From $\binom{\ell + 2}{2}$ cards.)

Generalizes Chinn ’71, Müller ’76, Bollobás ’90 for $\ell = 1$.

Thm. Spinoza-West’19: When $\maxdeg(G) \leq 2$, we know $\max\{\ell : G \text{ is } \ell\text{-reconstructible}\}$. Always $\geq \frac{n - 1}{2}$.

Thm. Nýdl’81: \exists trees with $n = 2\ell$ and same ℓ-deck.

Thm. Kostochka-Nahvi-West-Zirlin [2021+]: For $n \geq 2\ell + 3$, n-vertex acyclic graphs are ℓ-recognizable. (soon $2\ell + 1$)

Conj. Trees with $n \geq 2\ell + 1$ are ℓ-reconstr’ble.

Thm. KNWZ’21+: Trees with $n \geq 22$ are 3-reconstr’ble. 64
More Results

Connectedness is not \(n/2 \)-reconstructible, but . . .

Thm. Müller [1976], S-W [2019]: For \(\ell \leq (1 - o(1)) \frac{n}{2} \), almost every graph is \(\ell \)-reconstr’bl. (From \(\binom{\ell + 2}{2} \) cards.) Generalizes Chinn ’71, Müller ’76, Bollobás ’90 for \(\ell = 1 \).

Thm. Spinoza-West’19: When \(\text{maxdeg}(G) \leq 2 \), we know \(\max\{\ell : G \text{ is } \ell\text{-reconstructible}\} \). Always \(\geq (n - 1)/2 \).

Thm. Nýdl’81: \(\exists \) trees with \(n = 2\ell \) and same \(\ell \)-deck.

Thm. Kostochka-Nahvi-West-Zirlin [2021+]: For \(n \geq 2\ell + 3 \), \(n \)-vertex acyclic graphs are \(\ell \)-recognizable. (soon \(2\ell + 1 \))

Conj. Trees with \(n \geq 2\ell + 1 \) are \(\ell \)-reconstr’ble.

Thm. KNWZ’21+:Trees with \(n \geq 22 \) are 3-reconstr’ble. 64

Thm. KW’20: Component-size \(\leq n - \ell \Rightarrow \ell \)-reconstr’ble.
More Results

Connectedness is not $n/2$-reconstructible, but . . .

Thm. Müller [1976], S-W [2019]: For $\ell \leq (1 - o(1))\frac{n}{2}$, almost every graph is ℓ-reconstr’bl. (From $\binom{\ell+2}{2}$ cards.) Generalizes Chinn ’71, Müller ’76, Bollobás ’90 for $\ell = 1$.

Thm. Spinoza-West’19: When $\text{maxdeg}(G) \leq 2$, we know $\max\{\ell : G \text{ is } \ell\text{-reconstructible}\}$. Always $\geq (n - 1)/2$.

Thm. Nýdl’81: \exists trees with $n = 2\ell$ and same ℓ-deck.

Thm. Kostochka-Nahvi-West-Zirlin [2021+]: For $n \geq 2\ell + 3$, n-vertex acyclic graphs are ℓ-recognizable. (soon $2\ell + 1$)

Conj. Trees with $n \geq 2\ell + 1$ are ℓ-reconstr’ble.

Thm. KNWZ’21+:Trees with $n \geq 22$ are 3-reconstr’ble. 64

Thm. KW’20: Component-size $\leq n - \ell \Rightarrow \ell$-reconstr’ble.

Thm. KNWZ’21: 3-regular graphs are 2-reconstr’ble.
Warmup: Complete Multipartite Graphs

(Manvel [1974]) $\mathcal{D}_{\Delta(G)+2}(G)$ determines the degree list.
Warmup: Complete Multipartite Graphs

(Manvel [1974]) $\mathcal{D}_{\Delta(G)+2}(G)$ determines the degree list.

Prop. $G=K_{n_1,\ldots,n_r}$ with all $n_i \leq m$ is determined by $\mathcal{D}_{m+1}(G)$
Warmup: Complete Multipartite Graphs

(Manvel [1974]) $\mathcal{D}_{\Delta(G)+2}(G)$ determines the degree list.

Prop. $G = K_{n_1, \ldots, n_r}$ with all $n_i \leq m$ is determined by $\mathcal{D}_{m+1}(G)$

Pf. $P_3 \notin \mathcal{D}_3(\overline{G})$ \iff G is complete multipartite.
Warmup: Complete Multipartite Graphs

(Manvel [1974]) $D_{\Delta(G)+2}(G)$ determines the degree list.

Prop. $G = K_{n_1, \ldots, n_r}$ with all $n_i \leq m$ is determined by $D_{m+1}(G)$

Pf. $P_3 \notin D_3(\bar{G}) \iff G$ is complete multipartite.

With $\Delta(\bar{G}) < m$, by Manvel’s result we can reconstruct the degree list, which determines G for such G. ■
Warmup: Complete Multipartite Graphs

(Manvel [1974]) \(\mathcal{D}_{\Delta(G)+2}(G) \) determines the degree list.

Prop. \(G = K_{n_1, \ldots, n_r} \) with all \(n_i \leq m \) is determined by \(\mathcal{D}_{m+1}(G) \)

Pf. \(P_3 \not\in \mathcal{D}_3(\overline{G}) \iff G \) is complete multipartite.
With \(\Delta(\overline{G}) < m \), by Manvel’s result we can reconstruct the degree list, which determines \(G \) for such \(G \).

Thm. Complete \(r \)-partite \(G \) is determined by \(\mathcal{D}_{r+1}(G) \)
Warmup: Complete Multipartite Graphs

(Manvel [1974]) $\mathcal{D}_{\Delta(G)+2}(G)$ determines the degree list.

Prop. $G=K_{n_1,...,n_r}$ with all $n_i \leq m$ is determined by $\mathcal{D}_{m+1}(G)$

Pf. $P_3 \notin \mathcal{D}_3(\overline{G}) \iff G$ is complete multipartite.
With $\Delta(\overline{G}) < m$, by Manvel’s result we can reconstruct the degree list, which determines G for such G. ■

Thm. Complete r-partite G is determined by $\mathcal{D}_{r+1}(G)$

Pf. $P_3 \notin \mathcal{D}_3(\overline{G}) \& K_{r+1} \notin \mathcal{D}_{r+1}(G) \iff$ complete r-partite.
Warmup: Complete Multipartite Graphs
(Manvel [1974]) \(\mathcal{D}_{\Delta(G)+2}(G) \) determines the degree list.

Prop. \(G=K_{n_1,\ldots,n_r} \) with all \(n_i \leq m \) is determined by \(\mathcal{D}_{m+1}(G) \)

Pf. \(P_3 \notin \mathcal{D}_3(\overline{G}) \iff G \) is complete multipartite.
With \(\Delta(\overline{G}) < m \), by Manvel’s result we can reconstruct the degree list, which determines \(G \) for such \(G \).

\[f(x) = \prod_{j=1}^{r}(x - q_j). \]

Thm. Complete \(r \)-partite \(G \) is determined by \(\mathcal{D}_{r+1}(G) \)

Pf. \(P_3 \notin \mathcal{D}_3(\overline{G}) \) \& \(K_{r+1} \notin \mathcal{D}_{r+1}(G) \iff \) complete \(r \)-partite.
With part-sizes \(q_1, \ldots, q_r \), let \(f(x) = \prod_{j=1}^{r}(x - q_j) \).
Warmup: Complete Multipartite Graphs

(Manvel [1974]) $\mathcal{D}_{\Delta(G)+2}(G)$ determines the degree list.

Prop. $G = K_{n_1, \ldots, n_r}$ with all $n_i \leq m$ is determined by $\mathcal{D}_{m+1}(G)$

Pf. $P_3 \not\in \mathcal{D}_3(\overline{G}) \iff G$ is complete multipartite. With $\Delta(\overline{G}) < m$, by Manvel’s result we can reconstruct the degree list, which determines G for such G.

Thm. Complete r-partite G is determined by $\mathcal{D}_{r+1}(G)$

Pf. $P_3 \not\in \mathcal{D}_3(\overline{G}) \& K_{r+1} \not\in \mathcal{D}_{r+1}(G) \iff$ complete r-partite. With part-sizes q_1, \ldots, q_r, let $f(x) = \prod_{j=1}^{r} (x - q_j)$.

Note $f(x) = \sum_{i=0}^{r} (-1)^i s_i x^{r-i}$, where s_i is the sum of products of i choices from q_1, \ldots, q_r.

Warmup: Complete Multipartite Graphs

(Manvel [1974]) $\mathcal{D}_{\Delta(G)+2}(G)$ determines the degree list.

Prop. $G = K_{n_1,\ldots,n_r}$ with all $n_i \leq m$ is determined by $\mathcal{D}_{m+1}(G)$

Pf. $P_3 \notin \mathcal{D}_3(\overline{G}) \iff G$ is complete multipartite.

With $\Delta(\overline{G}) < m$, by Manvel’s result we can reconstruct the degree list, which determines G for such G.

Thm. Complete r-partite G is determined by $\mathcal{D}_{r+1}(G)$

Pf. $P_3 \notin \mathcal{D}_3(\overline{G}) \& K_{r+1} \notin \mathcal{D}_{r+1}(G) \iff$ complete r-partite.

With part-sizes q_1,\ldots,q_r, let $f(x) = \prod_{j=1}^{r} (x - q_j)$.

Note $f(x) = \sum_{i=0}^{r} (-1)^i s_i x^{r-i}$, where s_i is the sum of products of i choices from q_1,\ldots,q_r.

Also $s_i = \# i$-cards that are K_i, so $\mathcal{D}_i(G)$ determines s_i.
Warmup: Complete Multipartite Graphs

(Manvel [1974]) \(\mathcal{D}_{\Delta(G)+2}(G) \) determines the degree list.

Prop. \(G = K_{n_1, \ldots, n_r} \) with all \(n_i \leq m \) is determined by \(\mathcal{D}_{m+1}(G) \)

Pf. \(P_3 \notin \mathcal{D}_3(\overline{G}) \iff G \) is complete multipartite.
With \(\Delta(\overline{G}) < m \), by Manvel’s result we can reconstruct the degree list, which determines \(G \) for such \(G \).

Thm. Complete \(r \)-partite \(G \) is determined by \(\mathcal{D}_{r+1}(G) \)

Pf. \(P_3 \notin \mathcal{D}_3(\overline{G}) \) & \(K_{r+1} \notin \mathcal{D}_{r+1}(G) \iff \) complete \(r \)-partite.
With part-sizes \(q_1, \ldots, q_r \), let \(f(x) = \prod_{j=1}^{r} (x - q_j) \).
Note \(f(x) = \sum_{i=0}^{r} (-1)^i s_i x^{r-i} \), where \(s_i \) is the sum of products of \(i \) choices from \(q_1, \ldots, q_r \).
Also \(s_i = \# i \)-cards that are \(K_i \), so \(\mathcal{D}_i(G) \) determines \(s_i \).
Knowing \(f \), we find \(q_1, \ldots, q_r \).
Almost All Graphs

Lem. (Müller [1976]) Fix $\epsilon > 0$. For almost every graph G, the induced subgraphs with at least $(1 + \epsilon)\frac{|V(G)|}{2}$ vertices are good, meaning they have no nontrivial automorphisms and are pairwise nonisomorphic.
Almost All Graphs

Lem. (Müller [1976]) Fix $\varepsilon > 0$. For almost every graph G, the induced subgraphs with at least $(1 + \varepsilon)\frac{|V(G)|}{2}$ vertices are **good**, meaning they have no nontrival automorphisms and are pairwise nonisomorphic.

Thm. If the subgraphs obtained by deleting $\ell + 1$ verts are **good**, then G is reconstructible from some set of $\binom{\ell+2}{2}$ subgraphs obtained by deleting ℓ vertices.
Almost All Graphs

Lem. (Müller [1976]) Fix $\varepsilon > 0$. For almost every graph G, the induced subgraphs with at least $(1 + \varepsilon)\frac{|V(G)|}{2}$ vertices are good, meaning they have no nontrivial automorphisms and are pairwise nonisomorphic.

Thm. If the subgraphs obtained by deleting $\ell + 1$ verts are good, then G is reconstructible from some set of $\binom{\ell + 2}{2}$ subgraphs obtained by deleting ℓ vertices.

Cor. Among n-vertex graphs, the fraction that are reconstructible from the subgraphs obtained by deleting $(1 - \varepsilon)\frac{n}{2}$ vertices tends to 1 as $n \to \infty$.
Using Some of the Deck

Thm. $\mathcal{D}_{n-\ell-1}$ good \Rightarrow $\mathcal{D}_{n-\ell}$ determines G.
Using Some of the Deck

Thm. \(D_{n-\ell-1} \) good \(\implies \) \(D_{n-\ell} \) determines \(G \).

Pf. Let \(n = |V(G)| \). Fix \(S = \{x_1, \ldots, x_{\ell+1}\} \subseteq V(G) \).
Let \(H = G - S \) and \(h = |V(H)| = n - \ell - 1 \).
Using Some of the Deck

Thm. $\mathcal{D}_{n-\ell-1}$ good \Rightarrow $\mathcal{D}_{n-\ell}$ determines G.

Pf. Let $n = |V(G)|$. Fix $S = \{x_1, \ldots, x_{\ell+1}\} \subseteq V(G)$. Let $H = G - S$ and $h = |V(H)| = n - \ell - 1$.

Let $C_i = G - (S - \{x_i\})$ (deleting ℓ) and $C = \{C_i : x_i \in S\}$.
Using Some of the Deck

Thm. \(\mathcal{D}_{n-\ell-1} \) good \(\Rightarrow \) \(\mathcal{D}_{n-\ell} \) determines \(G \).

Pf. Let \(n = |V(G)| \). Fix \(S = \{ x_1, \ldots, x_{\ell+1} \} \subseteq V(G) \).
Let \(H = G - S \) and \(h = |V(H)| = n - \ell - 1 \).
Let \(C_i = G - (S - \{ x_i \}) \) (deleting \(\ell \)) and \(C = \{ C_i : x_i \in S \} \).

For \(x_i, x_j \in S \), let \(D_{i,j} = G - (S - \{ x_i, x_j \}) - w_{i,j} \), where \(w_{i,j} \in V(H) \). Let \(D = \{ D_{i,j} : x_i, x_j \in S \} \).
Using Some of the Deck

Thm. \(D_{n-l-1} \) good \(\Rightarrow \) \(D_{n-l} \) determines \(G \).

Pf. Let \(n = |V(G)| \). Fix \(S = \{x_1, \ldots, x_{l+1}\} \subseteq V(G) \).
Let \(H = G - S \) and \(h = |V(H)| = n - l - 1 \).
Let \(C = G - (S - \{x_i\}) \) (deleting \(l \)) and \(C = \{C_i: x_i \in S\} \).

For \(x_i, x_j \in S \), let \(D_{i,j} = G - (S - \{x_i, x_j\}) - w_{i,j} \), where \(w_{i,j} \in V(H) \). Let \(D = \{D_{i,j}: x_i, x_j \in S\} \).

Claim: \(G \) is reconstructible from \(C \cup D \).
Reconstructing G from $C \cup D$.

Idea: H is the only h-vertex subgraph H' appearing in $\ell + 1$ cards in $C \cup D$. This identifies H and all C_i, the vertex x_i in C_i, and the edges from x_i to $V(H)$.
Reconstructing G from $C \cup D$.

Idea: H is the only h-vertex subgraph H' appearing in $\ell + 1$ cards in $C \cup D$. This identifies H and all C_i, the vertex x_i in C_i, and the edges from x_i to $V(H)$.

If $|V(H') \cap S| \geq 3$, then H' appears in no card in $C \cap D$.

If $V(H') \cap S = \{x_i, x_j\}$, then H' appears only in $D_{i,j}$.

If $V(H') \cap S = \{x_i\}$, then H' is in one card in C and can be in cards $D_{i,j}$ as $H' = D_{i,j} - x_j = G[V(H) + x_i - w_{i,j}]$. If $w_{i,j}$ is not the same for all j, then H' is in $\leq \ell$ cards.

If $V(H') \cap S = \emptyset$, then $H' = H$, in all $\ell + 1$ cards of C.
Reconstructing G from $C \cup D$.

Idea: H is the only h-vertex subgraph H' appearing in $\ell + 1$ cards in $C \cup D$. This identifies H and all C_i, the vertex x_i in C_i, and the edges from x_i to $V(H)$.

- If $|V(H') \cap S| \geq 3$, then H' appears in no card in $C \cap D$.
- If $V(H') \cap S = \{x_i, x_j\}$, then H' appears only in $D_{i,j}$.
- If $V(H') \cap S = \{x_i\}$, then H' is in one card in C and can be in cards $D_{i,j}$ as $H' = D_{i,j} - x_j = G[V(H) + x_i - w_{i,j}]$.
- If $w_{i,j}$ is not the same for all j, then H' is in $\leq \ell$ cards.
- If $V(H') \cap S = \emptyset$, then $H' = H$, in all $\ell + 1$ cards of C.

Idea: H can also be used to identify the card $D_{i,j}$, which is used to check whether $x_i x_j \in E(G)$.
Reconstructing G from $C \cup D$.

Idea: H is the only h-vertex subgraph H' appearing in $\ell + 1$ cards in $C \cup D$. This identifies H and all C_i, the vertex x_i in C_i, and the edges from x_i to $V(H)$.

If $|V(H') \cap S| \geq 3$, then H' appears in no card in $C \cap D$.

If $V(H') \cap S = \{x_i, x_j\}$, then H' appears only in $D_{i,j}$.

If $V(H') \cap S = \{x_i\}$, then H' is in one card in C and can be in cards $D_{i,j}$ as $H' = D_{i,j} - x_j = G[V(H) + x_i - w_{i,j}]$.

If $w_{i,j}$ is not the same for all j, then H' is in $\leq \ell$ cards.

If $V(H') \cap S = \emptyset$, then $H' = H$, in all $\ell + 1$ cards of C.

Idea: H can also be used to identify the card $D_{i,j}$, which is used to check whether $x_i x_j \in E(G)$.

Note $H = C_i - x_i$. For $w \in V(H)$, a card $D' \in D$ contains both $C_i - w$ and $C_j - w$ only when $D' = D_{i,j}$ and $w = w_{i,j}$.
Connectedness is l-Reconstructible for Large n

Def. Let $c(\mathcal{D}) = \#$ of connected cards in a deck \mathcal{D}.
Connectedness is ℓ-Reconstructible for Large n

Def. Let $c(\mathcal{D}) = \#$ of connected cards in a deck \mathcal{D}.

Suppose G connected, H disconn., same $(n - \ell)$-deck \mathcal{D}.
Connectedness is ℓ-Reconstructible for Large n

Def. Let $c(D) = \# \text{ of connected cards in a deck } D$.

Suppose G connected, H disconn., same $(n - \ell)$-deck D.

$G \Rightarrow c(D) \geq 1$, so H has component C with $|V(C)| \geq n - \ell$.
Connectedness is ℓ-Reconstructible for Large n

Def. Let $c(\mathcal{D}) = \#$ of connected cards in a deck \mathcal{D}.

Suppose G connected, H disconn., same $(n - \ell)$-deck \mathcal{D}.

$G \Rightarrow c(\mathcal{D}) \geq 1$, so H has component C with $|V(C)| \geq n - \ell$.

Let $|V(C)| = n - p$, so $H \Rightarrow c(\mathcal{D}) \leq \binom{n-p}{\ell-p} \leq \binom{n-1}{\ell-1}$.

(Keep only vertices from C, discarding $\ell - p$ of them.)
Connectedness is l-Reconstructible for Large n

Def. Let $c(\mathcal{D}) = \#$ of connected cards in a deck \mathcal{D}.

Suppose G connected, H disconn., same $(n - l)$-deck \mathcal{D}. $G \Rightarrow c(\mathcal{D}) \geq 1$, so H has component C with $|V(C)| \geq n - l$.

Let $|V(C)| = n - p$, so $H \Rightarrow c(\mathcal{D}) \leq \binom{n-p}{l-p} \leq \binom{n-1}{l-1}$.

(Keep only vertices from C, discarding $l - p$ of them.)

Also $H \Rightarrow \hat{c}(\mathcal{D}) \geq \binom{n-1}{l}$, where $\hat{c}(\mathcal{D}) = \#$ cards having a component of order $\leq l$. (Keep a vertex x outside C.)
Connectedness is l-Reconstructible for Large n

Def. Let $c(\mathcal{D}) = \#$ of connected cards in a deck \mathcal{D}.

Suppose G connected, H disconn., same $(n - l)$-deck \mathcal{D}. $G \Rightarrow c(\mathcal{D}) \geq 1$, so H has component C with $|V(C)| \geq n - l$.

Let $|V(C)| = n - p$, so $H \Rightarrow c(\mathcal{D}) \leq \binom{n-p}{l-p} \leq \binom{n-1}{l-1}$.

(Keep only vertices from C, discarding $l - p$ of them.)

Also $H \Rightarrow \hat{c}(\mathcal{D}) \geq \binom{n-1}{l}$, where $\hat{c}(\mathcal{D}) = \#$ cards having a component of order $\leq l$. (Keep a vertex x outside C.)

Idea: From G get lower bd on $c(\mathcal{D})$ & upper bd on $\hat{c}(\mathcal{D})$, leads to upper bound on n.
Connectedness is \(l \)-Reconstructible for Large \(n \)

Def. Let \(c(\mathcal{D}) = \# \) of connected cards in a deck \(\mathcal{D} \).

Suppose \(G \) connected, \(H \) disconn., same \((n - l)\)-deck \(\mathcal{D} \).

\[G \Rightarrow c(\mathcal{D}) \geq 1, \text{ so } H \text{ has component } C \text{ with } |V(C)| \geq n-l. \]

Let \(|V(C)| = n-p\), so \(H \Rightarrow c(\mathcal{D}) \leq \binom{n-p}{l-p} \leq \binom{n-1}{l-1}. \)

(Keep only vertices from \(C \), discarding \(l-p \) of them.)

Also \(H \Rightarrow \hat{c}(\mathcal{D}) \geq \binom{n-1}{l} \), where \(\hat{c}(\mathcal{D}) = \# \) cards having a component of order \(\leq l \). (Keep a vertex \(x \) outside \(C \).)

Idea: From \(G \) get lower bd on \(c(\mathcal{D}) \) & upper bd on \(\hat{c}(\mathcal{D}) \), leads to upper bound on \(n \).

Let \(T \) be a spanning tree of \(G \), and let \(\mathcal{D}' = \mathcal{D}_{n-l}(T) \).
Connectedness is l-Reconstructible for Large n

Def. Let $c(D) = \#$ of connected cards in a deck D.

Suppose G connected, H disconn., same $(n - l)$-deck D.

$G \Rightarrow c(D) \geq 1$, so H has component C with $|V(C)| \geq n - l$.

Let $|V(C)| = n - p$, so $H \Rightarrow c(D) \leq \binom{n-p}{l} \leq \binom{n-1}{l-1}$.

(Keep only vertices from C, discarding $l - p$ of them.)

Also $H \Rightarrow \hat{c}(D) \geq \binom{n-1}{l}$, where $\hat{c}(D) = \#$ cards having a component of order $\leq l$. (Keep a vertex x outside C.)

Idea: From G get lower bd on $c(D)$ & upper bd on $\hat{c}(D)$, leads to upper bound on n.

Let T be a spanning tree of G, and let $\mathcal{D}' = \mathcal{D}_{n-l}(T)$.

- $c(D) \geq c(D')$ and $\hat{c}(D) \leq \hat{c}(D')$ (using same vertices).
Connectedness is \(\ell \)-Reconstructible for Large \(n \)

Def. Let \(c(\mathcal{D}) \) = \# of connected cards in a deck \(\mathcal{D} \).

Suppose \(G \) connected, \(H \) disconn., same \((n - \ell) \)-deck \(\mathcal{D} \).

\[G \Rightarrow c(\mathcal{D}) \geq 1, \text{ so } H \text{ has component } C \text{ with } |V(C)| \geq n - \ell. \]

Let \(|V(C)| = n - p \), so \(H \Rightarrow c(\mathcal{D}) \leq \binom{n-p}{\ell-p} \leq \binom{n-1}{\ell-1}. \)

(Keep only vertices from \(C \), discarding \(\ell - p \) of them.)

Also \(H \Rightarrow \hat{c}(\mathcal{D}) \geq \binom{n-1}{\ell} \), where \(\hat{c}(\mathcal{D}) = \# \text{cards having a component of order } \leq \ell \). (Keep a vertex \(x \) outside \(C \).)

Idea: From \(G \) get lower bd on \(c(\mathcal{D}) \) & upper bd on \(\hat{c}(\mathcal{D}) \), leads to upper bound on \(n \).

Let \(T \) be a spanning tree of \(G \), and let \(\mathcal{D}' = \mathcal{D}_{n-\ell}(T) \).

- \(c(\mathcal{D}) \geq c(\mathcal{D}') \) and \(\hat{c}(\mathcal{D}) \leq \hat{c}(\mathcal{D}') \) (using same vertices).

Get lower bd on \(c(\mathcal{D}') \) & upper bd on \(\hat{c}(\mathcal{D}') \) instead.
Cards in D'

Let t be the number of leaves in T.
Cards in \mathcal{D}'

Let t be the number of leaves in T. Deleting leaves doesn’t disconnect, so $c(\mathcal{D}) \geq c(\mathcal{D}') \geq \binom{t}{k}$.
Cards in \mathcal{D}'

Let t be the number of leaves in T.
Deleting leaves doesn’t disconnect, so $c(\mathcal{D}) \geq c(\mathcal{D}') \geq \binom{t}{\ell}$.
Thus $\frac{t(\ell)}{\ell!} = \binom{t}{\ell} \leq c(\mathcal{D}) \leq \binom{n-1}{\ell-1} \leq \binom{n}{\ell-1} = \frac{n(\ell-1)}{(\ell-1)!}$.
Cards in \mathcal{D}'

Let t be the number of leaves in T.
Deleting leaves doesn’t disconnect, so $c(\mathcal{D}) \geq c(\mathcal{D}') \geq \binom{t}{l}$.

Thus $\frac{t(l)}{l!} = \binom{t}{l} \leq c(\mathcal{D}) \leq \binom{n-1}{l-1} \leq \binom{n}{l-1} = \frac{n(l-1)}{(l-1)!}$.

Hence $(t - l)^l < ln^{l-1}$, yielding $t < n\left(\frac{2l}{n}\right)^{1/l}$ for $n > l^2$.
Cards in \mathcal{D}'

Let t be the number of leaves in T. Deleting leaves doesn’t disconnect, so $c(\mathcal{D}) \geq c(\mathcal{D}') \geq \binom{t}{\ell}$.

Thus \(\frac{t(\ell)}{\ell !} = \binom{t}{\ell} \leq c(\mathcal{D}) \leq \binom{n-1}{\ell-1} \leq \binom{n}{\ell-1} = \frac{n(\ell-1)}{(\ell-1)!} \).

Hence $(t - \ell)^\ell < \ell n^{\ell-1}$, yielding $t < n \left(\frac{2\ell}{n}\right)^{1/\ell}$ for $n > \ell^2$.

Every card in \mathcal{D}' counted by $\hat{c}(\mathcal{D}')$ has a tree component F with $|V(F)| \leq \ell$, cut off by at most ℓ vertices.
Cards in \mathcal{D}'

Let t be the number of leaves in T. Deleting leaves doesn’t disconnect, so $c(\mathcal{D}) \geq c(\mathcal{D}') \geq \binom{t}{l}$.

Thus $\frac{t(l)}{l!} = \binom{t}{l} \leq c(\mathcal{D}) \leq \binom{n-1}{l-1} \leq \binom{n}{l-1} = \frac{n(l-1)}{(l-1)!}$.

Hence $(t - l)^l < l n^{l-1}$, yielding $t < n(2l/n)^{1/l}$ for $n > l^{l^2}$.

Every card in \mathcal{D}' counted by $\hat{c}(\mathcal{D}')$ has a tree component F with $|V(F)| \leq l$, cut off by at most l vertices.

If F is cut off by j vertices, then F is a component in fewer than $\binom{n}{l-j}$ cards.
Cards in \mathcal{D}'

Let t be the number of leaves in T. Deleting leaves doesn’t disconnect, so $c(D) \geq c(D') \geq \binom{t}{l}$. Thus $\frac{t!}{l!} = \binom{t}{l} \leq c(D) \leq \binom{n-1}{l-1} \leq \binom{n}{l-1} = \frac{n(n-1)}{(l-1)!}$. Hence $(t - l)^l < ln^{l-1}$, yielding $t < n(2l/n)^{1/l}$ for $n > l^{l^2}$.

Every card in \mathcal{D}' counted by $\hat{c}(\mathcal{D}')$ has a tree component F with $|V(F)| \leq l$, cut off by at most l vertices.

If F is cut off by j vertices, then F is a component in fewer than $\binom{n}{l-j}$ cards. Let $b_j = \#$ such subtrees F.
Cards in \mathcal{D}'

Let t be the number of leaves in T. Deleting leaves doesn’t disconnect, so $c(\mathcal{D}) \geq c(\mathcal{D}') \geq \binom{t}{\ell}$. Thus $\frac{t(\ell)}{\ell!} = \binom{t}{\ell} \leq c(\mathcal{D}) \leq \binom{n-1}{\ell-1} \leq \binom{n}{\ell-1} = \frac{n(\ell-1)}{(\ell-1)!}$. Hence $(t - \ell)^{\ell} < \ell n^{\ell-1}$, yielding $t < n(2\ell/n)^{1/\ell}$ for $n > \ell^2$.

Every card in \mathcal{D}' counted by $\hat{c}(\mathcal{D}')$ has a tree component F with $|V(F)| \leq \ell$, cut off by at most ℓ vertices. If F is cut off by j vertices, then F is a component in fewer than $\binom{n}{\ell-j}$ cards. Let $b_j = \#$such subtrees F. Hence $\hat{c}(\mathcal{D}) \leq \hat{c}(\mathcal{D}') \leq \sum_{j=1}^{\ell} b_j \binom{n}{\ell-j}$.
Cards in \mathcal{D}'

Let t be the number of leaves in T. Deleting leaves doesn’t disconnect, so $c(\mathcal{D}) \ge c(\mathcal{D}') \ge \binom{t}{l}$. Thus \(\frac{t(l)}{l!} = \binom{t}{l} \le c(\mathcal{D}) \le \binom{n-1}{l-1} \le \binom{n}{l-1} = \frac{n(l-1)}{(l-1)!} \).

Hence \((t - l)^l < ln^{l-1}\), yielding \(t < n(2l/n)^{1/l}\) for \(n > l^{l^2}\).

Every card in \mathcal{D}' counted by $\hat{c}(\mathcal{D}')$ has a tree component F with $|V(F)| \le l$, cut off by at most l vertices.

If F is cut off by j vertices, then F is a component in fewer than $\binom{n}{l-j}$ cards. Let $b_j = \#$such subtrees F.

Hence $\hat{c}(\mathcal{D}) \le \hat{c}(\mathcal{D}') \le \sum_{j=1}^{l} b_j \binom{n}{l-j}$.

We claim: $b_j \binom{n}{l-j} \le \frac{l}{2} n^{l-1} t$.
Cards in \mathcal{D}'

Let t be the number of leaves in T. Deleting leaves doesn’t disconnect, so $c(\mathcal{D}) \geq c(\mathcal{D}') \geq \binom{t}{l}$. Thus $\frac{t(l)}{l!} = \binom{t}{l} \leq c(\mathcal{D}) \leq \binom{n-1}{l-1} \leq \binom{n}{l-1} = \frac{n(n-1)}{(l-1)!}$.

Hence $(t - l)^l < l n^{l-1}$, yielding $t < n(2l/n)^{1/l}$ for $n > l^{l^2}$.

Every card in \mathcal{D}' counted by $\hat{c}(\mathcal{D}')$ has a tree component F with $|V(F)| \leq l$, cut off by at most l vertices.

If F is cut off by j vertices, then F is a component in fewer than $\binom{n}{l-j}$ cards. Let $b_j = \#$such subtrees F.

Hence $\hat{c}(\mathcal{D}) \leq \hat{c}(\mathcal{D}') \leq \sum_{j=1}^{l} b_j \binom{n}{l-j}$.

We claim: $b_j \binom{n}{l-j} \leq \frac{l}{2} n^{l-1} t$. (see appendix at end)
Cards in D'

Let t be the number of leaves in T.
Deleting leaves doesn’t disconnect, so $c(D) \geq c(D') \geq \binom{t}{l}$.

Thus $\frac{t(t(l))}{l!} = \binom{t}{l} \leq c(D) \leq \binom{n-1}{\ell-1} \leq \binom{n}{\ell-1} = \frac{n(n-1)}{(\ell-1)!}$.

Hence $(t - \ell)^l < l n^{l-1}$, yielding $t < n(2\ell/n)^{1/l}$ for $n > \ell^2$.

Every card in D' counted by $\hat{c}(D')$ has a tree component F with $|V(F)| \leq \ell$, cut off by at most ℓ vertices.

If F is cut off by j vertices, then F is a component in fewer than $\binom{n}{\ell-j}$ cards. Let $b_j = \#$such subtrees F.

Hence $\hat{c}(D) \leq \hat{c}(D') \leq \sum_{j=1}^{\ell} b_j \binom{n}{\ell-j}$.

We claim: $b_j \binom{n}{\ell-j} \leq \frac{\ell}{2} n^{l-1} t$. (see appendix at end)

Thus $(\frac{n-\ell}{\ell})^l < \binom{n-1}{l} \leq \hat{c}(D) \leq \frac{\ell^2}{2} n^{l-1} t < \frac{\ell^2}{2} n^l \left(\frac{2\ell}{n}\right)^{1/l}$.
Cards in \mathcal{D}'

Let t be the number of leaves in T.
Deleting leaves doesn’t disconnect, so $c(\mathcal{D}) \geq c(\mathcal{D}') \geq \binom{t}{l}$.
Thus $\frac{t(l)}{l!} = \binom{t}{l} \leq c(\mathcal{D}) \leq \binom{n-1}{l-1} \leq \binom{n}{l-1} = \frac{n(l-1)}{(l-1)!}$.
Hence $(t - l)^l < ln^{l-1}$, yielding $t < n(2l/n)^{1/l}$ for $n > l^{l^2}$.

Every card in \mathcal{D}' counted by $\hat{c}(\mathcal{D}')$ has a tree component F with $|V(F)| \leq l$, cut off by at most l vertices.
If F is cut off by j vertices, then F is a component in fewer than $\binom{n}{l-j}$ cards. Let $b_j = \#$ such subtrees F.
Hence $\hat{c}(\mathcal{D}) \leq \hat{c}(\mathcal{D}') \leq \sum_{j=1}^{l} b_j \binom{n}{l-j}$.

We claim: $b_j \binom{n}{l-j} \leq \frac{l}{2} n^{l-1} t$. (see appendix at end)

Thus $\left(\frac{n-l}{l}\right)^l < \binom{n-1}{l} \leq \hat{c}(\mathcal{D}) \leq \frac{l^2}{2} n^{l-1} t < \frac{l^2}{2} n^l \left(\frac{2l}{n}\right)^{1/l}$.
Requires $n < 2l^{(l+1)^2}$, roughly $l > \left(\frac{2 \log n}{\log \log n}\right)^{1/2}$. ■
Degree List is 3-Reconstructible (for $n \geq 7$)

Let a_i be the number of vertices with degree i in G. Let $\phi(j) =$ total #verts of degree exactly j over all cards.
Degree List is 3-Reconstructible (for $n \geq 7$)

Let a_i be the number of vertices with degree i in G. Let $\phi(j)$ = total #verts of degree exactly j over all cards.

Lem. Manvel ’74, Taylor ’90: Given $D_k(G)$ (and $\ell = n - k$),

$$\phi(j) = \sum_{i=j}^{j+\ell} a_i \binom{i}{j} \binom{n-1-i}{k-1-j}.$$
Degree List is 3-Reconstructible (for $n \geq 7$)

Let a_i be the number of vertices with degree i in G. Let $\phi(j) =$ total #verts of degree exactly j over all cards.

Lem. Manvel ’74, Taylor ’90: Given $D_k(G)$ (and $\ell = n - k$),

$$\phi(j) = \sum_{i=j}^{j+\ell} a_i \binom{i}{j} \binom{n-1-i}{k-1-j}.$$

Pf. To contribute to $\phi(j)$ in a k-card, an i-vertex must be chosen along with j nbrs and $k - 1 - j$ nonneighbors.

\blacksquare
Degree List is 3-Reconstructible (for $n \geq 7$)

Let a_i be the number of vertices with degree i in G. Let $\phi(j) =$ total #verts of degree exactly j over all cards.

Lem. Manvel ‘74, Taylor ’90: Given $D_k(G)$ (and $\ell = n - k$),

$$\phi(j) = \sum_{i=j}^{j+\ell} a_i \binom{i}{j} \binom{n-1-i}{k-1-j}. \quad (*)$$

Pf. To contribute to $\phi(j)$ in a k-card, an i-vertex must be chosen along with j nbrs and $k - 1 - j$ nonneighbors.

Idea: If G and H with vertex counts a_i and b_i have same k-deck D_k, and $c_i = a_i - b_i$, then $0 = \sum_{i=j}^{j+\ell} c_i \binom{i}{j} \binom{n-1-i}{k-1-j} \quad (*)$.

Degree List is 3-Reconstructible (for $n \geq 7$)

Let a_i be the number of vertices with degree i in G. Let $\phi(j) =$ total #verts of degree exactly j over all cards.

Lem. Manvel ’74, Taylor ’90: Given $\mathcal{D}_k(G)$ (and $\ell = n - k$),

$$\phi(j) = \sum_{i=j}^{j+\ell} a_i \binom{i}{j} \binom{n-1-i}{k-1-j}.$$

Pf. To contribute to $\phi(j)$ in a k-card, an i-vertex must be chosen along with j nbrs and $k-1-j$ nonneighbors. ■

Idea: If G and H with vertex counts a_i and b_i have same k-deck \mathcal{D}_k, and $c_i = a_i - b_i$, then $0 = \sum_{i=j}^{j+\ell} c_i \binom{i}{j} \binom{n-1-i}{k-1-j}$ (*).

Thm. $c_i = 0$ for all i when $n \geq 7$ and $k = n - 3$.
Degree List is 3-Reconstructible (for $n \geq 7$)

Let a_i be the number of vertices with degree i in G. Let $\phi(j) =$ total # verts of degree exactly j over all cards.

Lem. Manvel ’74, Taylor ’90: Given $\mathcal{D}_k(G)$ (and $\ell = n - k$),

$$\phi(j) = \sum_{i=j}^{j+\ell} a_i \binom{i}{j} \binom{n-1-i}{k-1-j}.$$

Pf. To contribute to $\phi(j)$ in a k-card, an i-vertex must be chosen along with j nbrs and $k-1-j$ nonneighbors. ■

Idea: If G and H with vertex counts a_i and b_i have same k-deck \mathcal{D}_k, and $c_i = a_i - b_i$, then $0 = \sum_{i=j}^{j+\ell} c_i \binom{i}{j} \binom{n-1-i}{k-1-j}$ (\ast).

Thm. $c_i = 0$ for all i when $n \geq 7$ and $k = n - 3$.

Pf. Idea: Use (\ast) for $j = n - 4$ and $j = n - 5$.
Degree List is 3-Reconstructible (for $n \geq 7$)

Let a_i be the number of vertices with degree i in G.
Let $\phi(j)$ = total #verts of degree exactly j over all cards.

Lem. Manvel '74, Taylor '90: Given $D_k(G)$ (and $l = n - k$),
$$\phi(j) = \sum_{i=j}^{j+l} a_i \binom{i}{j} \binom{n-1-i}{k-1-j}.$$

Pf. To contribute to $\phi(j)$ in a k-card, an i-vertex must be
chosen along with j nbrs and $k - 1 - j$ nonneighbors. ■

Idea: If G and H with vertex counts a_i and b_i have same k-deck D_k, and $c_i = a_i - b_i$, then 0 = $\sum_{i=j}^{j+l} c_i \binom{i}{j} \binom{n-1-i}{k-1-j} \ (\ast)$.

Thm. $c_i = 0$ for all i when $n \geq 7$ and $k = n - 3$.

Pf. Idea: Use \((\ast)\) for $j = n - 4$ and $j = n - 5$.
Let r be the largest index with $c_r \neq 0$ (consider cases).
Degree List is 3-Reconstructible (for \(n \geq 7 \))

Let \(a_i \) be the number of vertices with degree \(i \) in \(G \). Let \(\phi(j) = \text{total #verts of degree exactly } j \) over all cards.

Lem. Manvel ’74, Taylor ’90: Given \(D_k(G) \) (and \(\ell = n - k \)),
\[
\phi(j) = \sum_{i=j}^{j+\ell} a_i \binom{i}{j} \binom{n-1-i}{k-1-j}.
\]

Pf. To contribute to \(\phi(j) \) in a \(k \)-card, an \(i \)-vertex must be chosen along with \(j \) nbrs and \(k - 1 - j \) nonneighbors.

Idea: If \(G \) and \(H \) with vertex counts \(a_i \) and \(b_i \) have same \(k \)-deck \(D_k \), and \(c_i = a_i - b_i \), then \(0 = \sum_{i=j}^{j+\ell} c_i \binom{i}{j} \binom{n-1-i}{k-1-j} \) (**).

Thm. \(c_i = 0 \) for all \(i \) when \(n \geq 7 \) and \(k = n - 3 \).

Pf. Idea: Use (**) for \(j = n - 4 \) and \(j = n - 5 \).
Let \(r \) be the largest index with \(c_r \neq 0 \) (consider cases).
May assume \(r \geq n - 3 \), since having \(D_k(G) \) and knowing \(a_i \) for \(i \geq k \) determines the degree list (Manvel [1974]).
Connectedness is 3-Reconstructible (for $n \geq 7$)

Consider G and H with m edges & same $(n - 3)$-deck \mathcal{D}.
Connectedness is 3-Reconstructible (for $n \geq 7$)

Consider G and H with m edges & same $(n - 3)$-deck \mathcal{D}. G connected $\Rightarrow \mathcal{D}$ has ≥ 2 connected cards.
Connectedness is 3-Reconstructible (for $n \geq 7$)

Consider G and H with m edges & same $(n - 3)$-deck \mathcal{D}.

G connected $\Rightarrow \mathcal{D}$ has ≥ 2 connected cards \Rightarrow

disconnected H has component C with $\geq n - 2$ vertices.
Connectedness is 3-Reconstructible (for $n \geq 7$)

Consider G and H with m edges & same $(n - 3)$-deck \mathcal{D}.

G connected $\Rightarrow \mathcal{D}$ has ≥ 2 connected cards \Rightarrow
disconnected H has component C with $\geq n - 2$ vertices.

Since we know G & H have same degree list, $H = C + K_2$.
Connectedness is 3-Reconstructible (for $n \geq 7$)

Consider G and H with m edges & same $(n - 3)$-deck \mathcal{D}.

G connected \Rightarrow \mathcal{D} has ≥ 2 connected cards \Rightarrow
disconnected H has component C with $\geq n - 2$ vertices.

Since we know G & H have same degree list, $H = C + K_2$.

If C has a 1-vertex, then \mathcal{D} has a card with $m - 2$ edges, but G cannot.
Connectedness is 3-Reconstructible (for $n \geq 7$)

Consider G and H with m edges & same $(n-3)$-deck \mathcal{D}.

G connected $\Rightarrow \mathcal{D}$ has ≥ 2 connected cards \Rightarrow
disconnected H has component C with $\geq n-2$ vertices.

Since we know G & H have same degree list, $H = C + K_2$.

If C has a 1-vertex, then \mathcal{D} has a card with $m-2$ edges, but G cannot. Thus G & H have exactly two 1-vertices.
Connectedness is 3-Reconstructible (for $n \geq 7$)

Consider G and H with m edges & same $(n - 3)$-deck D.

G connected $\Rightarrow D$ has ≥ 2 connected cards \Rightarrow disconnected H has component C with $\geq n - 2$ vertices.

Since we know G & H have same degree list, $H = C + K_2$.

If C has a 1-vertex, then D has a card with $m - 2$ edges, but G cannot. Thus G & H have exactly two 1-vertices.

Let $x = \#2$-vertices.
Connectedness is 3-Reconstructible (for $n \geq 7$)

Consider G and H with m edges & same $(n - 3)$-deck \mathcal{D}. G connected $\Rightarrow \mathcal{D}$ has ≥ 2 connected cards \Rightarrow disconnected H has component C with $\geq n - 2$ vertices. Since we know G & H have same degree list, $H = C + K_2$. If C has a 1-vertex, then \mathcal{D} has a card with $m - 2$ edges, but G cannot. Thus G & H have exactly two 1-vertices. Let $x = \#2$-vertices. \mathcal{D} has x cards with $m - 3$ edges.
Connectedness is 3-Reconstructible (for $n \geq 7$)

Consider G and H with m edges & same $(n-3)$-deck D. G connected $\Rightarrow D$ has ≥ 2 connected cards \Rightarrow disconnected H has component C with $\geq n-2$ vertices.

Since we know G & H have same degree list, $H = C + K_2$.

If C has a 1-vertex, then D has a card with $m-2$ edges, but G cannot. Thus G & H have exactly two 1-vertices.

Let $x = \#2$-vertices. D has x cards with $m-3$ edges. Hence G has one of these structures.

- $x = 1$
- $x = 4$
- $x = 3$
- $x = 1$
- $x = 2$
- $x = 2$
Connectedness is 3-Reconstructible (for \(n \geq 7 \))

Consider \(G \) and \(H \) with \(m \) edges & same \((n - 3)\)-deck \(\mathcal{D} \).

\(G \) connected \(\Rightarrow \) \(\mathcal{D} \) has \(\geq 2 \) connected cards \(\Rightarrow \) disconnected \(H \) has component \(C \) with \(\geq n - 2 \) vertices.

Since we know \(G \) & \(H \) have same degree list, \(H = C + K_2 \).

If \(C \) has a 1-vertex, then \(\mathcal{D} \) has a card with \(m - 2 \) edges, but \(G \) cannot. Thus \(G \) & \(H \) have exactly two 1-vertices.

Let \(x = \#2\)-vertices. \(\mathcal{D} \) has \(x \) cards with \(m - 3 \) edges. Hence \(G \) has one of these structures.

Cards of \(G \) have mindeg \(\leq 1 \) (except one case), so each vtx of \(C \) has 2-nbr.
Connectedness is 3-Reconstructible (for $n \geq 7$)

Consider G and H with m edges & same $(n-3)$-deck \mathcal{D}.

G connected \Rightarrow \mathcal{D} has ≥ 2 connected cards \Rightarrow
disconnected H has component C with $\geq n-2$ vertices.

Since we know G & H have same degree list, $H = C + K_2$.

If C has a 1-vertex, then \mathcal{D} has a card with $m-2$ edges, but G cannot. Thus G & H have exactly two 1-vertices.

Let $x = \#2$-vertices. \mathcal{D} has x cards with $m-3$ edges.
Hence G has one of these structures.

Cards of G have mindeg ≤ 1 (except one case), so each vtx of C has 2-nbr. This makes C too small.
3-Reconstructibility of Trees

Thm. Kelly [1957] Trees with $n \geq 3$ are 1-reconstr’ble.

Thm. Giles [1976] Trees with $n \geq 6$ are 2-reconstr’ble.

Thm. K-N-W-Z’21+ Trees with $n \geq 22$ are 3-reconstr’ble.
3-Reconstructibility of Trees

Thm. Kelly [1957] Trees with \(n \geq 3 \) are 1-reconstr’ble.

Thm. Giles [1976] Trees with \(n \geq 6 \) are 2-reconstr’ble.

Thm. K-N-W-Z’21+ Trees with \(n \geq 22 \) are 3-reconstr’ble.

Def. For an \(n \)-vertex rooted tree \(T \), an rcl-card is an \((n - l)\)-vertex rooted tree \(T' \subseteq T \) with the same root.
3-Reconstructibility of Trees

Thm. Kelly [1957] Trees with $n \geq 3$ are 1-reconstr’ble.

Thm. Giles [1976] Trees with $n \geq 6$ are 2-reconstr’ble.

Thm. K-N-W-Z’21$^+$ Trees with $n \geq 22$ are 3-reconstr’ble.

Def. For an n-vertex rooted tree T, an rcl-card is an $(n - l)$-vertex rooted tree $T' \subseteq T$ with the same root.

Thm. No two rooted trees have the same rc3-cards, with special exceptions.
3-Reconstructibility of Trees

Thm. Kelly [1957] Trees with $n \geq 3$ are 1-reconstr’ble.

Thm. Giles [1976] Trees with $n \geq 6$ are 2-reconstr’ble.

Thm. K-N-W-Z’21 Trees with $n \geq 22$ are 3-reconstr’ble.

Def. For an n-vertex rooted tree T, an rcl-card is an $(n - l)$-vertex rooted tree $T' \subseteq T$ with the same root.

Thm. No two rooted trees have the same rc3-cards, with special exceptions.

Def. The cost of a vertex v in a tree T is the max #vertices in a component of $T - v$.
The cost $c(T)$ is the minimum cost among the vertices. A centroid is a vertex of minimum cost.
3-Reconstructibility of Trees

Thm. Kelly [1957] Trees with $n \geq 3$ are 1-reconstructible.

Thm. Giles [1976] Trees with $n \geq 6$ are 2-reconstructible.

Thm. K-N-W-Z’21+ Trees with $n \geq 22$ are 3-reconstructible.

Def. For an n-vertex rooted tree T, an rcl-card is an $(n - l)$-vertex rooted tree $T' \subseteq T$ with the same root.

Thm. No two rooted trees have the same rc3-cards, with special exceptions.

Def. The cost of a vertex v in a tree T is the maximum number of vertices in a component of $T - v$.

The cost $c(T)$ is the minimum cost among the vertices.

A centroid is a vertex of minimum cost.

Lem. An n-vertex tree has one centroid, cost $< n/2$, or has two adjacent centroids, with cost $n/2$.
Trees with Small Cost

Lem. Let D be the $(n - \ell)$-deck of an n-vertex tree T. Let $c(D)$ be the max cost among connected cards in D.

$$c(D) = \begin{cases} c(T) & \text{if } c(T) \leq (n - \ell)/2, \\ \left\lfloor (n - \ell)/2 \right\rfloor & \text{if } c(T) > (n - \ell)/2. \end{cases}$$

Also, if $c(T) \leq (n - \ell)/2$, then the centroid of T is a centroid in every connected card.
Trees with Small Cost

Lem. Let \mathcal{D} be the $(n - \ell)$-deck of an n-vertex tree T. Let $c(\mathcal{D})$ be the max cost among connected cards in \mathcal{D}.

$$c(\mathcal{D}) = \begin{cases} c(T) & \text{if } c(T) \leq (n - \ell)/2, \\ \lceil (n - \ell)/2 \rceil & \text{if } c(T) > (n - \ell)/2. \end{cases}$$

Also, if $c(T) \leq (n - \ell)/2$, then the centroid of T is a centroid in every connected card.

Thm. For $n \geq 7$, every n-vertex tree T with cost at most $(n - 5)/2$ is 3-reconstructible.
Lem. Let D be the $(n - \ell)$-deck of an n-vertex tree T. Let $c(D)$ be the max cost among connected cards in D.

$$c(D) = \begin{cases} c(T) & \text{if } c(T) \leq (n - \ell)/2, \\ \lfloor (n - \ell)/2 \rfloor & \text{if } c(T) > (n - \ell)/2. \end{cases}$$

Also, if $c(T) \leq (n - \ell)/2$, then the centroid of T is a centroid in every connected card.

Thm. For $n \geq 7$, every n-vertex tree T with cost at most $(n - 5)/2$ is 3-reconstructible.

Pf. By the lemma, $c(T) = c(D)$, and in each connected card the centroid is the actual centroid of the reconstructed tree T. This expresses the connected cards as the rc3-cards of T rooted at its centroid. By the rooted result, the reconstructed tree is unique.
Trees with Small Cost

Lem. Let \mathcal{D} be the $(n - \ell)$-deck of an n-vertex tree T. Let $c(\mathcal{D})$ be the max cost among connected cards in \mathcal{D}.

$$c(\mathcal{D}) = \begin{cases} c(T) & \text{if } c(T) \leq (n - \ell)/2, \\ \lfloor (n - \ell)/2 \rfloor & \text{if } c(T) > (n - \ell)/2. \end{cases}$$

Also, if $c(T) \leq (n - \ell)/2$, then the centroid of T is a centroid in every connected card.

Thm. For $n \geq 7$, every n-vertex tree T with cost at most $(n - 5)/2$ is 3-reconstructible.

Pf. By the lemma, $c(T) = c(\mathcal{D})$, and in each connected card the centroid is the actual centroid of the reconstructed tree T. This expresses the connected cards as the rc3-cards of T rooted at its centroid. By the rooted result, the reconstructed tree is unique.

• Trees with cost $\frac{n-4}{2}, \frac{n-3}{2}, \frac{n-2}{2}, \frac{n-1}{2}, \frac{n}{2}$: 46 more pages, many uses of rooted reconstruction.
Prob 11898 (Stanley [2016], Amer. Math. Monthly) If G is an n-vertex graph whose components are cycles of length greater than k, show that the number of independent sets of size k depends only on n and k.
Prob 11898 (Stanley [2016], Amer. Math. Monthly) If G is an n-vertex graph whose components are cycles of length greater than k, show that the number of independent sets of size k depends only on n and k.

Thm. Let G and G' be n-vertex graphs with maximum degree 2 and $|E(G)| = |E(G')|$. If every component in each graph is a cycle with more than k vertices or a path with at least $k - 1$ vertices, then $\mathcal{D}_k(G) = \mathcal{D}_k(G')$.
Prob 11898 (Stanley [2016], Amer. Math. Monthly) If G is an n-vertex graph whose components are cycles of length greater than k, show that the number of independent sets of size k depends only on n and k.

Thm. Let G and G' be n-vertex graphs with maximum degree 2 and $|E(G)| = |E(G')|$. If every component in each graph is a cycle with more than k vertices or a path with at least $k - 1$ vertices, then $\mathcal{D}_k(G) = \mathcal{D}_k(G')$.

(1) $\mathcal{D}_k(C_{q+r}) = \mathcal{D}_k(C_q + C_r)$ if $q, r \geq k + 1$,
(2) $\mathcal{D}_k(P_{q+r}) = \mathcal{D}_k(C_q + P_r)$ if $q \geq k + 1$ and $r \geq k - 1$, and
(3) $\mathcal{D}_k(P_{q-1} + P_r) = \mathcal{D}_k(P_q + P_{r-1})$ if $q, r \geq k$.

Prob 11898 (Stanley [2016], Amer. Math. Monthly) If G is an n-vertex graph whose components are cycles of length greater than k, show that the number of independent sets of size k depends only on n and k.

Thm. Let G and G' be n-vertex graphs with maximum degree 2 and $|E(G)| = |E(G')|$. If every component in each graph is a cycle with more than k vertices or a path with at least $k - 1$ vertices, then $\mathcal{D}_k(G) = \mathcal{D}_k(G')$.

(1) $\mathcal{D}_k(C_{q+r}) = \mathcal{D}_k(C_q + C_r)$ if $q, r \geq k + 1$,
(2) $\mathcal{D}_k(P_{q+r}) = \mathcal{D}_k(C_q + P_r)$ if $q \geq k + 1$ and $r \geq k - 1$, and
(3) $\mathcal{D}_k(P_{q-1} + P_r) = \mathcal{D}_k(P_q + P_{r-1})$ if $q, r \geq k$.

In fact, (1,2,3) suffice to prove the theorem, because:
Prob 11898 (Stanley [2016], Amer. Math. Monthly) If G is an n-vertex graph whose components are cycles of length greater than k, show that the number of independent sets of size k depends only on n and k.

Thm. Let G and G' be n-vertex graphs with maximum degree 2 and $|E(G)| = |E(G')|$. If every component in each graph is a cycle with more than k vertices or a path with at least $k - 1$ vertices, then $D_k(G) = D_k(G')$.

1. $D_k(C_{q+r}) = D_k(C_q + C_r)$ if $q, r \geq k + 1$,
2. $D_k(P_{q+r}) = D_k(C_q + P_r)$ if $q \geq k + 1$ and $r \geq k - 1$, and
3. $D_k(P_{q-1} + P_r) = D_k(P_q + P_{r-1})$ if $q, r \geq k$.

In fact, (1, 2, 3) suffice to prove the theorem, because:

Lem. If G, G', and H are graphs, then $D_k(G) = D_k(G')$ if and only if $D_k(G + H) = D_k(G' + H)$.
Sharpness and Key Idea

Thm. If $\Delta(G) = 2$, and two largest components have m and m' vertices, then G is k-deck reconstructible iff $k \geq \max\{\lfloor m/2 \rfloor + \epsilon, m' + \epsilon'\}$, where $\epsilon \in \{0, 1\}$ and $\epsilon' \in \{0, 1, 2\}$. ($\epsilon = 1$ if largest component is P_m.)
Sharpness and Key Idea

Thm. If $\Delta(G) = 2$, and two largest components have m and m' vertices, then G is k-deck reconstructible iff $k \geq \max\{\lfloor m/2 \rfloor + \epsilon, m' + \epsilon'\}$, where $\epsilon \in \{0, 1\}$ and $\epsilon' \in \{0, 1, 2\}$. ($\epsilon = 1$ if largest component is P_m.)

(1) $D_k(C_{q+r}) = D_k(C_q + C_r)$ if $q, r \geq k + 1$,
(2) $D_k(P_{q+r}) = D_k(C_q + P_r)$ if $q \geq k + 1$ and $r \geq k - 1$, and
(3) $D_k(P_{q-1} + P_r) = D_k(P_q + P_{r-1})$ if $q, r \geq k$.

Thm. If $\Delta(G) = 2$, and two largest components have m and m' vertices, then G is k-deck reconstructible iff $k \geq \max\{\lfloor m/2 \rfloor + \epsilon, m' + \epsilon'\}$, where $\epsilon \in \{0, 1\}$ and $\epsilon' \in \{0, 1, 2\}$. ($\epsilon = 1$ if largest component is P_m.)

(1) $D_k(C_{q+r}) = D_k(C_q + C_r)$ if $q, r \geq k + 1$,
(2) $D_k(P_{q+r}) = D_k(C_q + P_r)$ if $q \geq k + 1$ and $r \geq k - 1$, and
(3) $D_k(P_{q-1} + P_r) = D_k(P_q + P_{r-1})$ if $q, r \geq k$.

Let $s(G, H) = \#$ induced copies of H in G.
Sharpness and Key Idea

Thm. If \(\Delta(G) = 2 \), and two largest components have \(m \) and \(m' \) vertices, then \(G \) is \(k \)-deck reconstructible iff \(k \geq \max\{\lfloor m/2 \rfloor + \varepsilon, m' + \varepsilon' \} \), where \(\varepsilon \in \{0, 1\} \) and \(\varepsilon' \in \{0, 1, 2\} \). (\(\varepsilon = 1 \) if largest component is \(P_m \)).

(1) \(D_k(C_{q+r}) = D_k(C_q + C_r) \) if \(q, r \geq k + 1 \),
(2) \(D_k(P_{q+r}) = D_k(C_q + P_r) \) if \(q \geq k + 1 \) and \(r \geq k - 1 \), and
(3) \(D_k(P_{q-1} + P_r) = D_k(P_q + P_{r-1}) \) if \(q, r \geq k \).

Let \(s(G, H) = \# \) induced copies of \(H \) in \(G \).

Let \(s'(G', H) = \# \) induced copies of \(H + K_1 \) having a named vertex \(z \) of \(G' \) as an isolated vertex.
Sharpness and Key Idea

Thm. If $\Delta(G) = 2$, and two largest components have m and m' vertices, then G is k-deck reconstructible iff $k \geq \max\{\lfloor m/2 \rfloor + \epsilon, m' + \epsilon'\}$, where $\epsilon \in \{0, 1\}$ and $\epsilon' \in \{0, 1, 2\}$. ($\epsilon = 1$ if largest component is P_m.)

(1) $D_k(C_{q+r}) = D_k(C_q + C_r)$ if $q, r \geq k + 1$,
(2) $D_k(P_{q+r}) = D_k(C_q + P_r)$ if $q \geq k + 1$ and $r \geq k - 1$, and
(3) $D_k(P_{q-1} + P_r) = D_k(P_q + P_{r-1})$ if $q, r \geq k$.

Let $s(G, H) = \#$ induced copies of H in G.

G'

Let $s'(G', H) = \#$ induced copies of $H + K_1$ having a named vertex z of G' as an isolated vertex.

- $s'(P_n, H)$ is indep of z when z is far enough from ends.
Independent of the Named Vertex

Lem. Let L be the linear forest $\sum_{i=1}^{p} m_i P_{\ell_i}$ with k vertices, and let $P_n = \langle w_1, \ldots, w_n \rangle$. For all $z = w_h$ with $k \leq h \leq n + 1 - k$, the value $s'(P_n, L)$ is the same.
Independent of the Named Vertex

Lem. Let L be the linear forest $\sum_{i=1}^{p} m_i P_{\ell_i}$ with k vertices, and let $P_n = \langle w_1, \ldots, w_n \rangle$. For all $z = w_h$ with $k \leq h \leq n + 1 - k$, the value $s'(P_n, L)$ is the same.

Pf. Induction on k. For $k = 1$, any w_h is in one P_1.
Independent of the Named Vertex

Lem. Let L be the linear forest $\sum_{i=1}^{p} m_i P_{\ell_i}$ with k vertices, and let $P_n = \langle w_1, \ldots, w_n \rangle$. For all $z = w_h$ with $k \leq h \leq n + 1 - k$, the value $s'(P_n, L)$ is the same.

Pf. Induction on k. For $k = 1$, any w_h is in one P_1. Compare $s'(P_n, L)$ to $s'(C_n, L)$ with edge $w_n w_1$ added.
Independent of the Named Vertex

Lem. Let L be the linear forest $\sum_{i=1}^{p} m_i P_{\ell_i}$ with k vertices, and let $P_n = \langle w_1, \ldots, w_n \rangle$. For all $z = w_h$ with $k \leq h \leq n + 1 - k$, the value $s'(P_n, L)$ is the same.

Pf. Induction on k. For $k = 1$, any w_h is in one P_1. Compare $s'(P_n, L)$ to $s'(C_n, L)$ with edge $w_n w_1$ added. By symmetry, $s'(C_n, L)$ is independent of h.
Independent of the Named Vertex

Lem. Let L be the linear forest $\sum_{i=1}^{p} m_i P_{\ell_i}$ with k vertices, and let $P_n = \langle w_1, \ldots, w_n \rangle$. For all $z = w_h$ with $k \leq h \leq n + 1 - k$, the value $s'(P_n, L)$ is the same.

Pf. Induction on k. For $k = 1$, any w_h is in one P_1. Compare $s'(P_n, L)$ to $s'(C_n, L)$ with edge $w_n w_1$ added. By symmetry, $s'(C_n, L)$ is independent of h.

$s'(C_n, L)$ omits copies of L in P_n using w_1 and w_n. $s'(C_n, L)$ counts unwanted subgraphs using $w_n w_1$.
Independent of the Named Vertex

Lem. Let L be the linear forest $\sum_{i=1}^{p} m_i P_{\ell_i}$ with k vertices, and let $P_n = \langle w_1, \ldots, w_n \rangle$. For all $z = w_h$ with $k \leq h \leq n + 1 - k$, the value $s'(P_n, L)$ is the same.

Pf. Induction on k. For $k = 1$, any w_h is in one P_1. Compare $s'(P_n, L)$ to $s'(C_n, L)$ with edge $w_n w_1$ added. By symmetry, $s'(C_n, L)$ is independent of h. $s'(C_n, L)$ omits copies of L in P_n using w_1 and w_n. $s'(C_n, L)$ counts unwanted subgraphs using $w_n w_1$.

With $L_i = L - V(P_{\ell_i})$ and $L_{i,j} = L - V(P_{\ell_i} + P_{\ell_j})$, we have

$$s'(P_n, L) = s'(C_n, L) + \sum_{i,j} s'(P_{n-(\ell_i+\ell_j+2)}, L_{i,j}) - \sum_i (\ell_i - 1)s'(P_{n-(\ell_i+2)}, L_i)$$
Independent of the Named Vertex

Lem. Let \(L \) be the linear forest \(\sum_{i=1}^{p} m_i P_{\ell_i} \) with \(k \) vertices, and let \(P_n = \langle w_1, \ldots, w_n \rangle \). For all \(z = w_h \) with \(k \leq h \leq n + 1 - k \), the value \(s'(P_n, L) \) is the same.

Pf. Induction on \(k \). For \(k = 1 \), any \(w_h \) is in one \(P_1 \).

Compare \(s'(P_n, L) \) to \(s'(C_n, L) \) with edge \(w_n w_1 \) added.

By symmetry, \(s'(C_n, L) \) is independent of \(h \).

\(s'(C_n, L) \) omits copies of \(L \) in \(P_n \) using \(w_1 \) and \(w_n \).

\(s'(C_n, L) \) counts unwanted subgraphs using \(w_n w_1 \).

With \(L_i = L - V(P_{\ell_i}) \) and \(L_{i,j} = L - V(P_{\ell_i} + P_{\ell_j}) \), we have

\[
s'(P_n, L) = s'(C_n, L) + \sum_{i,j} s'(P_{n-(\ell_i+\ell_j+2)}, L_{i,j}) - \sum_i (\ell_i - 1) s'(P_{n-(\ell_i+2)}, L_i)
\]

\(w_h \) is far enough from the ends to use induction hyp. □
Same \(k \)-deck

(3) \(\mathcal{D}_k(P_{q-1} + P_r) = \mathcal{D}_k(P_q + P_{r-1}) \) if \(q, r \geq k \).

With \(q, r \geq k \), either index \(h \) for \(z = w_h \) satisfies \(k + 1 \leq h \leq (q + r + 3) - (k + 1) \), so \(s'(P_{q+r+2}, L) \) is the same for both when \(|V(L)| = k \).
(3) $\mathcal{D}_k(P_{q-1} + P_r) = \mathcal{D}_k(P_q + P_{r-1})$ if $q, r \geq k$.

With $q, r \geq k$, either index h for $z = w_h$ satisfies $k + 1 \leq h \leq (q + r + 3) - (k + 1)$, so $s'(P_{q+r+2}, L)$ is the same for both when $|V(L)| = k$.

(2) $\mathcal{D}_k(P_{q+r}) = \mathcal{D}_k(C_q + P_r)$ if $q \geq k + 1$ and $r \geq k - 1$.
Same k-deck

(3) $\mathcal{D}_k(P_{q-1} + P_r) = \mathcal{D}_k(P_q + P_{r-1})$ if $q, r \geq k$.

With $q, r \geq k$, either index h for $z = w_h$ satisfies $k + 1 \leq h \leq (q + r + 3) - (k + 1)$, so $s'(P_{q+r+2}, L)$ is the same for both when $|V(L)| = k$.

(2) $\mathcal{D}_k(P_{q+r}) = \mathcal{D}_k(C_q + P_r)$ if $q \geq k + 1$ and $r \geq k - 1$.

Let $P_{q+r} = \langle w_1, \ldots, w_{q+r} \rangle$ and $C_q = [w_1, \ldots, w_q]$.

Same k-deck

(3) $D_k(P_{q-1} + P_r) = D_k(P_q + P_{r-1})$ if $q, r \geq k$.

$$G'$$

With $q, r \geq k$, either index h for $z = w_h$ satisfies $k + 1 \leq h \leq (q + r + 3) - (k + 1)$, so $s'(P_{q+r+2}, L)$ is the same for both when $|V(L)| = k$.

(2) $D_k(P_{q+r}) = D_k(C_q + P_r)$ if $q \geq k + 1$ and $r \geq k - 1$.

Let $P_{q+r} = \langle w_1, \ldots, w_{q+r} \rangle$ and $C_q = [w_1, \ldots, w_q]$.

If w_q not in copy of L, both cases give $s(P_{q-1} + P_r, L)$.
Same \(k \)-deck

(3) \(\mathcal{D}_k(P_{q-1} + P_r) = \mathcal{D}_k(P_q + P_{r-1}) \) if \(q, r \geq k \).

![Diagram]

With \(q, r \geq k \), either index \(h \) for \(z = w_h \) satisfies \(k + 1 \leq h \leq (q + r + 3) - (k + 1) \), so \(s'(P_{q+r+2}, L) \) is the same for both when \(|V(L)| = k \).

(2) \(\mathcal{D}_k(P_{q+r}) = \mathcal{D}_k(C_q + P_r) \) if \(q \geq k + 1 \) and \(r \geq k - 1 \).

Let \(P_{q+r} = \langle w_1, \ldots, w_{q+r} \rangle \) and \(C_q = [w_1, \ldots, w_q] \).

If \(w_q \) not in copy of \(L \), both cases give \(s(P_{q-1} + P_r, L) \).

If used, sum over position of \(w_q \) in which \(P_{\ell_i} \) in \(L \).
Same k-deck

(3) $\mathcal{D}_k(P_{q-1} + P_r) = \mathcal{D}_k(P_q + P_{r-1})$ if $q, r \geq k$.

\[q - 1 \quad z \quad r \]

\[q \quad z \quad r - 1 \]

G'

With $q, r \geq k$, either index h for $z = w_h$ satisfies $k + 1 \leq h \leq (q + r + 3) - (k + 1)$, so $s'(P_{q+r+2}, L)$ is the same for both when $|V(L)| = k$.

(2) $\mathcal{D}_k(P_{q+r}) = \mathcal{D}_k(C_q + P_r)$ if $q \geq k + 1$ and $r \geq k - 1$.

Let $P_{q+r} = \langle w_1, \ldots, w_{q+r} \rangle$ and $C_q = [w_1, \ldots, w_q]$.

If w_q not in copy of L, both cases give $s(P_{q-1} + P_r, L)$.

If used, sum over position of w_q in which P_{ℓ_i} in L.

By (3), corresponding terms are equal.
Same k-deck

(3) $\mathcal{D}_k(P_{q-1} + P_r) = \mathcal{D}_k(P_q + P_{r-1})$ if $q, r \geq k$.

\[
\begin{array}{c}
\bullet & \bullet \\
q-1 & z & r \\
G' \\
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
q & z & r-1
\end{array}
\]

With $q, r \geq k$, either index h for $z = w_h$ satisfies $k + 1 \leq h \leq (q + r + 3) - (k + 1)$, so $s'(P_{q+r+2}, L)$ is the same for both when $|V(L)| = k$.

(2) $\mathcal{D}_k(P_{q+r}) = \mathcal{D}_k(C_q + P_r)$ if $q \geq k + 1$ and $r \geq k - 1$.
Let $P_{q+r} = \langle w_1, \ldots, w_{q+r} \rangle$ and $C_q = [w_1, \ldots, w_q]$.
If w_q not in copy of L, both cases give $s(P_{q-1} + P_r, L)$.
If used, sum over position of w_q in which P_{ℓ_i} in L.
By (3), corresponding terms are equal.

(1) $\mathcal{D}_k(C_{q+r}) = \mathcal{D}_k(C_q + C_r)$ if $q, r \geq k + 1$.
Same k-deck

(3) $D_k(P_{q-1} + P_r) = D_k(P_q + P_{r-1})$ if $q, r \geq k$.

With $q, r \geq k$, either index h for $z = w_h$ satisfies $k + 1 \leq h \leq (q + r + 3) - (k + 1)$, so $s'(P_{q+r+2}, L)$ is the same for both when $|V(L)| = k$.

(2) $D_k(P_{q+r}) = D_k(C_q + P_r)$ if $q \geq k + 1$ and $r \geq k - 1$. Let $P_{q+r} = \langle w_1, \ldots, w_{q+r} \rangle$ and $C_q = [w_1, \ldots, w_q]$. If w_q not in copy of L, both cases give $s(P_{q-1} + P_r, L)$.

By (3), corresponding terms are equal.

(1) $D_k(C_{q+r}) = D_k(C_q + C_r)$ if $q, r \geq k + 1$. Same idea, reducing to equalities given by (2).
Contents of Appendices

Appendix 1: Graphs with maximum degree 2. Proving k-deck reconstructibility, where k is the lower bound from the result just discussed about common k-decks for such graphs.

Appendix 2: 3-regular graphs are 2-reconstructible.

Appendix 3: Recognize connectedness for $n \geq 2\ell^{(\ell+1)^2}$. Proving $b_j \leq \binom{t}{j} \binom{\ell+j-1}{j}$ for an n-vertex tree T with t leaves, where b_j is the number of subtrees of T having at most ℓ vertices and exactly j outside neighbors.
Open Questions

Kelly–Manvel Conj. Find M_ℓ such that every graph G with $|V(G)| \geq M_\ell$ is ℓ-reconstructible.
Open Questions

Kelly–Manvel Conj. Find M_ℓ such that every graph G with $|V(G)| \geq M_\ell$ is ℓ-reconstructible.

Ques. What is the least N_ℓ so that for $n \geq N_\ell$, n-vertex connected graphs are ℓ-recognizable? $2\ell + 1$?
Open Questions

Kelly–Manvel Conj. Find M_ℓ such that every graph G with $|V(G)| \geq M_\ell$ is ℓ-reconstructible.

Ques. What is the least N_ℓ so that for $n \geq N_\ell$, n-vertex connected graphs are ℓ-recognizable? $2\ell + 1$?

Conj. All n-vertex trees ℓ-reconstructible for $n \geq 2\ell + 1 \geq 7$.
Open Questions

Kelly–Manvel Conj. Find M_ℓ such that every graph G with $|V(G)| \geq M_\ell$ is ℓ-reconstructible.

Ques. What is the least N_ℓ so that for $n \geq N_\ell$, n-vertex connected graphs are ℓ-recognizable? $2\ell + 1$?

Conj. All n-vertex trees ℓ-reconstr’ble for $n \geq 2\ell + 1 \geq 7$.

Ques. Find least k so that $D_k(G)$ determines G, $\forall G$ with $\Delta(G) \leq 3$. What k suffices for all n-vertex such G?
Open Questions

Kelly–Manvel Conj. Find M_ℓ such that every graph G with $|V(G)| \geq M_\ell$ is ℓ-reconstructible.

Ques. What is the least N_ℓ so that for $n \geq N_\ell$, n-vertex connected graphs are ℓ-recognizable? $2\ell + 1$?

Conj. All n-vertex trees ℓ-reconstr’ble for $n \geq 2\ell + 1 \geq 7$.

Ques. Find least k so that $D_k(G)$ determines G, $\forall G$ with $\Delta(G) \leq 3$. What k suffices for all n-vertex such G? Note: for r-regular, not 2-connected $\Rightarrow (r+1)$-reconstr’ble.
Open Questions

Kelly–Manvel Conj. Find M_ℓ such that every graph G with $|V(G)| \geq M_\ell$ is ℓ-reconstructible.

Ques. What is the least N_ℓ so that for $n \geq N_\ell$, n-vertex connected graphs are ℓ-recognizable? $2\ell + 1$?

Conj. All n-vertex trees ℓ-reconstr’ble for $n \geq 2\ell + 1 \geq 7$.

Ques. Find least k so that $D_k(G)$ determines G, $\forall G$ with $\Delta(G) \leq 3$. What k suffices for all n-vertex such G? Note: for r-regular, not 2-connected $\Rightarrow (r+1)$-reconstr’ble.

Ques. What is the max n such that every n-vertex complete multipartite G is determined by its k-deck? (Nýdl [1985]: it is between $k \ln(k/2)$ and $(k + 1)2^{k-1}$.)
Open Questions

Kelly–Manvel Conj. Find M_ℓ such that every graph G with $|V(G)| \geq M_\ell$ is ℓ-reconstructible.

Ques. What is the least N_ℓ so that for $n \geq N_\ell$, n-vertex connected graphs are ℓ-recognizable? $2\ell + 1$?

Conj. All n-vertex trees ℓ-reconstr’ble for $n \geq 2\ell + 1 \geq 7$.

Ques. Find least k so that $\mathcal{D}_k(G)$ determines G, $\forall G$ with $\Delta(G) \leq 3$. What k suffices for all n-vertex such G? Note: for r-regular, not 2-connected $\Rightarrow (r+1)$-reconstr’ble.

Ques. What is the max n such that every n-vertex complete multipartite G is determined by its k-deck? (Nýdl [1985]: it is between $k \ln(k/2)$ and $(k + 1)2^{k-1}$.)

Ques. Complete r-partite graphs are determined by \mathcal{D}_{r+1}. Are there complete r-partite and $(r + 1)$-partite graphs with the same r-deck? ($\mathcal{D}_3(K_7,4,3) = \mathcal{D}_3(K_6,6,1,1)$.)
Open Questions

Kelly–Manvel Conj. Find M_ℓ such that every graph G with $|V(G)| \geq M_\ell$ is ℓ-reconstructible.

Ques. What is the least N_ℓ so that for $n \geq N_\ell$, n-vertex connected graphs are ℓ-recognizable? $2\ell + 1$?

Conj. All n-vertex trees ℓ-reconstr’ble for $n \geq 2\ell + 1 \geq 7$.

Ques. Find least k so that $D_k(G)$ determines G, $\forall G$ with $\Delta(G) \leq 3$. What k suffices for all n-vertex such G? Note: for r-regular, not 2-connected $\Rightarrow (r+1)$-reconstr’ble.

Ques. What is the max n such that every n-vertex complete multipartite G is determined by its k-deck? (Nýdl [1985]: it is between $k \ln(k/2)$ and $(k + 1)2^{k-1}$.)

Ques. Complete r-partite graphs are determined by D_{r+1}. Are there complete r-partite and $(r + 1)$-partite graphs with the same r-deck? ($D_3(K_7,4,3) = D_3(K_6,6,1,1)$.)

Ques. For n-vertex G, what k suffices for $D_k(G)$ to fix connectivity, matching number, $\chi(G)$, planarity, etc.?
Appendix 1: Reconstructibility when $\Delta(G) = 2$

Lem. If all components with more than k vertices are determined by $\mathcal{D}_k(G)$, then G is determined by $\mathcal{D}_k(G)$.
Appendix 1: Reconstructibility when $\Delta(G) = 2$

Lem. If all components with more than k vertices are determined by $\mathcal{D}_k(G)$, then G is determined by $\mathcal{D}_k(G)$.

Pf. Since $\mathcal{D}_k(G)$ determines $\mathcal{D}_{k-1}(G)$, it suffices to find the k-vertex components F and iterate.
Appendix 1: Reconstructibility when $\Delta(G) = 2$

Lem. If all components with more than k vertices are determined by $\mathcal{D}_k(G)$, then G is determined by $\mathcal{D}_k(G)$.

Pf. Since $\mathcal{D}_k(G)$ determines $\mathcal{D}_{k-1}(G)$, it suffices to find the k-vertex components F and iterate.

$$\#F\text{-components} = [\#F\text{-cards in } \mathcal{D}_k(G)] - \sum_{i=1}^{r} s(H_i, F),$$

where H_1, \ldots, H_r are the larger components.
Appendix 1: Reconstructibility when $\Delta(G) = 2$

Lem. If all components with more than k vertices are determined by $D_k(G)$, then G is determined by $D_k(G)$.

Pf. Since $D_k(G)$ determines $D_{k-1}(G)$, it suffices to find the k-vertex components F and iterate.

For F-components we have:

$$\#F\text{-components} = [\#F\text{-cards in } D_k(G)] - \sum_{i=1}^{r} s(H_i, F),$$

where H_1, \ldots, H_r are the larger components.

Let q be $\#$path components with at least $k-1$ vertices.
Appendix 1: Reconstructibility when $\Delta(G) = 2$

Lem. If all components with more than k vertices are determined by $\mathcal{D}_k(G)$, then G is determined by $\mathcal{D}_k(G)$.

Pf. Since $\mathcal{D}_k(G)$ determines $\mathcal{D}_{k-1}(G)$, it suffices to find the k-vertex components F and iterate.

\[
\#F\text{-components} = [\#F\text{-cards in } \mathcal{D}_k(G)] - \sum_{i=1}^{r} s(H_i, F),
\]
where H_1, \ldots, H_r are the larger components. \hfill \blacksquare

Let q be $\#$ path components with at least $k - 1$ vertices.

Lem. If $\Delta(G) = 2$, then $q = s(G, P_{k-1}) - s(G, P_k) - ks(G, C_k)$.

Appendix 1: Reconstructibility when $\Delta(G) = 2$

Lem. If all components with more than k vertices are determined by $D_k(G)$, then G is determined by $D_k(G)$.

Pf. Since $D_k(G)$ determines $D_{k-1}(G)$, it suffices to find the k-vertex components F and iterate.

$$\#F\text{-components} = \left\lceil \#F\text{-cards in } D_k(G) \right\rceil - \sum_{i=1}^{r} s(H_i, F),$$

where H_1, \ldots, H_r are the larger components.

Let q be the number of path components with at least $k - 1$ vertices.

Lem. If $\Delta(G) = 2$, then $q = s(G, P_{k-1}) - s(G, P_k) - ks(G, C_k)$.

Pf. Each such path contributes 1 to $s(G, P_{k-1}) - s(G, P_k)$.

Each k-cycle contributes 0 to $s(G, P_{k-1}) - ks(G, C_k)$.

Each longer cycle contributes 0 to $s(G, P_{k-1}) - s(G, P_k)$.
Appendix 1: Reconstructibility when $\Delta(G) = 2$

Lem. If all components with more than k vertices are determined by $D_k(G)$, then G is determined by $D_k(G)$.

Pf. Since $D_k(G)$ determines $D_{k-1}(G)$, it suffices to find the k-vertex components F and iterate.

#F-components $= \left[\#F\text{-cards in } D_k(G) \right] - \sum_{i=1}^{r} s(H_i, F)$, where H_1, \ldots, H_r are the larger components.

Let q be $\#$ path components with at least $k-1$ vertices.

Lem. If $\Delta(G) = 2$, then $q = s(G, P_{k-1}) - s(G, P_k) - ks(G, C_k)$.

Pf. Each such path contributes 1 to $s(G, P_{k-1}) - s(G, P_k)$. Each k-cycle contributes 0 to $s(G, P_{k-1}) - ks(G, C_k)$. Each longer cycle contributes 0 to $s(G, P_{k-1}) - s(G, P_k)$.

Lem. If $\Delta(G) = 2$, then $D_k(G)$ determines q.

Appendix 1: Reconstructibility when $\Delta(G) = 2$

Lem. If all components with more than k vertices are determined by $\mathcal{D}_k(G)$, then G is determined by $\mathcal{D}_k(G)$.

Pf. Since $\mathcal{D}_k(G)$ determines $\mathcal{D}_{k-1}(G)$, it suffices to find the k-vertex components F and iterate.

$$\# F\text{-components} = \lceil \# F\text{-cards in } \mathcal{D}_k(G) \rceil - \sum_{i=1}^{r} s(H_i, F),$$
where H_1, \ldots, H_r are the larger components.

Let q be the number of path components with at least $k-1$ vertices.

Lem. If $\Delta(G)=2$, then $q = s(G, P_{k-1}) - s(G, P_k) - ks(G, C_k)$.

Pf. Each such path contributes 1 to $s(G, P_{k-1}) - s(G, P_k)$. Each k-cycle contributes 0 to $s(G, P_{k-1}) - ks(G, C_k)$. Each longer cycle contributes 0 to $s(G, P_{k-1}) - s(G, P_k)$.

Lem. If $\Delta(G) = 2$, then $\mathcal{D}_k(G)$ determines q.

Pf. $s(G, P_k)$ and $s(G, C_k)$ just count cards. Each copy of P_{k-1} is in $n-k+1$ cards, so $s(G, P_{k-1}) = \frac{\sum_{Q \in \mathcal{D}_k(G)} s(Q, P_{k-1})}{n-k+1}$.
How to Use the Lemmas

Thm. When the two largest components have m and m' vertices, $k \geq \max\{\left\lfloor m/2 \right\rfloor + \epsilon, m' + \epsilon'\} \Rightarrow D_k(G)$ determines G, where $\epsilon \in \{0, 1\}$ and $\epsilon' \in \{0, 1, 2\}$. ($\epsilon = 1$ when the largest component is P_m.)
How to Use the Lemmas

Thm. When the two largest components have m and m' vertices, $k \geq \max \{\lfloor m/2 \rfloor + \epsilon, m' + \epsilon' \} \Rightarrow D_k(G)$ determines G, where $\epsilon \in \{0, 1\}$ and $\epsilon' \in \{0, 1, 2\}$. ($\epsilon = 1$ when the largest component is P_m.)

Manvel [1974] showed that $D_k(G)$ determines the degree list when $k \geq \Delta(G) + 2$. ($k = 3$ needs special ideas.)
How to Use the Lemmas

Thm. When the two largest components have \(m \) and \(m' \) vertices, \(k \geq \max\{\lfloor m/2 \rfloor + \epsilon, m' + \epsilon'\} \Rightarrow D_k(G) \) determines \(G \), where \(\epsilon \in \{0, 1\} \) and \(\epsilon' \in \{0, 1, 2\} \). (\(\epsilon = 1 \) when the largest component is \(P_m \).)

Manvel [1974] showed that \(D_k(G) \) determines the degree list when \(k \geq \Delta(G) + 2 \). (\(k = 3 \) needs special ideas.)

Let \(q \) be \#path components with at least \(k - 1 \) vertices.
How to Use the Lemmas

Thm. When the two largest components have m and m' vertices, $k \geq \max\{\lfloor m/2 \rfloor + \varepsilon, m' + \varepsilon'\} \Rightarrow \mathcal{D}_k(G)$ determines G, where $\varepsilon \in \{0, 1\}$ and $\varepsilon' \in \{0, 1, 2\}$. ($\varepsilon = 1$ when the largest component is P_m.)

Manvel [1974] showed that $\mathcal{D}_k(G)$ determines the degree list when $k \geq \Delta(G) + 2$. ($k = 3$ needs special ideas.)

Let q be the number of path components with at least $k - 1$ vertices.

- If $q \geq 2$, then $k < m' + \varepsilon'$, not k-deck reconstructible.
How to Use the Lemmas

Thm. When the two largest components have \(m \) and \(m' \) vertices, \(k \geq \max\{\lceil m/2 \rceil + \varepsilon, m' + \varepsilon'\} \Rightarrow D_k(G) \) determines \(G \), where \(\varepsilon \in \{0, 1\} \) and \(\varepsilon' \in \{0, 1, 2\} \). (\(\varepsilon = 1 \) when the largest component is \(P_m \).)

Manvel [1974] showed that \(D_k(G) \) determines the degree list when \(k \geq \Delta(G) + 2 \). (\(k = 3 \) needs special ideas.)

Let \(q \) be \#path components with at least \(k - 1 \) vertices.

- If \(q \geq 2 \), then \(k < m' + \varepsilon' \), not \(k \)-deck reconstructible.
- If \(q \in \{0, 1\} \) and \(s(G, P_k) > \{2k+1, k\} \), then \(k < \left\lceil \frac{m}{2} \right\rceil + \varepsilon \).
How to Use the Lemmas

Thm. When the two largest components have m and m' vertices, $k \geq \max\{\lfloor m/2 \rfloor + \epsilon, m' + \epsilon'\} \Rightarrow D_k(G)$ determines G, where $\epsilon \in \{0, 1\}$ and $\epsilon' \in \{0, 1, 2\}$. ($\epsilon = 1$ when the largest component is P_m.)

Manvel [1974] showed that $D_k(G)$ determines the degree list when $k \geq \Delta(G) + 2$. ($k = 3$ needs special ideas.)

Let q be the number of path components with at least $k - 1$ vertices.

- If $q \geq 2$, then $k < m' + \epsilon'$, not k-deck reconstructible.
- If $q \in \{0, 1\}$ and $s(G, P_k) > \{2k+1, k\}$, then $k < \left\lfloor \frac{m}{2} \right\rfloor + \epsilon$.
- If $q = 0$ and $0 < s(G, P_k) \leq 2k + 1$, then G has one component with more than k vertices, $C_{s(G, P_k)}$.
How to Use the Lemmas

Thm. When the two largest components have \(m \) and \(m' \) vertices, \(k \geq \max\{\lfloor m/2 \rfloor + \varepsilon, m' + \varepsilon'\} \Rightarrow \mathcal{D}_k(G) \) determines \(G \), where \(\varepsilon \in \{0, 1\} \) and \(\varepsilon' \in \{0, 1, 2\} \). (\(\varepsilon = 1 \) when the largest component is \(P_m \).)

Manvel [1974] showed that \(\mathcal{D}_k(G) \) determines the degree list when \(k \geq \Delta(G) + 2 \). (\(k = 3 \) needs special ideas.)

Let \(q \) be \#path components with at least \(k - 1 \) vertices.

- If \(q \geq 2 \), then \(k < m' + \varepsilon' \), not \(k \)-deck reconstructible.
- If \(q \in \{0, 1\} \) and \(s(G, P_k) > \{2k+1, k\} \), then \(k < \left\lfloor \frac{m}{2} \right\rfloor + \varepsilon \).
- If \(q = 0 \) and \(0 < s(G, P_k) \leq 2k + 1 \), then \(G \) has one component with more than \(k \) vertices, \(C_{s(G, P_k)} \).
- If \(q = 1 \) and \(0 \leq s(G, P_k) \leq k \), then \(G \) has no cycle with more than \(k \) vertices, and its long path is \(P_{s(G, P_k)+k-1} \).
How to Use the Lemmas

Thm. When the two largest components have \(m \) and \(m' \) vertices, \(k \geq \max \{ \lfloor m/2 \rfloor + \varepsilon, m' + \varepsilon' \} \Rightarrow \mathcal{D}_k(G) \) determines \(G \), where \(\varepsilon \in \{0, 1\} \) and \(\varepsilon' \in \{0, 1, 2\} \). (\(\varepsilon = 1 \) when the largest component is \(P_m \)).

Manvel [1974] showed that \(\mathcal{D}_k(G) \) determines the degree list when \(k \geq \Delta(G) + 2 \). (\(k = 3 \) needs special ideas.)

Let \(q \) be \# path components with at least \(k - 1 \) vertices.

- If \(q \geq 2 \), then \(k < m' + \varepsilon' \), not \(k \)-deck reconstructible.
- If \(q \in \{0, 1\} \) and \(s(G, P_k) > \{2k+1, k\} \), then \(k < \left\lfloor \frac{m}{2} \right\rfloor + \varepsilon \).
- If \(q = 0 \) and \(0 < s(G, P_k) \leq 2k + 1 \), then \(G \) has one component with more than \(k \) vertices, \(C_{s(G, P_k)} \).
- If \(q = 1 \) and \(0 \leq s(G, P_k) \leq k \), then \(G \) has no cycle with more than \(k \) vertices, and its long path is \(P_{s(G, P_k) + k - 1} \).

This completes the proof except for small \(k \).
Appendix 2: 3-Regular G are 2-Reconstr’ble

Let G be cubic, $\mathcal{D}_{n-2}(H) = \mathcal{D}_{n-2}(G)$, and $H \not\cong G$.
Appendix 2: 3-Regular G are 2-Reconstr’ble

Let G be cubic, $D_{n-2}(H) = D_{n-2}(G)$, and $H \not\cong G$.

When $n \geq 6$, we know H is cubic. Degree list yields:
Appendix 2: 3-Regular G are 2-Reconstr’ble

Let G be cubic, $\mathcal{D}_{n-2}(H) = \mathcal{D}_{n-2}(G)$, and $H \not\cong G$.

When $n \geq 6$, we know H is cubic. Degree list yields:

Lem. If $uv \in E(G)$, then the missing vertices are adj in all reconstructions from $G - u - v$.
Appendix 2: 3-Regular G are 2-Reconstr’ble

Let G be cubic, $\mathcal{D}_{n-2}(H) = \mathcal{D}_{n-2}(G)$, and $H \not\cong G$.

When $n \geq 6$, we know H is cubic. Degree list yields:

Lem. If $uv \in E(G)$, then the missing vertices are adj in all reconstructions from $G - u - v$.

If $d_G(u, v) = 2$, then the missing vertices have distance 2 in all reconstructions from $G - u - v$.
Appendix 2: 3-Regular G are 2-Reconstr’ble

Let G be cubic, $\mathcal{D}_{n-2}(H) = \mathcal{D}_{n-2}(G)$, and $H \not\sim G$.

When $n \geq 6$, we know H is cubic. Degree list yields:

Lem. If $uv \in E(G)$, then the missing vertices are adj in all reconstructions from $G - u - v$.

If $d_G(u, v) = 2$, then the missing vertices have distance 2 in all reconstructions from $G - u - v$.

Lem. Every reconstruction has girth at least 5.
Appendix 2: 3-Regular G are 2-Reconstr’ble

Let G be cubic, $D_{n-2}(H) = D_{n-2}(G)$, and $H \not\cong G$.

When $n \geq 6$, we know H is cubic. Degree list yields:

Lem. If $uv \in E(G)$, then the missing vertices are adj in all reconstructions from $G - u - v$.

If $d_G(u, v) = 2$, then the missing vertices have distance 2 in all reconstructions from $G - u - v$.

Lem. Every reconstruction has girth at least 5.

Pf. Girth 3: Delete two vertices on a triangle. Cubic \Rightarrow every reconstruction replaces the triangle, with the same neighbors, forming G.
Appendix 2: 3-Regular G are 2-Reconstr’ble

Let G be cubic, $\mathcal{D}_{n-2}(H) = \mathcal{D}_{n-2}(G)$, and $H \not\cong G$.

When $n \geq 6$, we know H is cubic. Degree list yields:

Lem. If $uv \in E(G)$, then the missing vertices are adj in all reconstructions from $G - u - v$.

If $d_G(u, v) = 2$, then the missing vertices have distance 2 in all reconstructions from $G - u - v$.

Lem. Every reconstruction has girth at least 5.

Pf. Girth 3: Delete two vertices on a triangle. Cubic \Rightarrow every reconstruction replaces the triangle, with the same neighbors, forming G.

Girth 4: Delete opposite vertices on a 4-cycle. Again cubic \Rightarrow every reconstruction is G.

\blacksquare
Let G be cubic, $D_{n-2}(H) = D_{n-2}(G)$, and $H \not\cong G$.

When $n \geq 6$, we know H is cubic. Degree list yields:

Lem. If $uv \in E(G)$, then the missing vertices are adj in all reconstructions from $G - u - v$.

If $d_G(u, v) = 2$, then the missing vertices have distance 2 in all reconstructions from $G - u - v$.

Lem. Every reconstruction has girth at least 5.

Pf. Girth 3: Delete two vertices on a triangle.
Cubic \Rightarrow every reconstruction replaces the triangle, with the same neighbors, forming G.

Girth 4: Delete opposite vertices on a 4-cycle.
Again cubic \Rightarrow every reconstruction is G. $lacksquare$

Lem. From $G - x - y$, we know $d_G(x, y)$ is 1 or 2 or > 2.

Appendix 2: 3-Regular G are 2-Reconstr’ble
Cubic Graphs: More Tools

Lem. General Kelly Lemma If $|V(F)| \leq n - \ell$, then # copies of F in G is ℓ-reconstructible.

Pf. Each copy appears in exactly $\binom{n-|V(F)|}{\ell}$ cards.
Cubic Graphs: More Tools

Lem. General Kelly Lemma If $|V(F)| \leq n - \ell$, then the number of copies of F in G is ℓ-reconstructible.

Pf. Each copy appears in exactly $\binom{n-|V(F)|}{\ell}$ cards. □

Cor. Every reconstruction has the same girth g, g-cycles, $(g + 1)$-cycles.
Cubic Graphs: More Tools

Lem. General Kelly Lemma If $|V(F)| \leq n - \ell$, then the number of copies of F in G is ℓ-reconstructible.

Pf. Each copy appears in exactly $\binom{n - |V(F)|}{\ell}$ cards.

Cor. Every reconstruction has the same girth g, $#_g$-cycles, $(g + 1)$-cycles.

Lem. **Key Fact:** If $d_G(x, y) \leq 2$ and x, y lie on a shortest cycle C in G, then the only possible reconstructions are G and one other, H.

![Graph Diagram]
Cubic Graphs: More Tools

Lem. General Kelly Lemma If $|V(F)| \leq n - \ell$, then the number of copies of F in G is ℓ-reconstructible.

Pf. Each copy appears in exactly $\binom{n - |V(F)|}{\ell}$ cards.

Cor. Every reconstruction has the same girth g, # of g-cycles, # of $(g + 1)$-cycles.

Lem. Key Fact: If $d_G(x, y) \leq 2$ and x, y lie on a shortest cycle C in G, then the only possible reconstructions are G and one other, H.

Pf. Other ways are cubic but have shorter cycles.
Excluding Short Cycle Structures

10 Lemmas: (Note each reconstruction has girth g.)

Excluding Short Cycle Structures

10 Lemmas: (Note each reconstruction has girth g.)

Lem. g-cycles cannot share two consecutive edges. A g-cycle & $(g+1)$-cycle can’t share three consecutive edges.
Excluding Short Cycle Structures

10 Lemmas: (Note each reconstruction has girth g.)

Lem. g-cycles cannot share two consecutive edges. A g-cycle & $(g+1)$-cycle can’t share three consecutive edges.

Lem. If edge xy is in two g-cycles, then x and y cannot each lie in a g-cycle not containing the other of $\{x, y\}$.
Excluding Short Cycle Structures

10 Lemmas: (Note each reconstruction has girth g.)

Lem. g-cycles cannot share two consecutive edges. A g-cycle & $(g+1)$-cycle can’t share three consecutive edges.

Lem. If edge xy is in two g-cycles, then x and y cannot each lie in a g-cycle not containing the other of $\{x, y\}$.

Lem. No vertex lies in three g-cycles.
Excluding Short Cycle Structures

10 Lemmas: (Note each reconstruction has girth g.)

Lem. g-cycles cannot share two consecutive edges. A g-cycle & $(g+1)$-cycle can’t share three consec edges.

Lem. If edge xy is in two g-cycles, then x and y cannot each lie in a g-cycle not containing the other of $\{x, y\}$.

Lem. No vertex lies in three g-cycles.

Lem. No vertex lies in two g-cycles.
10 Lemmas: (Note each reconstruction has girth g.)

Lem. g-cycles cannot share two consecutive edges. A g-cycle \& $(g+1)$-cycle can’t share three consec edges.

Lem. If edge xy is in two g-cycles, then x and y cannot each lie in a g-cycle not containing the other of \{x, y\}.

Lem. No vertex lies in three g-cycles.

Lem. No vertex lies in two g-cycles.

Lem. No two cycles of length at most $g + 1$ share two consecutive edges.
The Final Lemmas
The Final Lemmas

Lem. No two adjacent vertices lie in distinct g-cycles.
The Final Lemmas

Lem. No two adjacent vertices lie in distinct g-cycles.

Lem. No vertex is in one g-cycle and two $(g+1)$-cycles.
The Final Lemmas

Lem. No two adjacent vertices lie in distinct g-cycles.

Lem. No vertex is in one g-cycle and two $(g+1)$-cycles.

Lem. If an edge of a g-cycle C lies in a $(g+1)$-cycle, then the edge two steps away on C does also.
The Final Lemmas

Lem. No two adjacent vertices lie in distinct g-cycles.

Lem. No vertex is in one g-cycle and two $(g+1)$-cycles.

Lem. If an edge of a g-cycle C lies in a $(g+1)$-cycle, then the edge two steps away on C does also.

Lem. No edge lies in a g-cycle and a $(g+1)$-cycle.
The Final Lemmas

Lem. No two adjacent vertices lie in distinct g-cycles.

Lem. No vertex is in one g-cycle and two $(g+1)$-cycles.

Lem. If an edge of a g-cycle C lies in a $(g + 1)$-cycle, then the edge two steps away on C does also.

Lem. No edge lies in a g-cycle and a $(g + 1)$-cycle.

Lem. Every g-cycle shares an edge with a $(g+1)$-cycle.
The Final Lemmas

Lem. No two adjacent vertices lie in distinct g-cycles.

Lem. No vertex is in one g-cycle and two $(g+1)$-cycles.

Lem. If an edge of a g-cycle C lies in a $(g + 1)$-cycle, then the edge two steps away on C does also.

Lem. No edge lies in a g-cycle and a $(g + 1)$-cycle.

Lem. Every g-cycle shares an edge with a $(g+1)$-cycle.
Appendix 3 - Counting Small Subtrees

Thm. If T is an n-vertex tree with t leaves, and $j \leq \ell$, and b_j is #subtrees F with $|V(F)| \leq \ell$ and exactly j outside nbrs, then $b_j \leq \binom{t}{j} \binom{\ell+j-1}{j}$
Appendix 3 - Counting Small Subtrees

Thm. If T is an n-vertex tree with t leaves, and $j \leq \ell$, and b_j is the number of subtrees F with $|V(F)| \leq \ell$ and exactly j outside nbrs, then $b_j \leq \binom{t}{j} \left(\frac{\ell + j - 1}{j}\right)$ (except $b_2 \leq n\ell/2$).

$t = 8$

$l = 11$

$j = 4$
Appendix 3 - Counting Small Subtrees

Thm. If T is an n-vertex tree with t leaves, and $j \leq \ell$, and b_j is the number of subtrees F with $|V(F)| \leq \ell$ and exactly j outside neighbors, then $b_j \leq {t \choose j} {\ell + j - 1 \choose j}$ (except $b_2 \leq nt\ell/2$).

$t = 8$
$\ell = 11$
$j = 4$

Pf. $j \geq 3$: Let S be the set of outside vertices with neighbors in F.
Appendix 3 - Counting Small Subtrees

Thm. If T is an n-vertex tree with t leaves, and $j \leq \ell$, and b_j is the number of subtrees F with $|V(F)| \leq \ell$ and exactly j outside nbrs, then $b_j \leq \binom{t}{j} \binom{\ell+j-1}{j}$ (except $b_2 \leq ntl/2$).

Pf. $j \geq 3$: Let S be the set of outside vertices with nbrs in F. $F =$ component of $T - S$ having vertices between those of S.

\[t = 8 \quad \ell = 11 \quad j = 4 \]
Appendix 3 - Counting Small Subtrees

Thm. If T is an n-vertex tree with t leaves, and $j \leq l$, and b_j is the number of subtrees F with $|V(F)| \leq l$ and exactly j outside neighbors, then $b_j \leq \binom{t}{j} \binom{l+j-1}{j}$ (except $b_2 \leq ntl/2$).

$t = 8$
$l = 11$
$j = 4$

Pf. $j \geq 3$: Let S be the set of outside vertices with neighbors in F. $F =$ component of $T - S$ having vertices between those of S. Paths from F through S reach leaves S' of T.
Appendix 3 - Counting Small Subtrees

Thm. If T is an n-vertex tree with t leaves, and $j \leq \ell$, and b_j is the number of subtrees F with $|V(F)| \leq \ell$ and exactly j outside nbrs, then $b_j \leq \binom{t}{j} \left(\frac{\ell+j-1}{j} \right)$ (except $b_2 \leq ntl/2$).

$t = 8$

$l = 11$

$j = 4$

Pf. $j \geq 3$: Let S be the set of outside vertices with nbrs in F. $F = \text{component of } T - S$ having vertices between those of S. Paths from F through S reach leaves S' of T. Bound the number of subgraphs F generating fixed S' of size j.
Appendix 3 - Counting Small Subtrees

Thm. If T is an n-vertex tree with t leaves, and $j \leq \ell$, and b_j is #subtrees F with $|V(F)| \leq \ell$ and exactly j outside nbrs, then $b_j \leq \binom{t}{j} \binom{\ell+j-1}{j}$ (except $b_2 \leq ntl/2$).

$t = 8$

$l = 11$

$j = 4$

Pf. $j \geq 3$: Let S be the set of outside vertices with nbrs in F. $F =$ component of $T - S$ having vertices between those of S. Paths from F through S reach leaves S' of T. Given S' (in $\binom{t}{j}$ ways), let T' be the tree generated by S'.
Appendix 3 - Counting Small Subtrees

Thm. If T is an n-vertex tree with t leaves, and $j \leq \ell$, and b_j is the number of subtrees F with $|V(F)| \leq \ell$ and exactly j outside neighbours, then $b_j \leq \binom{t}{j}(\ell+j-1)$ (except $b_2 \leq nt\ell/2$).

$t = 8$
$l = 11$
$j = 4$

Pf. $j \geq 3$: Let S be the set of outside vertices with neighbours in F. $F = \text{component of } T - S \text{ having vertices between those of } S$. Paths from F through S reach leaves S' of T. Given S' (in $\binom{t}{j}$ ways), let T' be the tree generated by S'. The vertex $u \in S$ generating $v \in S'$ is on the path from v to the nearest branch vertex w in T'. Note $w \in V(F)$. Between w and u are fewer than ℓ vertices.
Appendix 3 - Counting Small Subtrees

Thm. If T is an n-vertex tree with t leaves, and $j \leq \ell$, and b_j is the number of subtrees F with $|V(F)| \leq \ell$ and exactly j outside nbrs, then $b_j \leq \binom{t}{j} \binom{\ell+j-1}{j}$ (except $b_2 \leq ntl/2$).

- $t = 8$
- $\ell = 11$
- $j = 4$

Pf. $j \geq 3$: Let S be the set of outside vertices with nbrs in F. F = component of $T - S$ having vertices between those of S. Paths from F through S reach leaves S' of T.

Given S' (in $\binom{t}{j}$ ways), let T' be the tree generated by S'. The vertex $u \in S$ generating $v \in S'$ is on the path from v to the nearest branch vertex w in T'. Note $w \in V(F)$. Between w and u are fewer than ℓ vertices.

The number of ways to place the break vertices $u \in S$ is at most the number of solutions to $x_1 + \cdots + x_j \leq \ell - 1$, which equals $\binom{\ell+j-1}{j}$.
$j = 2$: Since T has t leaves, from each vertex u there are at most t vertices at distance i, for $2 \leq i \leq \ell + 1$.
Smaller cases

$t = 8$
$\ell = 5$
$i = 3$

$j = 2$: Since T has t leaves, from each vertex u there are at most t vertices at distance i, for $2 \leq i \leq \ell + 1$.

Hence each vertex belongs to at most $t\ell$ sets S of size 2 that can cut off desired subtrees; the bound is $nt\ell/2$.

Smaller cases

\[t = 8 \]
\[\ell = 5 \]
\[i = 3 \]

\[j = 2: \] Since \(T \) has \(t \) leaves, from each vertex \(u \) there are at most \(t \) vertices at distance \(i \), for \(2 \leq i \leq \ell + 1 \).

Hence each vertex belongs to at most \(t\ell \) sets \(S \) of size 2 that can cut off desired subtrees; the bound is \(nt\ell/2 \).

\[j = 1: \] From a leaf move toward the centroid at most \(\ell \) steps to place the vertex \(u \) cutting off \(F \);
Smaller cases

\[t = 8 \]
\[\ell = 5 \]
\[i = 3 \]

\(j = 2 \): Since \(T \) has \(t \) leaves, from each vertex \(u \) there are at most \(t \) vertices at distance \(i \), for \(2 \leq i \leq \ell + 1 \).
Hence each vertex belongs to at most \(t\ell \) sets \(S \) of size 2 that can cut off desired subtrees; the bound is \(n\ell t/2 \).

\(j = 1 \): From a leaf move toward the centroid at most \(\ell \) steps to place the vertex \(u \) cutting off \(F \); bound is \(t\ell \).
Smaller cases

\[t = 8 \]
\[\ell = 5 \]
\[i = 3 \]

\(j = 2 \): Since \(T \) has \(t \) leaves, from each vertex \(u \) there are at most \(t \) vertices at distance \(i \), for \(2 \leq i \leq \ell + 1 \).

Hence each vertex belongs to at most \(t\ell \) sets \(S \) of size 2 that can cut off desired subtrees; the bound is \(n\ell/2 \).

\(j = 1 \): From a leaf move toward the centroid at most \(\ell \) steps to place the vertex \(u \) cutting off \(F \); bound is \(t\ell \).

- \(b_j(\binom{n}{\ell-j}) \leq \binom{t}{j}(\binom{\ell+j-1}{j})(\binom{n}{\ell-j}) \leq \frac{\ell}{2} n^{\ell-1} t \) (biggest when \(j = 1 \))
Smaller cases

\[t = 8 \quad \ell = 5 \quad i = 3 \]

\[j = 2: \text{ Since } T \text{ has } t \text{ leaves, from each vertex } u \text{ there are at most } t \text{ vertices at distance } i, \text{ for } 2 \leq i \leq \ell + 1. \]

Hence each vertex belongs to at most \(tl \) sets \(S \) of size 2 that can cut off desired subtrees; the bound is \(ntl/2 \).

\[j = 1: \text{ From a leaf move toward the centroid at most } \ell \text{ steps to place the vertex } u \text{ cutting off } F; \text{ bound is } tl. \]

- \(b_j \left(\frac{n}{\ell-j} \right) \leq \binom{t}{j} \binom{j-1}{j} \binom{n}{\ell-j} \leq \frac{\ell}{2} n^{\ell-1} t \) (biggest when \(j = 1 \))

- For \(\ell = 3 \), these computations imply that connectedness is 3-reconstructible for \(n > 86,000,000 \).
Smaller cases

\[t = 8 \]
\[\ell = 5 \]
\[i = 3 \]

\(j = 2 \): Since \(T \) has \(t \) leaves, from each vertex \(u \) there are at most \(t \) vertices at distance \(i \), for \(2 \leq i \leq \ell + 1 \). Hence each vertex belongs to at most \(t\ell \) sets \(S \) of size 2 that can cut off desired subtrees; the bound is \(n\ell t/2 \).

\(j = 1 \): From a leaf move toward the centroid at most \(\ell \) steps to place the vertex \(u \) cutting off \(F \); bound is \(t\ell \).

- \(b_j(\frac{n}{\ell-j}) \leq \binom{t}{j} (\frac{\ell+j-1}{j}) (\frac{n}{\ell-j}) \leq \frac{\ell}{2} n^{\ell-1} t \) (biggest when \(j = 1 \))
- For \(\ell = 3 \), these computations imply that connectedness is 3-reconstructible for \(n > 86,000,000 \).

For \(\ell = 3 \), Spinoza–West [2019] reduced this to \(n \geq 25 \). KNWZ’21+ improved to \(n \geq 7 \) using different methods.