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o(G)=min{dx)+d(y): xeX,yeY,x < y}.

Always |V(G)| = n. For an X, Y-bigraph, |[X|=|Y|=n/2.

Thm. Sufficient conditions for spanning cycles:
(Ore [1960]) 02(G) = n.
(Moon-Moser [1963]) G is bipartite and o(G)>n/2+1.

Ex. Kqa+Kn2-an/2—a, Where "+" is disjoint union.

Def. A graph G is F-Hamiltonian, where F C E(G), if G
has a spanning cycle containing F.

Thm. Suffic. for F-Hamilt. when F is perfect matching:
(Haggvist [1979]) 02(G) > n+ 1.
(Las Vergnas [1972]) G is bipartite and o(G)>n/2+2.
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Thm. (Pdsa [1963]) If F consists of k edges forming t
disjoint paths in G, and 02(G) > n+k, then G is F-Hamilt.

Faudree-Gould-Jacobson [2009] also guaranteed cycles
of all lengths at least 2t + k (same threshold).

Thm. (Amar-Flandrin-Gancarzewicz-Wojda [2007]) If G is
bipartite and o(G) > 2n/3, then G is F-Hamiltonian for
every matching F (@ny size), and the threshold is sharp.

Thm. (Zamani-West [2010+]) For bipartite G, if F has
k edges and o(G) = n/2+ [k/2], then G is
F-Hamiltonian, and this is sharp when n > 3k.

Exception: The threshold is 1 larger when (1) F has no
components of odd length, or (2) F has nho components
of even length and at most two of odd length.

Unsharp: Las Vergnas: 0(G) > n/2+ 2 when k=n/2.



Sharpness Examples

e [ has t components: t; odd length, t; even length.

0(G) =2 n/2+ [k/2] + € suffices; let T(F) = [k/2] + €.
Examples with o(G) =n/2 + 1(F) — 1.



Sharpness Examples

e [ has t components: t; odd length, t; even length.
0(G) > n/2+ [k/2] + € suffices; let T(F) = [k/2] + €.
Examples with o(G) =n/2 + 1(F) — 1.

Ex. For k=0, use Kq o+ Kn/2-an/2—a; here o(G) =n/2
(same as Moon-Moser example).



Sharpness Examples

e [ has t components: t; odd length, t; even length.

0(G) =2 n/2+ [k/2] + € suffices; let T(F) = [k/2] + €.
Examples with o(G) =n/2 + 1(F) — 1.

Ex. For k=0, use Kq o+ Kn/2-an/2—a; here o(G) =n/2
(same as Moon-Moser example).

Ex. Forke{1,2},add to Kq-1,4-1+Kn/2-a,n/2—a NEW
vertices x and y with xy € F as below; o(G) =n/2 + 1,
but G has no cycle through xy.
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Main Example

Ex. Fork>3and m > |k/2|+1,letn=4m+2[k/2]-2.
Start with Ky m—(k/2)-1 + Km=|k/2)=1,m-

Add k vertices to each partite set, inducing the set F.
Add all other edges, as shown below.

m Xo m-—|k/2] -1
X1 o0 X2

Y1 [ ¥ ) Y5
m-—|k/2] -1 Yo m

Forx e X; and y € Y,
dx)+d(y)=2(m—-|k/2]-1+k)=n/2+[k/2] - 1.

Deleting Xy U Yy from a spanning cycle through F leaves
k paths. Hence X; UY; or X, UY; is covered by < |k/2]
paths. Since the sizes differ by |k/2] + 1, impossible.
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Reduction

For sufficiency, reduce to F with paths of length < 2.

Lem. If o(G) = n/2 + 1(F) suffices when paths in F
have length at most 2, then it always suffices.

Pf. Induction on k — (t1 + 2t;). When it equals 0, all
paths are short. Otherwise, some path has consecutive
vertices x, v/, x’,y. LetG' =(G— {x,y'})u{xy},;
FF=F-{xy’,y'x',x’y}u{xy}, n’=n-2.

Since >0(G)—-2=2n/2+1T(F)-2= ,
induction hyp. = G’ has spanning cycle C’ through F’.

G G’

Replace xy in C” with {xy’, y’x’, x’y} to form
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Plan of Sufficiency Proof

Establish conditions allowing use of a spanning
through F to obtain a spanning cycle through F.

Lem. Eventually, o(G) = n/2 + T(F) suffices (12 pg).

Main Pf by induction on k. Basis k=0 (Moon-Moser).

For k > 0, the induction hypoth. gives a spanning cycle
C through F’, where F = F — {uv}. Done if uv € E(C).

C—
Ll\"\ /' v

Pathlengths at most 2 in F = F contains at most one
edge of C incident to u or v, say uu”.

Path C[u’, v]UuvuuClu, v'] is a spanning path through
Fin G. Lemma applies! [
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Full edges and Parity

Lem. (k=0 [Moon-Moser])
0(G)>=n/2+1 = G has a spanning cycle.

Pf. A maximal counterexample has a spanning path P
with nonadjacent endpoints.

X e——tp—t. 20
Xi Yi

n/2 odd edges; n/2 — 1 even edges.

dx)+d(y)=n/2+1 = some odd edge is
(An edge of P is full when both endpoints of P are nbrs.)

—Switch!

Obs. An turns a spanning path
through F into a spanning cycle though F.
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Few Selected Odd Edges

Lem. If a spanning path P through F has a full selected
even edge in F1, then some spanning path Q through F
has fewer than [k/2] selected odd edges.

P/

X O y
Yi Xi+1

Pf. Compare P and alternative, P’. (Also through F!)

Edge yx;+1 is odd in neither P nor P’; other selected
edges are odd in exactly one.

Choose Q € {P, P’} with fewest selected odd edges:
|Eoda(Q) NF| < [(k—1)/2] < [k/2]. u

Obs. 0(G)=>n/2+[k/2] and |Eyxqa(Q)NF| < [k/2]
= 3 an unselected full odd edge along P
= 3 spanning cycle through F.
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The Remaining Steps

Suffic. Conditions for a spanning path P through F to
give spanning cycle through F (when o(G)>n/2+1(F)).

e Some full odd edge on P is unselected (not in F).

e Some full even edge on Pisin Fy.
(Fewer than | k/2| selected odd edges.)

Each remaining step: 2-3 pages of alternative paths
through F (etc.) to reduce to earlier suffic. conditions.

Selected edges split half odd, half even along P.

Both end edges of P are unselected.

One end edge of P is unselected.

Neither end edge of P is unselected.

Any spanning path through F suffices!
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