Spanning Cycles through Specified Edges in Bipartite Graphs

Douglas B. West

Department of Mathematics University of Illinois at Urbana-Champaign west@math.uiuc.edu http://www.math.uiuc.edu/~west/pubs/publink.html

> Joint work with Reza Zamani

Def. In graph G, let $\sigma_2(G) = \min\{d(x) + d(y) : x \leftrightarrow y\}$. For an X, Y-bigraph G, let $\sigma(G) = \min\{d(x) + d(y) : x \in X, y \in Y, x \leftrightarrow y\}$.

Def. In graph *G*, let $\sigma_2(G) = \min\{d(x) + d(y): x \leftrightarrow y\}$. For an *X*, *Y*-bigraph *G*, let $\sigma(G) = \min\{d(x) + d(y): x \in X, y \in Y, x \leftrightarrow y\}$.

Always |V(G)| = n. For an X, Y-bigraph, |X| = |Y| = n/2.

Def. In graph G, let $\sigma_2(G) = \min\{d(x) + d(y): x \leftrightarrow y\}$. For an X, Y-bigraph G, let $\sigma(G) = \min\{d(x) + d(y): x \in X, y \in Y, x \leftrightarrow y\}$.

Always |V(G)| = n. For an X, Y-bigraph, |X| = |Y| = n/2.

Thm. Sufficient conditions for spanning cycles: (Ore [1960]) $\sigma_2(G) \ge n$. (Moon-Moser [1963]) *G* is bipartite and $\sigma(G) \ge n/2+1$.

Def. In graph G, let $\sigma_2(G) = \min\{d(x) + d(y): x \leftrightarrow y\}$. For an X, Y-bigraph G, let $\sigma(G) = \min\{d(x) + d(y): x \in X, y \in Y, x \leftrightarrow y\}$.

Always |V(G)| = n. For an X, Y-bigraph, |X| = |Y| = n/2.

Thm. Sufficient conditions for spanning cycles: (Ore [1960]) $\sigma_2(G) \ge n$. (Moon-Moser [1963]) *G* is bipartite and $\sigma(G) \ge n/2+1$.

Ex. $K_{a,a} + K_{n/2-a,n/2-a}$, where "+" is disjoint union.

Def. In graph G, let $\sigma_2(G) = \min\{d(x) + d(y): x \leftrightarrow y\}$. For an X, Y-bigraph G, let $\sigma(G) = \min\{d(x) + d(y): x \in X, y \in Y, x \leftrightarrow y\}$.

Always |V(G)| = n. For an X, Y-bigraph, |X| = |Y| = n/2.

Thm. Sufficient conditions for spanning cycles: (Ore [1960]) $\sigma_2(G) \ge n$. (Moon-Moser [1963]) *G* is bipartite and $\sigma(G) \ge n/2+1$.

Ex. $K_{a,a} + K_{n/2-a,n/2-a}$, where "+" is disjoint union.

Def. A graph G is F-Hamiltonian, where $F \subseteq E(G)$, if G has a spanning cycle containing F.

Def. In graph G, let $\sigma_2(G) = \min\{d(x) + d(y): x \leftrightarrow y\}$. For an X, Y-bigraph G, let $\sigma(G) = \min\{d(x) + d(y): x \in X, y \in Y, x \leftrightarrow y\}$.

Always |V(G)| = n. For an X, Y-bigraph, |X| = |Y| = n/2.

Thm. Sufficient conditions for spanning cycles: (Ore [1960]) $\sigma_2(G) \ge n$. (Moon-Moser [1963]) *G* is bipartite and $\sigma(G) \ge n/2+1$.

Ex. $K_{a,a} + K_{n/2-a,n/2-a}$, where "+" is disjoint union.

Def. A graph G is F-Hamiltonian, where $F \subseteq E(G)$, if G has a spanning cycle containing F.

Thm. Suffic. for *F*-Hamilt. when *F* is perfect matching: (Häggvist [1979]) $\sigma_2(G) \ge n+1$. (Las Vergnas [1972]) *G* is bipartite and $\sigma(G) \ge n/2+2$.

Thm. (Pósa [1963]) If *F* consists of *k* edges forming *t* disjoint paths in *G*, and $\sigma_2(G) \ge n+k$, then *G* is *F*-Hamilt.

Thm. (Pósa [1963]) If *F* consists of *k* edges forming *t* disjoint paths in *G*, and $\sigma_2(G) \ge n+k$, then *G* is *F*-Hamilt.

Faudree-Gould-Jacobson [2009] also guaranteed cycles of all lengths at least 2t + k (same threshold).

Thm. (Pósa [1963]) If *F* consists of *k* edges forming *t* disjoint paths in *G*, and $\sigma_2(G) \ge n+k$, then *G* is *F*-Hamilt.

Faudree-Gould-Jacobson [2009] also guaranteed cycles of all lengths at least 2t + k (same threshold).

Thm. (Amar-Flandrin-Gancarzewicz-Wojda [2007]) If *G* is bipartite and $\sigma(G) > 2n/3$, then *G* is *F*-Hamiltonian for every matching *F* (any size), and the threshold is sharp.

Thm. (Pósa [1963]) If *F* consists of *k* edges forming *t* disjoint paths in *G*, and $\sigma_2(G) \ge n+k$, then *G* is *F*-Hamilt.

Faudree-Gould-Jacobson [2009] also guaranteed cycles of all lengths at least 2t + k (same threshold).

Thm. (Amar-Flandrin-Gancarzewicz-Wojda [2007]) If *G* is bipartite and $\sigma(G) > 2n/3$, then *G* is *F*-Hamiltonian for every matching *F* (any size), and the threshold is sharp.

Thm. (Zamani–West [2010+]) For bipartite *G*, if *F* has *k* edges and $\sigma(G) \ge n/2 + \lceil k/2 \rceil$, then *G* is *F*-Hamiltonian, and this is sharp when n > 3k.

Thm. (Pósa [1963]) If *F* consists of *k* edges forming *t* disjoint paths in *G*, and $\sigma_2(G) \ge n+k$, then *G* is *F*-Hamilt.

Faudree-Gould-Jacobson [2009] also guaranteed cycles of all lengths at least 2t + k (same threshold).

Thm. (Amar-Flandrin-Gancarzewicz-Wojda [2007]) If *G* is bipartite and $\sigma(G) > 2n/3$, then *G* is *F*-Hamiltonian for every matching *F* (any size), and the threshold is sharp.

Thm. (Zamani–West [2010+]) For bipartite *G*, if *F* has *k* edges and $\sigma(G) \ge n/2 + \lceil k/2 \rceil$, then *G* is *F*-Hamiltonian, and this is sharp when n > 3k.

Exception: The threshold is 1 larger when (1) F has no components of odd length, or (2) F has no components of even length and at most two of odd length.

Thm. (Pósa [1963]) If *F* consists of *k* edges forming *t* disjoint paths in *G*, and $\sigma_2(G) \ge n+k$, then *G* is *F*-Hamilt.

Faudree-Gould-Jacobson [2009] also guaranteed cycles of all lengths at least 2t + k (same threshold).

Thm. (Amar-Flandrin-Gancarzewicz-Wojda [2007]) If *G* is bipartite and $\sigma(G) > 2n/3$, then *G* is *F*-Hamiltonian for every matching *F* (any size), and the threshold is sharp.

Thm. (Zamani–West [2010+]) For bipartite *G*, if *F* has *k* edges and $\sigma(G) \ge n/2 + \lceil k/2 \rceil$, then *G* is *F*-Hamiltonian, and this is sharp when n > 3k.

Exception: The threshold is 1 larger when (1) F has no components of odd length, or (2) F has no components of even length and at most two of odd length.

Unsharp: Las Vergnas: $\sigma(G) \ge n/2 + 2$ when k = n/2.

Sharpness Examples

• *F* has *t* components: t_1 odd length, t_2 even length. $\sigma(G) \ge n/2 + \lceil k/2 \rceil + \epsilon$ suffices; let $\tau(F) = \lceil k/2 \rceil + \epsilon$. Examples with $\sigma(G) = n/2 + \tau(F) - 1$.

Sharpness Examples

• *F* has *t* components: t_1 odd length, t_2 even length. $\sigma(G) \ge n/2 + \lceil k/2 \rceil + \epsilon$ suffices; let $\tau(F) = \lceil k/2 \rceil + \epsilon$. Examples with $\sigma(G) = n/2 + \tau(F) - 1$.

Ex. For k = 0, use $K_{a,a} + K_{n/2-a,n/2-a}$; here $\sigma(G) = n/2$ (same as Moon-Moser example).

Sharpness Examples

• *F* has *t* components: t_1 odd length, t_2 even length. $\sigma(G) \ge n/2 + \lceil k/2 \rceil + \epsilon$ suffices; let $\tau(F) = \lceil k/2 \rceil + \epsilon$. Examples with $\sigma(G) = n/2 + \tau(F) - 1$.

Ex. For k = 0, use $K_{a,a} + K_{n/2-a,n/2-a}$; here $\sigma(G) = n/2$ (same as Moon-Moser example).

Ex. For $k \in \{1, 2\}$, add to $K_{a-1,a-1} + K_{n/2-a,n/2-a}$ new vertices x and y with $xy \in F$ as below; $\sigma(G) = n/2 + 1$, but G has no cycle through xy.

Main Example

Ex. For $k \ge 3$ and $m \ge \lfloor k/2 \rfloor + 1$, let $n = 4m + 2 \lceil k/2 \rceil - 2$. Start with $K_{m,m-\lfloor k/2 \rfloor - 1} + K_{m-\lfloor k/2 \rfloor - 1,m}$. Add k vertices to each partite set, inducing the set F. Add all other edges, as shown below.

Main Example

Ex. For $k \ge 3$ and $m \ge \lfloor k/2 \rfloor + 1$, let $n = 4m + 2 \lceil k/2 \rceil - 2$. Start with $K_{m,m-\lfloor k/2 \rfloor - 1} + K_{m-\lfloor k/2 \rfloor - 1,m}$. Add k vertices to each partite set, inducing the set F. Add all other edges, as shown below.

For $\mathbf{x} \in X_1$ and $\mathbf{y} \in Y_2$, $d(x) + d(y) = 2(m - \lfloor k/2 \rfloor - 1 + k) = n/2 + \lceil k/2 \rceil - 1.$

Main Example

Ex. For $k \ge 3$ and $m \ge \lfloor k/2 \rfloor + 1$, let $n = 4m + 2 \lceil k/2 \rceil - 2$. Start with $K_{m,m-\lfloor k/2 \rfloor - 1} + K_{m-\lfloor k/2 \rfloor - 1,m}$. Add k vertices to each partite set, inducing the set F. Add all other edges, as shown below.

For $\mathbf{x} \in X_1$ and $\mathbf{y} \in Y_2$, $d(x) + d(y) = 2(m - \lfloor k/2 \rfloor - 1 + k) = n/2 + \lceil k/2 \rceil - 1$.

Deleting $X_0 \cup Y_0$ from a spanning cycle through F leaves k paths. Hence $X_1 \cup Y_1$ or $X_2 \cup Y_2$ is covered by $\leq \lfloor k/2 \rfloor$ paths. Since the sizes differ by $\lfloor k/2 \rfloor + 1$, impossible.

For sufficiency, reduce to F with paths of length ≤ 2 .

For sufficiency, reduce to F with paths of length ≤ 2 . **Lem.** If $\sigma(G) \geq n/2 + \tau(F)$ suffices when paths in F have length at most 2, then it always suffices.

For sufficiency, reduce to F with paths of length ≤ 2 .

Lem. If $\sigma(G) \ge n/2 + \tau(F)$ suffices when paths in *F* have length at most 2, then it always suffices.

Pf. Induction on $k - (t_1 + 2t_2)$. When it equals 0, all paths are short.

For sufficiency, reduce to F with paths of length ≤ 2 .

Lem. If $\sigma(G) \ge n/2 + \tau(F)$ suffices when paths in *F* have length at most 2, then it always suffices.

Pf. Induction on $k - (t_1 + 2t_2)$. When it equals 0, all paths are short. Otherwise, some path has consecutive vertices x, y', x', y.

For sufficiency, reduce to F with paths of length ≤ 2 .

Lem. If $\sigma(G) \ge n/2 + \tau(F)$ suffices when paths in *F* have length at most 2, then it always suffices.

Pf. Induction on $k - (t_1 + 2t_2)$. When it equals 0, all paths are short. Otherwise, some path has consecutive vertices x, y', x', y. Let $G' = (G - \{x', y'\}) \cup \{xy\}$; $F' = F - \{xy', y'x', x'y\} \cup \{xy\}$, n' = n - 2.

For sufficiency, reduce to F with paths of length ≤ 2 .

Lem. If $\sigma(G) \ge n/2 + \tau(F)$ suffices when paths in *F* have length at most 2, then it always suffices.

Pf. Induction on $k - (t_1 + 2t_2)$. When it equals 0, all paths are short. Otherwise, some path has consecutive vertices x, y', x', y. Let $G' = (G - \{x', y'\}) \cup \{xy\}$; $F' = F - \{xy', y'x', x'y\} \cup \{xy\}$, n' = n - 2.

Since $\sigma(G') \ge \sigma(G) - 2 \ge n/2 + \tau(F) - 2 = n'/2 + \tau(F')$, induction hyp. $\Rightarrow G'$ has spanning cycle C' through F'.

For sufficiency, reduce to F with paths of length ≤ 2 .

Lem. If $\sigma(G) \ge n/2 + \tau(F)$ suffices when paths in *F* have length at most 2, then it always suffices.

Pf. Induction on $k - (t_1 + 2t_2)$. When it equals 0, all paths are short. Otherwise, some path has consecutive vertices x, y', x', y. Let $G' = (G - \{x', y'\}) \cup \{xy\}$; $F' = F - \{xy', y'x', x'y\} \cup \{xy\}$, n' = n - 2.

Since $\sigma(G') \ge \sigma(G) - 2 \ge n/2 + \tau(F) - 2 = n'/2 + \tau(F')$, induction hyp. $\Rightarrow G'$ has spanning cycle C' through F'.

Replace xy in C' with $\{xy', y'x', x'y\}$ to form C.

Establish conditions allowing use of a spanning path through *F* to obtain a spanning cycle through *F*.

Lem. Eventually, $\sigma(G) \ge n/2 + \tau(F)$ suffices (12 pg).

Establish conditions allowing use of a spanning path through *F* to obtain a spanning cycle through *F*.

Lem. Eventually, $\sigma(G) \ge n/2 + \tau(F)$ suffices (12 pg).

Main **Pf** by induction on k. Basis k=0 (Moon-Moser).

Establish conditions allowing use of a spanning path through *F* to obtain a spanning cycle through *F*.

Lem. Eventually, $\sigma(G) \ge n/2 + \tau(F)$ suffices (12 pg).

Main **Pf** by induction on k. Basis k = 0 (Moon-Moser). For k > 0, the induction hypoth. gives a spanning cycle C through F', where $F' = F - \{uv\}$. Done if $uv \in E(C)$.

Establish conditions allowing use of a spanning path through *F* to obtain a spanning cycle through *F*.

Lem. Eventually, $\sigma(G) \ge n/2 + \tau(F)$ suffices (12 pg).

Main **Pf** by induction on k. Basis k = 0 (Moon-Moser). For k > 0, the induction hypoth. gives a spanning cycle C through F', where $F' = F - \{uv\}$. Done if $uv \in E(C)$.

Else let u', u'' and v', v'' be the nbrs of u and v on C.

Establish conditions allowing use of a spanning path through *F* to obtain a spanning cycle through *F*.

Lem. Eventually, $\sigma(G) \ge n/2 + \tau(F)$ suffices (12 pg).

Main **Pf** by induction on k. Basis k = 0 (Moon-Moser). For k > 0, the induction hypoth. gives a spanning cycle C through F', where $F' = F - \{uv\}$. Done if $uv \in E(C)$.

Else let u', u'' and v', v'' be the nbrs of u and v on C. Pathlengths at most 2 in $F \Rightarrow F$ contains at most one edge of C incident to u or v, say uu''.

Establish conditions allowing use of a spanning path through *F* to obtain a spanning cycle through *F*.

Lem. Eventually, $\sigma(G) \ge n/2 + \tau(F)$ suffices (12 pg).

Main **Pf** by induction on k. Basis k=0 (Moon-Moser). For k > 0, the induction hypoth. gives a spanning cycle C through F', where $F' = F - \{uv\}$. Done if $uv \in E(C)$.

Pathlengths at most 2 in $F \Rightarrow F$ contains at most one edge of C incident to u or v, say uu''.

Path $C[u', v] \cup vu \cup C[u, v']$ is a spanning path through *F* in *G*. **Lemma** applies!

Lem. (k = 0 [Moon-Moser]) $\sigma(G) \ge n/2 + 1 \implies G$ has a spanning cycle.

Lem. (k = 0 [Moon-Moser]) $\sigma(G) \ge n/2 + 1 \implies G$ has a spanning cycle.

Pf. A maximal counterexample has a spanning path *P* with nonadjacent endpoints.

Lem. (k = 0 [Moon-Moser]) $\sigma(G) \ge n/2 + 1 \implies G$ has a spanning cycle.

Pf. A maximal counterexample has a spanning path *P* with nonadjacent endpoints.

n/2 odd edges; n/2 - 1 even edges.

Lem. (k = 0 [Moon-Moser]) $\sigma(G) \ge n/2 + 1 \implies G$ has a spanning cycle.

Pf. A maximal counterexample has a spanning path *P* with nonadjacent endpoints.

n/2 odd edges; n/2 - 1 even edges.

 $d(x) + d(y) \ge n/2 + 1 \implies$ some odd edge is full.

Lem. (k = 0 [Moon-Moser]) $\sigma(G) \ge n/2 + 1 \implies G$ has a spanning cycle.

Pf. A maximal counterexample has a spanning path *P* with nonadjacent endpoints.

n/2 odd edges; n/2 - 1 even edges.

 $d(x) + d(y) \ge n/2 + 1 \implies$ some odd edge is full. (An edge of *P* is full when both endpoints of *P* are nbrs.)

Lem. (k = 0 [Moon-Moser]) $\sigma(G) \ge n/2 + 1 \implies G$ has a spanning cycle.

Pf. A maximal counterexample has a spanning path *P* with nonadjacent endpoints.

n/2 odd edges; n/2 - 1 even edges.

 $d(x) + d(y) \ge n/2 + 1 \implies$ some odd edge is full. (An edge of *P* is full when both endpoints of *P* are nbrs.) —Switch!

Lem. (k = 0 [Moon-Moser]) $\sigma(G) \ge n/2 + 1 \implies G$ has a spanning cycle.

Pf. A maximal counterexample has a spanning path *P* with nonadjacent endpoints.

n/2 odd edges; n/2 - 1 even edges.

 $d(x) + d(y) \ge n/2 + 1 \implies$ some odd edge is full. (An edge of P is full when both endpoints of P are nbrs.) -Switch!

Obs. An unselected full odd edge turns a spanning path through *F* into a spanning cycle though *F*.

Lem. If a spanning path *P* through *F* has a full selected even edge in F_1 , then some spanning path *Q* through *F* has fewer than $\lfloor k/2 \rfloor$ selected odd edges.

Pf. Compare *P* and alternative, *P'*.

Lem. If a spanning path *P* through *F* has a full selected even edge in F_1 , then some spanning path *Q* through *F* has fewer than $\lfloor k/2 \rfloor$ selected odd edges.

Pf. Compare *P* and alternative, *P'*. (Also through *F*!)

Lem. If a spanning path *P* through *F* has a full selected even edge in F_1 , then some spanning path *Q* through *F* has fewer than $\lfloor k/2 \rfloor$ selected odd edges.

Pf. Compare *P* and alternative, *P'*. (Also through *F*!) Edge $y_i x_{i+1}$ is odd in neither *P* nor *P'*; other selected edges are odd in exactly one.

Lem. If a spanning path *P* through *F* has a full selected even edge in F_1 , then some spanning path *Q* through *F* has fewer than $\lfloor k/2 \rfloor$ selected odd edges.

Pf. Compare *P* and alternative, *P'*. (Also through *F*!)

Edge $y_i x_{i+1}$ is odd in neither *P* nor *P*'; other selected edges are odd in exactly one.

Choose $Q \in \{P, P'\}$ with fewest selected odd edges: $|E_{odd}(Q) \cap F| \leq \lfloor (k-1)/2 \rfloor < \lceil k/2 \rceil$.

Lem. If a spanning path *P* through *F* has a full selected even edge in F_1 , then some spanning path *Q* through *F* has fewer than $\lfloor k/2 \rfloor$ selected odd edges.

Pf. Compare *P* and alternative, *P*[']. (Also through *F*!)

Edge $y_i x_{i+1}$ is odd in neither *P* nor *P*'; other selected edges are odd in exactly one.

Choose $Q \in \{P, P'\}$ with fewest selected odd edges: $|E_{odd}(Q) \cap F| \leq \lfloor (k-1)/2 \rfloor < \lceil k/2 \rceil$.

Obs. $\sigma(G) \ge n/2 + \lceil k/2 \rceil$ and $|E_{odd}(Q) \cap F| < \lceil k/2 \rceil$

- \Rightarrow 3 an unselected full odd edge along P
- \Rightarrow \exists spanning cycle through *F*.

Suffic. Conditions for a spanning path *P* through *F* to give spanning cycle through *F* (when $\sigma(G) \ge n/2 + \tau(F)$).

Suffic. Conditions for a spanning path *P* through *F* to give spanning cycle through *F* (when $\sigma(G) \ge n/2 + \tau(F)$).

• Some full odd edge on *P* is unselected (not in *F*).

Suffic. Conditions for a spanning path *P* through *F* to give spanning cycle through *F* (when $\sigma(G) \ge n/2 + \tau(F)$).

- Some full odd edge on *P* is unselected (not in *F*).
- Some full even edge on P is in F₁.
 (Fewer than [k/2] selected odd edges.)

Suffic. Conditions for a spanning path *P* through *F* to give spanning cycle through *F* (when $\sigma(G) \ge n/2 + \tau(F)$).

- Some full odd edge on *P* is unselected (not in *F*).
- Some full even edge on *P* is in *F*₁.
 (Fewer than [k/2] selected odd edges.)

Suffic. Conditions for a spanning path *P* through *F* to give spanning cycle through *F* (when $\sigma(G) \ge n/2 + \tau(F)$).

- Some full odd edge on *P* is unselected (not in *F*).
- Some full even edge on *P* is in *F*₁.
 (Fewer than [k/2] selected odd edges.)

Each remaining step: 2-3 pages of alternative paths through F (etc.) to reduce to earlier suffic. conditions.

• Selected edges split half odd, half even along P.

Suffic. Conditions for a spanning path *P* through *F* to give spanning cycle through *F* (when $\sigma(G) \ge n/2 + \tau(F)$).

- Some full odd edge on *P* is unselected (not in *F*).
- Some full even edge on *P* is in *F*₁.
 (Fewer than [k/2] selected odd edges.)

- Selected edges split half odd, half even along *P*.
- Both end edges of *P* are unselected.

Suffic. Conditions for a spanning path *P* through *F* to give spanning cycle through *F* (when $\sigma(G) \ge n/2 + \tau(F)$).

- Some full odd edge on *P* is unselected (not in *F*).
- Some full even edge on *P* is in *F*₁.
 (Fewer than [k/2] selected odd edges.)

- Selected edges split half odd, half even along *P*.
- Both end edges of *P* are unselected.
- One end edge of *P* is unselected.

Suffic. Conditions for a spanning path *P* through *F* to give spanning cycle through *F* (when $\sigma(G) \ge n/2 + \tau(F)$).

- Some full odd edge on *P* is unselected (not in *F*).
- Some full even edge on *P* is in *F*₁.
 (Fewer than [k/2] selected odd edges.)

- Selected edges split half odd, half even along *P*.
- Both end edges of *P* are unselected.
- One end edge of *P* is unselected.
- Neither end edge of *P* is unselected.

Suffic. Conditions for a spanning path *P* through *F* to give spanning cycle through *F* (when $\sigma(G) \ge n/2 + \tau(F)$).

- Some full odd edge on *P* is unselected (not in *F*).
- Some full even edge on *P* is in *F*₁.
 (Fewer than [k/2] selected odd edges.)

Each remaining step: 2-3 pages of alternative paths through F (etc.) to reduce to earlier suffic. conditions.

- Selected edges split half odd, half even along *P*.
- Both end edges of *P* are unselected.
- One end edge of *P* is unselected.
- Neither end edge of *P* is unselected.

Any spanning path through F suffices!