Fractional Separation Dimension

Douglas B. West

Departments of Mathematics
Zhejiang Normal University and
University of Illinois at Urbana-Champaign
west@math.uiuc.edu

slides available on DBW preprint page

Joint work with Sarah Loeb
The Original Problem

Geometric Goal: Embed a graph G in \mathbb{R}^d so that non-incident edges are easily distinguished (separated by a hyperplane perpendicular to an axis).
The Original Problem

Geometric Goal: Embed a graph G in \mathbb{R}^d so that non-incident edges are easily distinguished (separated by a hyperplane perpendicular to an axis). Embedding is **efficient** if d is small.
The Original Problem

Geometric Goal: Embed a graph G in \mathbb{R}^d so that non-incident edges are easily distinguished (separated by a hyperplane perpendicular to an axis). Embedding is *efficient* if d is small.

Each coordinate gives a linear ordering σ of $V(G)$.
The Original Problem

Geometric Goal: Embed a graph G in \mathbb{R}^d so that non-incident edges are easily distinguished (separated by a hyperplane perpendicular to an axis). Embedding is efficient if d is small.

Each coordinate gives a linear ordering σ of $V(G)$.

Def. A linear ordering σ of $V(G)$ separates two non-incident edges if both vertices of one edge precede both vertices of the other.
The Original Problem

Geometric Goal: Embed a graph G in \mathbb{R}^d so that non-incident edges are easily distinguished (separated by a hyperplane perpendicular to an axis). Embedding is **efficient** if d is small.

Each coordinate gives a linear ordering σ of $V(G)$.

Def. A linear ordering σ of $V(G)$ separates two non-incident edges if both vertices of one edge precede both vertices of the other.

Def. The separation dimension $\pi(G)$ is the minimum size of a separating family of vertex orderings (every two non-incident edges separated in some ordering).
The Original Problem

Geometric Goal: Embed a graph G in \mathbb{R}^d so that non-incident edges are easily distinguished (separated by a hyperplane perpendicular to an axis). Embedding is **efficient** if d is small.

Each coordinate gives a linear ordering σ of $V(G)$.

Def. A linear ordering σ of $V(G)$ separates two non-incident edges if both vertices of one edge precede both vertices of the other.

Def. The separation dimension $\pi(G)$ is the minimum size of a separating family of vertex orderings (every two non-incident edges separated in some ordering).

This is the least d such that the embedding exists.
Examples

Often our vertex set is \(\{1, \ldots, n\} \), written as \([n]\).
Examples

Often our vertex set is \(\{1, \ldots, n\}\), written as \([n]\).

Ex. \(\pi(P_n) = 1\), via \(\sigma_1 = (1, \ldots, n)\).
Examples

Often our vertex set is \(\{1, \ldots, n\} \), written as \([n]\).

Ex. \(\pi(P_n) = 1 \), via \(\sigma_1 = (1, \ldots, n) \).

Ex. \(\pi(C_n) = 2 \), adding \(\sigma_2 = (n, 1, \ldots, n - 1) \).
Examples

Often our vertex set is \(\{1, \ldots, n\} \), written as \([n]\).

Ex. \(\pi(P_n) = 1 \), via \(\sigma_1 = (1, \ldots, n) \).

Ex. \(\pi(C_n) = 2 \), adding \(\sigma_2 = (n, 1, \ldots, n - 1) \).

Ex. \(\pi(K_4) = 3 \).

\[\sigma_1 = (1, 2, 3, 4) \]
\[\sigma_2 = (1, 4, 2, 3) \]
\[\sigma_3 = (1, 3, 2, 4) \]
Other Notions of Separation

Ex. Barycentric representation - Assign each vertex \(v \) a nonnegative integer triple \((v_1, v_2, v_3)\) with sum \(n \) so that for each edge \(xy \) and \(z \notin \{x, y\} \) there is a coordinate \(k \) such that \(z_k \geq \max\{x_k, y_k\} \).
Other Notions of Separation

Ex. Barycentric representation - Assign each vertex v a nonnegative integer triple (v_1, v_2, v_3) with sum n so that for each edge xy and $z \not\in \{x, y\}$ there is a coordinate k such that $z_k \geq \max\{x_k, y_k\}$.

This separates vertices from nonincident edges by a some line parallel to the boundary.
Ex. Barycentric representation - Assign each vertex \(v \) a nonnegative integer triple \((v_1, v_2, v_3)\) with sum \(n \) so that for each edge \(xy \) and \(z \notin \{x, y\} \) there is a coordinate \(k \) such that \(z_k \geq \max\{x_k, y_k\} \).

This separates vertices from nonincident edges by a some line parallel to the boundary.

Application - straight-line planar embedding on an integer \(n \)-by-\(n \) grid. *(Schnyder [1989]*)
Ex. Barycentric representation - Assign each vertex v a nonnegative integer triple (v_1, v_2, v_3) with sum n so that for each edge xy and $z \not\in \{x, y\}$ there is a coordinate k such that $z_k \geq \max\{x_k, y_k\}$.

This separates vertices from nonincident edges by a some line parallel to the boundary.

Application - straight-line planar embedding on an integer n-by-n grid. (Schnyder [1989])

Ex. k-suitable family for $[n]$ - A set F of orderings of $[n]$ such that for each k-set S and $y \not\in S$, there exists $\sigma \in F$ in which y appears after all of S.
Ex. **Barycentric representation** - Assign each vertex \(v \) a nonnegative integer triple \((v_1, v_2, v_3) \) with sum \(n \) so that for each edge \(xy \) and \(z \notin \{x, y\} \) there is a coordinate \(k \) such that \(z_k \geq \max\{x_k, y_k\} \).

This separates vertices from nonincident edges by a some line parallel to the boundary.

Application - straight-line planar embedding on an integer \(n \)-by-\(n \) grid. (Schnyder [1989])

Ex. **\(k \)-suitable family** for \([n]\) - A set \(\mathcal{F} \) of orderings of \([n]\) such that for each \(k \)-set \(S \) and \(y \notin S \), there exists \(\sigma \in \mathcal{F} \) in which \(y \) appears after all of \(S \).

Application - \(\min |\mathcal{F}| = \) dimension of the inclusion poset on 1-sets and \(k \)-sets. (Dushnik [1950])
One More Separation Problem

Ex. A k-box representation of H assigns each vertex an axis-parallel box in \mathbb{R}^k so vertices are adjacent iff their boxes intersect. **Boxicity** $\text{box}(H)$ is the least such k.
One More Separation Problem

Ex. A k-box representation of H assigns each vertex an axis-parallel box in \mathbb{R}^k so vertices are adjacent iff their boxes intersect. Boxicity $\text{box}(H)$ is the least such k.

Boxes u & v separated in some dimension if $uv \notin E(H)$.
Ex. A *k*-box representation of *H* assigns each vertex an axis-parallel box in \(\mathbb{R}^k\) so vertices are adjacent iff their boxes intersect. **Boxicity** \(\text{box}(H)\) is the least such *k*.

Boxes \(u\&v\) separated in some dimension if \(uv \notin \text{E}(H)\).

Prop. \(\pi(G) = \text{box}(L(G))\).
One More Separation Problem

Ex. A k-box representation of H assigns each vertex an axis-parallel box in \mathbb{R}^k so vertices are adjacent iff their boxes intersect. **Boxicity** $\text{box}(H)$ is the least such k.

Boxes u & v separated in some dimension if $uv \notin E(H)$.

Prop. $\pi(G) = \text{box}(L(G))$.

Pf. $\text{box}(L(G)) \leq \pi(G)$: Given separating family for G, j-th ordering gives j-th coordinates for box rep’n of $L(G)$ (incident edges never separated).
One More Separation Problem

Ex. A k-box representation of H assigns each vertex an axis-parallel box in \mathbb{R}^k so vertices are adjacent iff their boxes intersect. **Boxicity** $\text{box}(H)$ is the least such k.

Boxes u&v separated in some dimension if $uv \notin E(H)$.

Prop. $\pi(G) = \text{box}(L(G))$.

Pf. $\text{box}(L(G)) \leq \pi(G)$: Given separating family for G, j-th ordering gives j-th coordinates for box rep’n of $L(G)$ (incident edges never separated).

$\pi(G) \leq \text{box}(L(G))$: Given box rep’n of $L(G)$, form j-th ordering by giving v a point common to all j-th intervals for edges incident to v. Edges uv and xy with disjoint intervals in dimension j are separated.
One More Separation Problem

Ex. A \(k \)-box representation of \(H \) assigns each vertex an axis-parallel box in \(\mathbb{R}^k \) so vertices are adjacent iff their boxes intersect. **Boxicity** \(\text{box}(H) \) is the least such \(k \).

Boxes \(u \& v \) separated in some dimension if \(uv \not\in E(H) \).

Prop. \(\pi(G) = \text{box}(L(G)) \).

Pf. \(\text{box}(L(G)) \leq \pi(G) \): Given separating family for \(G \), \(j \)-th ordering gives \(j \)-th coordinates for box rep’n of \(L(G) \) (incident edges never separated).

\(\pi(G) \leq \text{box}(L(G)) \): Given box rep’n of \(L(G) \), form \(j \)-th ordering by giving \(v \) a point common to all \(j \)-th intervals for edges incident to \(v \). Edges \(uv \) and \(xy \) with disjoint intervals in dimension \(j \) are separated.

\(\therefore \) separation dimension is a special case of boxicity.
Bounds on Separation Dimension

Basavaraju, Chandran, Golumbic, Mathew, Rajendraprasad [2014] (for hypergraphs [2016], incl. $\pi(H) = \text{box}(L(H))$).

- $\pi(G) \leq 6.84 \log n$ when G has n vertices.
Bounds on Separation Dimension

Basavaraju, Chandran, Golumbic, Mathew, Rajendraprasad [2014] (for hypergraphs [2016], incl. $\pi(H) = \text{box}(L(H))$).

- $\pi(G) \leq 6.84 \log n$ when G has n vertices.
- $\pi(G) \leq 2\chi_{a}(G) + 13.68 \log(\chi_{a}(G))$
- $\pi(G) \leq \chi_{s}(G) + 13.68 \log(\chi_{s}(G))$
Bounds on Separation Dimension

Basavaraju, Chandran, Golumbic, Mathew, Rajendraprasad [2014] (for hypergraphs [2016], incl. \(\pi(H) = \text{box}(L(H)) \)).

- \(\pi(G) \leq 6.84 \log n \) when \(G \) has \(n \) vertices.
- \(\pi(G) \leq 2\chi_a(G) + 13.68 \log(\chi_a(G)) \)
- \(\pi(G) \leq \chi_s(G) + 13.68 \log(\chi_s(G)) \)
- \(\pi(G) \leq 3 \) when \(G \) is planar.
Bounds on Separation Dimension

Basavaraju, Chandran, Golumbic, Mathew, Rajendraprasad [2014] (for hypergraphs [2016], incl. \(\pi(H) = \text{box}(L(H)) \)).

- \(\pi(G) \leq 6.84 \log n \) when \(G \) has \(n \) vertices.
- \(\pi(G) \leq 2\chi_a(G) + 13.68 \log(\chi_a(G)) \)
- \(\pi(G) \leq \chi_s(G) + 13.68 \log(\chi_s(G)) \)
- \(\pi(G) \leq 3 \) when \(G \) is planar.
- \(\pi(K_{m,n}) \geq \log(\min\{m, n\}) \).
Bounds on Separation Dimension

Basavaraju, Chandran, Golumbic, Mathew, Rajendraprasad [2014] (for hypergraphs [2016], incl. $\pi(H) = \text{box}(L(H))$).

- $\pi(G) \leq 6.84 \log n$ when G has n vertices.
- $\pi(G) \leq 2\chi_a(G) + 13.68 \log(\chi_a(G))$
- $\pi(G) \leq \chi_s(G) + 13.68 \log(\chi_s(G))$
- $\pi(G) \leq 3$ when G is planar.
- $\pi(K_{m,n}) \geq \log(\min\{m, n\})$.
- $\pi(G) \geq \log \left\lfloor \frac{\omega(G)}{2} \right\rfloor$.
Bounds on Separation Dimension

Basavaraju, Chandran, Golumbic, Mathew, Rajendraprasad [2014] (for hypergraphs [2016], incl. $\pi(H) = \text{box}(L(H))$).

- $\pi(G) \leq 6.84 \log n$ when G has n vertices.
- $\pi(G) \leq 2\chi_{a}(G) + 13.68 \log(\chi_{a}(G))$
- $\pi(G) \leq \chi_{s}(G) + 13.68 \log(\chi_{s}(G))$
- $\pi(G) \leq 3$ when G is planar.
- $\pi(K_{m,n}) \geq \log(\min\{m, n\})$.
- $\pi(G) \geq \log \left\lfloor \frac{\omega(G)}{2} \right\rfloor$.
- (B-C-M-R [2014']) $\pi(G) \in O(k \log \log n)$ for k-degenerate G.
Bounds on Separation Dimension

Basavaraju, Chandran, Golumbic, Mathew, Rajendraprasad [2014] (for hypergraphs [2016], incl. $\pi(H) = \text{box}(L(H))$).

- $\pi(G) \leq 6.84 \log n$ when G has n vertices.
- $\pi(G) \leq 2\chi_a(G) + 13.68 \log(\chi_a(G))$
- $\pi(G) \leq \chi_s(G) + 13.68 \log(\chi_s(G))$
- $\pi(G) \leq 3$ when G is planar.
- $\pi(K_{m,n}) \geq \log(\min\{m, n\})$.
- $\pi(G) \geq \log \left\lfloor \frac{\omega(G)}{2} \right\rfloor$.

- (B-C-M-R [2014']) $\pi(G) \in O(k \log \log n)$ for k-degenerate G.
- (Alon–B-C-M-R [2015]) $\pi(G) \leq 2^{9\log^* d} d$, where $d = \Delta(G)$.

Bounds on Separation Dimension

Basavaraju, Chandran, Golumbic, Mathew, Rajendraprasad [2014] (for hypergraphs [2016], incl. $\pi(H) = \text{box}(L(H))$).

- $\pi(G) \leq 6.84 \log n$ when G has n vertices.
- $\pi(G) \leq 2\chi_a(G) + 13.68 \log(\chi_a(G))$
- $\pi(G) \leq \chi_s(G) + 13.68 \log(\chi_s(G))$
- $\pi(G) \leq 3$ when G is planar.
- $\pi(K_{m,n}) \geq \log(\min\{m, n\})$.
- $\pi(G) \geq \log \left[\frac{\omega(G)}{2} \right]$.
- (B-C-M-R [2014']) $\pi(G) \in O(k \log \log n)$ for k-degenerate G.
- (Alon–B-C-M-R [2015]) $\pi(G) \leq 2^{9 \log^* d} d$, where $d = \Delta(G)$.
- (A-B-C-M-R) $\pi(G) \geq d/2$ for almost all d-regular graphs.
Covering Problems

Given a hypergraph H with vertex set U, let
\[\tau(H) = \min \# \text{edges with union } U \text{ (covering number)}. \]
Covering Problems

Given a hypergraph H with vertex set U, let $\tau(H) = \min \# \text{edges with union } U$ (covering number).

Ex. $E(H) \iff \tau(H)$
Covering Problems

Given a hypergraph H with vertex set U, let

$$\tau(H) = \min \# \text{edges with union } U$$

(covering number).

Ex. $E(H) \iff \tau(H)$

independent sets in a graph G

chromatic number
Covering Problems

Given a hypergraph H with vertex set U, let $\tau(H) = \min \# \text{edges with union } U$ (covering number).

Ex. $E(H) \iff \tau(H)$

- independent sets in a graph G (chromatic number)
- matchings in a graph G (edge-chromatic number)
Covering Problems

Given a hypergraph H with vertex set U, let $	au(H) = \min \# \text{edges with union } U$ (covering number).

Ex. $E(H)$ independent sets in a graph G matchings in a graph G acyclic subsets of edges in G chromatic number edge-chromatic number arboricity
Covering Problems

Given a hypergraph H with vertex set U, let
$\tau(H) = \min \#\text{edges with union } U$ (covering number).

Ex. $E(H)$ ⇔ $\tau(H)$
- independent sets in a graph G
- matchings in a graph G
- acyclic subsets of edges in G
- closed neighborhoods of single vertices
Covering Problems

Given a hypergraph H with vertex set U, let $\tau(H) = \min$ #edges with union U (covering number).

Ex. $E(H) \iff \tau(H)$
- independent sets in a graph G
- matchings in a graph G
- acyclic subsets of edges in G
- closed neighborhoods of single vertices
- incomp pairs in one linear extension
- chromatic number
- edge-chromatic number
- arboricity
- domination
- poset dimension
Covering Problems

Given a hypergraph H with vertex set U, let $\tau(H) = \min \# \text{edges with union } U$ (covering number).

Ex.

- $E(H)$: independent sets in a graph G
- matchings in a graph G
- acyclic subsets of edges in G
- closed neighborhoods of single vertices
- incomp pairs in one linear extension
- edges separated by one vertex order
- chromatic number
- edge-chromatic number
- arboricity
- domination
- poset dimension
- separation dim
Covering Problems

Given a hypergraph H with vertex set U, let $\tau(H) = \min \#\text{edges with union } U$ (covering number).

Ex. $E(H) \iff \tau(H)$

- independent sets in a graph G
- matchings in a graph G
- acyclic subsets of edges in G
- closed neighborhoods of single vertices
- incomp pairs in one linear extension
- edges separated by one vertex order

Def. An $a:b$-covering of a hypergraph H is a list of a edges that covers each vertex of H at least b times.
Covering Problems

Given a hypergraph \(H \) with vertex set \(U \), let \(\tau(H) = \min \# \text{edges with union } U \) (covering number).

Ex.
- \(E(H) \): independent sets in a graph \(G \)
- \(\tau(H) \): chromatic number
- \(\tau(H) \): edge-chromatic number
- \(\tau(H) \): arboricity
- \(\tau(H) \): domination
- \(\tau(H) \): poset dimension
- \(\tau(H) \): separation dim

Def. An \(a: b \)-covering of a hypergraph \(H \) is a list of \(a \) edges that covers each vertex of \(H \) at least \(b \) times.

\[\tau_f(H) = \inf \{ \frac{a}{b} : H \text{ has an } a:b \text{-covering} \} \]

fractional covering number
Covering Problems

Given a hypergraph H with vertex set U, let $\tau(H) = \min \# \text{edges with union } U$ (covering number).

Ex. $E(H) \iff \tau(H)$
- independent sets in a graph G
- matchings in a graph G
- acyclic subsets of edges in G
- closed neighborhoods of single vertices
- incomp pairs in one linear extension
- edges separated by one vertex order

Def. An $a:b$-covering of a hypergraph H is a list of a edges that covers each vertex of H at least b times.

$\tau_f(H) = \inf \left\{ \frac{a}{b} : \ H \text{ has an } a:b\text{-covering} \right\}.$

fractional covering number

Always $\tau_f(H) \leq \tau(H)$.
Fractional vs. Ordinary

$\tau_f(H)$ may be much smaller than $\tau(H)$.
Fractional vs. Ordinary

\(\tau_f(H) \) may be much smaller than \(\tau(H) \).

Ex. Kneser graph \(K(n, k) \) has all \(k \)-sets from \([n]\) as vertices, adjacent when disjoint (Petersen is \(K(5, 2) \)).
Fractional vs. Ordinary

\(\tau_f(H) \) may be much smaller than \(\tau(H) \).

Ex. Kneser graph \(K(n, k) \) has all \(k \)-sets from \([n]\) as vertices, adjacent when disjoint (Petersen is \(K(5, 2) \)).

\(\chi(K(n, k)) = n - k + 2 \) (Lovász [1978], Bárany [1978])
Fractional vs. Ordinary

\(\tau_f(H) \) may be much smaller than \(\tau(H) \).

Ex. Kneser graph \(K(n, k) \) has all \(k \)-sets from \([n]\) as vertices, adjacent when disjoint (Petersen is \(K(5, 2) \)).

\[\chi(K(n, k)) = n - k + 2 \] (Lovász [1978], Bárany [1978])

For a vertex-transitive graph, \(\chi_f(G) = |V(G)|/\alpha(G) \). Also, \(\alpha(K(n,k)) = \binom{n-1}{k-1} \), by Erdös–Ko–Rado, so \(\chi_f(K(n,k)) = \frac{n}{k} \).
Fractional vs. Ordinary

$\tau_f(H)$ may be much smaller than $\tau(H)$.

Ex. Kneser graph $K(n, k)$ has all k-sets from $[n]$ as vertices, adjacent when disjoint (Petersen is $K(5, 2)$).

$\chi(K(n, k)) = n - k + 2$ (Lovász [1978], Bárany [1978])

For a vertex-transitive graph, $\chi_f(G) = |V(G)|/\alpha(G)$. Also, $\alpha(K(n,k)) = (\binom{n-1}{k-1})$, by Erdös–Ko–Rado, so $\chi_f(K(n,k)) = \frac{n}{k}$.

Ex. Always $\chi_f(H) \geq \omega(H)$, so $\chi_f'(G) \geq \Delta(G)$, but $\chi'(G) \leq \Delta(G) + 1$ (Vizing [1965])
Fractional vs. Ordinary

$\tau_f(H)$ may be much smaller than $\tau(H)$.

Ex. Kneser graph $K(n, k)$ has all k-sets from $[n]$ as vertices, adjacent when disjoint (Petersen is $K(5, 2)$).

$\chi(K(n, k)) = n - k + 2$ (Lovász [1978], Bárany [1978])

For a vertex-transitive graph, $\chi_f(G) = |V(G)|/\alpha(G)$. Also, $\alpha(K(n,k)) = \binom{n-1}{k-1}$, by Erdős–Ko–Rado, so $\chi_f(K(n,k)) = \frac{n}{k}$.

Ex. Always $\chi_f(H) \geq \omega(H)$, so $\chi'_f(G) \geq \Delta(G)$, but $\chi'(G) \leq \Delta(G) + 1$ (Vizing [1965])

What about separation dimension $\pi(G)$ vs. $\pi_f(G)$?
Fractional vs. Ordinary

\(\tau_f(H) \) may be much smaller than \(\tau(H) \).

Ex. Kneser graph \(K(n, k) \) has all \(k \)-sets from \([n]\) as vertices, adjacent when disjoint (Petersen is \(K(5, 2) \)).

\[\chi(K(n, k)) = n - k + 2 \] (Lovász [1978], Bárány [1978])

For a vertex-transitive graph, \(\chi_f(G) = |V(G)|/\alpha(G) \). Also,

\[\alpha(K(n,k)) = \binom{n-1}{k-1} \], by Erdös–Ko–Rado, so \(\chi_f(K(n,k)) = \frac{n}{k} \).

Ex. Always \(\chi_f(H) \geq \omega(H) \), so \(\chi'_f(G) \geq \Delta(G) \), but

\[\chi'_f(G) \leq \Delta(G) + 1 \] (Vizing [1965])

What about separation dimension \(\pi(G) \) vs. \(\pi_f(G) \)?

Thm. (B–C–G–M–R [2014]) \(\pi(G) \geq \log \left[\frac{\omega(G)}{2} \right] \).
Fractional vs. Ordinary

\(\tau_f(H) \) may be much smaller than \(\tau(H) \).

Ex. Kneser graph \(K(n, k) \) has all \(k \)-sets from \([n]\) as vertices, adjacent when disjoint (Petersen is \(K(5, 2) \)).

\[\chi(K(n, k)) = n - k + 2 \] (Lovász [1978], Bárany [1978])

For a vertex-transitive graph, \(\chi_f(G) = |V(G)|/\alpha(G) \). Also, \(\alpha(K(n,k)) = \binom{n-1}{k-1} \), by Erdős–Ko–Rado, so \(\chi_f(K(n,k)) = \frac{n}{k} \).

Ex. Always \(\chi_f(H) \geq \omega(H) \), so \(\chi'_f(G) \geq \Delta(G) \), but \(\chi'(G) \leq \Delta(G) + 1 \) (Vizing [1965])

What about separation dimension \(\pi(G) \) vs. \(\pi_f(G) \)?

Thm. (B–C–G–M–R [2014]) \(\pi(G) \geq \log \left\lfloor \frac{\omega(G)}{2} \right\rfloor \).

Thm. (Loeb–West [2016+]) \(\pi_f(G) \leq 3 \) for every \(G \).
Results

Thm. \(\pi_f(G) \leq 3 \) for every \(G \), with equality iff \(K_4 \subseteq G \).
Results

Thm. \(\pi_f(G) \leq 3 \) for every \(G \), with equality iff \(K_4 \subseteq G \).

Thm. \(\pi_f(K_{m,m}) = 3 \left(1 - \frac{1}{m+1} \right) \)
Results

Thm. $\pi_f(G) \leq 3$ for every G, with equality iff $K_4 \subseteq G$.

Thm. $\pi_f(K_{m,m}) = 3 \left(1 - \frac{1}{m+1}\right) = \pi_f(K_{m+1,m})$.
Results

Thm. $\pi_f(G) \leq 3$ for every G, with equality iff $K_4 \subseteq G$.

Thm. $\pi_f(K_{m,m}) = 3 \left(1 - \frac{1}{m+1} \right) = \pi_f(K_{m+1,m})$.

Thm. $\pi_f(K_{m+1,qm}) = 3 \left(1 - \frac{(q+1)m-2}{(2m+1)mq-m-2} \right)$.
Results

Thm. \(\pi_f(G) \leq 3 \) for every \(G \), with equality iff \(K_4 \subseteq G \).

Thm. \(\pi_f(K_{m,m}) = 3 \left(1 - \frac{1}{m+1} \right) = \pi_f(K_{m+1,m}) \).

Thm. \(\pi_f(K_{m+1,qm}) = 3 \left(1 - \frac{(q+1)m-2}{(2m+1)mq-m-2} \right) \).

Thm. \(\pi_f(K_{m,m,m}) = 3 \left(1 - \frac{1}{2m+1} \right) \).
Results

Thm. $\pi_f(G) \leq 3$ for every G, with equality iff $K_4 \subseteq G$.

Thm. $\pi_f(K_{m,m}) = 3 \left(1 - \frac{1}{m+1} \right) = \pi_f(K_{m+1,m})$.

Thm. $\pi_f(K_{m+1,qm}) = 3 \left(1 - \frac{(q+1)m-2}{(2m+1)mq-m-2} \right)$.

Thm. $\pi_f(K_{m,m,m}) = 3 \left(1 - \frac{1}{2m+1} \right) = \pi_f(K_{m+1,m,m})$.
Results

Thm. \(\pi_f(G) \leq 3 \) for every \(G \), with equality iff \(K_4 \subseteq G \).

Thm. \(\pi_f(K_{m,m}) = 3 \left(1 - \frac{1}{m+1} \right) = \pi_f(K_{m+1,m}) \).

Thm. \(\pi_f(K_{m+1,qm}) = 3 \left(1 - \frac{(q+1)m-2}{(2m+1)mq-m-2} \right) \).

Thm. \(\pi_f(K_{m,m,m}) = 3 \left(1 - \frac{1}{2m+1} \right) = \pi_f(K_{m+1,m,m}) \).

Thm. \(\pi_f(C_n) = \frac{n}{n-2} \).
Results

Thm. \(\pi_f(G) \leq 3 \) for every \(G \), with equality iff \(K_4 \subseteq G \).

Thm. \(\pi_f(K_{m,m}) = 3 \left(1 - \frac{1}{m+1} \right) = \pi_f(K_{m+1,m}) \).

Thm. \(\pi_f(K_{m+1,qm}) = 3 \left(1 - \frac{(q+1)m-2}{(2m+1)mq-m-2} \right) \).

Thm. \(\pi_f(K_{m,m,m}) = 3 \left(1 - \frac{1}{2m+1} \right) = \pi_f(K_{m+1,m,m}) \).

Thm. \(\pi_f(C_n) = \frac{n}{n-2} \).

Thm. \(\pi_f(Petersen) = \frac{30}{17} \); \(\pi_f(Heawood) = \frac{28}{17} \).
Results

Thm. $\pi_f(G) \leq 3$ for every G, with equality iff $K_4 \subseteq G$.

Thm. $\pi_f(K_{m,m}) = 3 \left(1 - \frac{1}{m+1}\right) = \pi_f(K_{m+1,m})$.

Thm. $\pi_f(K_{m+1,qm}) = 3 \left(1 - \frac{(q+1)m-2}{(2m+1)mq-m-2}\right)$.

Thm. $\pi_f(K_{m,m,m}) = 3 \left(1 - \frac{1}{2m+1}\right) = \pi_f(K_{m+1,m,m})$.

Thm. $\pi_f(C_n) = \frac{n}{n-2}$.

Thm. $\pi_f(Petersen) = \frac{30}{17}$; $\pi_f(Heawood) = \frac{28}{17}$.

Thm. $\pi_f(G) < \sqrt{2}$ when G is a tree.
Results

Thm. $\pi_f(G) \leq 3$ for every G, with equality iff $K_4 \subseteq G$.

Thm. $\pi_f(K_{m,m}) = 3 \left(1 - \frac{1}{m+1}\right) = \pi_f(K_{m+1,m})$.

Thm. $\pi_f(K_{m+1,qm}) = 3 \left(1 - \frac{(q+1)m-2}{(2m+1)mq-m-2}\right)$.

Thm. $\pi_f(K_{m,m,m}) = 3 \left(1 - \frac{1}{2m+1}\right) = \pi_f(K_{m+1,m,m})$.

Thm. $\pi_f(C_n) = \frac{n}{n-2}$.

Thm. $\pi_f(Petersen) = \frac{30}{17}; \quad \pi_f(Heawood) = \frac{28}{17}$.

Thm. $\pi_f(G) < \sqrt{2}$ when G is a tree.

Thm. $\pi_f(G) = \frac{4m-2}{3m-1}$ when G is subdivided $K_{1,2m}$.
Linear Programs

Covering problems are integer linear programs. $\tau(H)$ is the solution to:

\[
\begin{align*}
\text{minimize} & \quad \sum_{I \in E(H)} x_I \\
\text{subject to} & \quad x_I \in \{0, 1\} \quad \forall I \in E(H) \\
& \quad \sum_{I \ni v} x_I \geq 1 \quad \forall v \in V(H)
\end{align*}
\]
Linear Programs

Covering problems are integer linear programs. \(\tau(H) \) is the solution to:

\[
\begin{align*}
\text{minimize} & \quad \sum_{I \in E(H)} x_I \\
\text{subject to} & \quad x_I \in \{0, 1\} \quad \forall I \in E(H) \\
& \quad \sum_{I \ni v} x_I \geq 1 \quad \forall v \in V(H)
\end{align*}
\]

The linear programming relaxation allows \(x_I \in [0, 1] \), and then the solution is \(\tau_f(H) \).
Linear Programs

Covering problems are integer linear programs. \(\tau(H) \) is the solution to:

\[
\begin{align*}
\text{minimize} & \quad \sum_{I \in E(H)} x_I \\
\text{subject to} & \quad x_I \in \{0, 1\} \quad \forall I \in E(H) \\
& \quad \sum_{I \ni v} x_I \geq 1 \quad \forall v \in V(H)
\end{align*}
\]

The linear programming relaxation allows \(x_I \in [0, 1] \), and then the solution is \(\tau_f(H) \).

In solving a linear program, the values are rational. When the gcd is \(b \) and the optimum is \(a/b \), scaling by \(b \) yields an \((a: b)\)-covering of \(H \); the infimum is a \(\text{min} \).
Converting to a Game

Given a list \mathcal{F} of orderings of $V(G)$, let $a = |\mathcal{F}|$, and let all pairs of nonincident edges be separated b times.
Given a list \mathcal{F} of orderings of $V(G)$, let $a = |\mathcal{F}|$, and let all pairs of nonincident edges be separated b times. We defined $\pi_f(G) = \inf_{\mathcal{F}} a/b$, the LP relaxation of $\pi(G)$.
Converting to a Game

Given a list \mathcal{F} of orderings of $V(G)$, let $a = |\mathcal{F}|$, and let all pairs of nonincident edges be separated b times. We defined $\pi_f(G) = \inf_{\mathcal{F}} a/b$, the LP relaxation of $\pi(G)$. For proofs, it helps to study $\pi_f(G)$ as a matrix game.
Converting to a Game

Given a list \mathcal{F} of orderings of $V(G)$, let $a = |\mathcal{F}|$, and let all pairs of nonincident edges be separated b times. We defined $\pi_f(G) = \inf_{\mathcal{F}} a/b$, the LP relaxation of $\pi(G)$. For proofs, it helps to study $\pi_f(G)$ as a matrix game.

Let $M(G)$ be the 0, 1-matrix with rows = orderings and columns = pairs of non-incident edges such that $M_{i,j} = 1 \Leftrightarrow$ ordering i separates pair j.
Converting to a Game

Given a list \mathcal{F} of orderings of $V(G)$, let $a = |\mathcal{F}|$, and let all pairs of nonincident edges be separated b times.

We defined $\pi_f(G) = \inf_{\mathcal{F}} a/b$, the LP relaxation of $\pi(G)$.

For proofs, it helps to study $\pi_f(G)$ as a matrix game.

Let $M(G)$ be the $0, 1$-matrix with rows = orderings and columns = pairs of non-incident edges such that $M_{i,j} = 1 \iff$ ordering i separates pair j.

When Ordering Player picks i and Pair Player picks j, outcome is $M_{i,j}$. Players may make random choices.
Converting to a Game

Given a list \(\mathcal{F} \) of orderings of \(V(G) \), let \(a = |\mathcal{F}| \), and let all pairs of nonincident edges be separated \(b \) times.

We defined \(\pi_f(G) = \inf_{\mathcal{F}} a/b \), the LP relaxation of \(\pi(G) \).

For proofs, it helps to study \(\pi_f(G) \) as a matrix game.

Let \(M(G) \) be the 0, 1-matrix with rows = orderings and columns = pairs of non-incident edges such that \(M_{i,j} = 1 \iff \text{ordering } i \text{ separates pair } j \).

When Ordering Player picks \(i \) and Pair Player picks \(j \), outcome is \(M_{i,j} \). Players may make random choices.

The value is the best expected outcome each player can guarantee, where Ordering Player wants to maximize and Pair Player to minimize (prob of separation).
Converting to a Game

Given a list \mathcal{F} of orderings of $V(G)$, let $a = |\mathcal{F}|$, and let all pairs of nonincident edges be separated b times. We defined $\pi_f(G) = \inf_{\mathcal{F}} a/b$, the LP relaxation of $\pi(G)$. For proofs, it helps to study $\pi_f(G)$ as a matrix game.

Let $M(G)$ be the 0, 1-matrix with rows = orderings and columns = pairs of non-incident edges such that $M_{i,j} = 1 \iff$ ordering i separates pair j.

When Ordering Player picks i and Pair Player picks j, outcome is $M_{i,j}$. Players may make random choices. The value is the best expected outcome each player can guarantee, where Ordering Player wants to maximize and Pair Player to minimize (prob of separation).

Prop. The value of the matrix game on $M(G)$ is $\frac{1}{\pi_f(G)}$.
The Game as a Linear Program

Let $S = \text{rows (orderings)}$, $P = \text{cols (edge pairs)}$.

$S_p = \text{set of orderings separating a pair } p$.

$P_\sigma = \text{set of pairs separated by an ordering } \sigma$.

The Game as a Linear Program

Let $S = \text{rows (orderings)}$, $P = \text{cols (edge pairs)}$

$S_p = \text{set of orderings separating a pair } p$

$P_\sigma = \text{set of pairs separated by an ordering } \sigma$

Row player wants to choose weights χ_σ for $\sigma \in S$ to

maximize t

subject to $\chi_\sigma \geq 0 \quad \forall \sigma \in S$

$\sum_{\sigma \in S} \chi_\sigma = 1$ and $\sum_{\sigma \in S_p} \chi_\sigma \geq t \quad \forall p \in P$
The Game as a Linear Program

Let $S = \text{rows (orderings)}$, $P = \text{cols (edge pairs)}$

$S_p = \text{set of orderings separating a pair } p$.

$P_\sigma = \text{set of pairs separated by an ordering } \sigma$.

Row player wants to choose weights x_σ for $\sigma \in S$ to

maximize t

subject to $x_\sigma \geq 0 \quad \forall \ \sigma \in S$

$\sum_{\sigma \in S} x_\sigma = 1$ and $\sum_{\sigma \in S_p} x_\sigma \geq t \quad \forall \ p \in P$

Prop. $\pi_f(G) = 1/t^*$, where t^* is the value of the game.
The Game as a Linear Program

Let $S =$ rows (orderings), $P =$ cols (edge pairs)
$S_p =$ set of orderings separating a pair p.
$P_\sigma =$ set of pairs separated by an ordering σ.

Row player wants to choose weights x_σ for $\sigma \in S$ to

\[
\begin{align*}
\text{maximize} & \quad t \\
\text{subject to} & \quad x_\sigma \geq 0 \quad \forall \sigma \in S \\
\sum_{\sigma \in S} x_\sigma &= 1 \quad \text{and} \quad \sum_{\sigma \in S_p} x_\sigma \geq t \quad \forall p \in P
\end{align*}
\]

Prop. $\pi_f(G) = 1/t^*$, where t^* is the value of the game.

Pf. After dividing everything by t^*, the solution minimizes $\sum x_\sigma$ such that the covering constraints hold.
The Game as a Linear Program

Let $S = \text{rows (orderings)}$, $P = \text{cols (edge pairs)}$

$S_p = \text{set of orderings separating a pair } p$.

$P_\sigma = \text{set of pairs separated by an ordering } \sigma$.

Row player wants to choose weights χ_σ for $\sigma \in S$ to

maximize t

subject to $\chi_\sigma \geq 0 \quad \forall \ \sigma \in S$

$\sum_{\sigma \in S} \chi_\sigma = 1$ and $\sum_{\sigma \in S_p} \chi_\sigma \geq t \quad \forall p \in P$

Prop. $\pi_f(G) = 1/t^*$, where t^* is the value of the game.

Pf. After dividing everything by t^*, the solution minimizes $\sum \chi_\sigma$ such that the covering constraints hold.

Cor. Always $\pi_f(G)$ is rational.
Strategy

Idea: To prove $\pi_f(G) = 1/t$, find distributions:
Strategy

Idea: To prove $\pi_f(G) = 1/t$, find distributions: χ over S such that $\sum_{\sigma \in S_p} x_\sigma \geq t$ for all $p \in P$ (upper bd.).
Strategy

Idea: To prove $\pi_f(G) = 1/t$, find distributions: x over S such that $\sum_{\sigma \in S_p} x_{\sigma} \geq t$ for all $p \in P$ (upper bd.).

$\forall p \in P$, we have $\Pr(p \text{ is separated}) \geq t$.
Strategy

Idea: To prove $\pi_f(G) = 1/t$, find distributions:

x over S such that $\sum_{\sigma \in S_p} x_\sigma \geq t$ for all $p \in P$ (upper bd.).

$\forall p \in P$, we have $\mathbb{P}(p \text{ is separated}) \geq t$.

y over P such that $\sum_{p \in P_\sigma} y_p \leq t$ for all $\sigma \in S$ (lower bd.).
Strategy

Idea: To prove $\pi_f(G) = 1/t$, find distributions:

- x over S such that $\sum_{\sigma \in S_p} x_\sigma \geq t$ for all $p \in P$ (upper bd.).
 - $\forall p \in P$, we have $P(p$ is separated$) \geq t$.

- y over P such that $\sum_{p \in P_\sigma} y_p \leq t$ for all $\sigma \in S$ (lower bd.).
 - $\forall \sigma \in S$, we have $E(\#$ pairs separated by $\sigma) \leq t$.
Strategy

Idea: To prove $\pi_f(G) = 1/t$, find distributions:

- χ over S such that $\sum_{\sigma \in S_p} \chi_\sigma \geq t$ for all $p \in P$ (upper bd.).
 - $\forall p \in P$, we have $\mathbb{P}(p$ is separated $) \geq t$.

- γ over P such that $\sum_{p \in P_\sigma} \gamma_p \leq t$ for all $\sigma \in S$ (lower bd.).
 - $\forall \sigma \in S$, we have $\mathbb{E}($#pairs separated by $\sigma) \leq t$.

Prop. $\pi_f(G) \leq 3$ for every graph G.
Strategy

Idea: To prove $\pi_f(G) = 1/t$, find distributions:
- χ over S such that $\sum_{\sigma \in S_p} \chi_\sigma \geq t$ for all $p \in P$ (upper bd.).
 - $\forall p \in P$, we have $\mathbb{P}(p \text{ is separated}) \geq t$.
- ψ over P such that $\sum_{p \in P_\sigma} \psi_p \leq t$ for all $\sigma \in S$ (lower bd.).
 - $\forall \sigma \in S$, we have $\mathbb{E}(\# \text{pairs separated by } \sigma) \leq t$.

Prop. $\pi_f(G) \leq 3$ for every graph G.

Pf. For χ: Make all orderings of $V(G)$ equally likely.
Strategy

Idea: To prove $\pi_f(G) = 1/t$, find distributions:

- x over S such that $\sum_{\sigma \in S_p} x_{\sigma} \geq t$ for all $p \in P$ (upper bd.).
 - $\forall p \in P$, we have $\mathbb{P}(p \text{ is separated}) \geq t$.
- y over P such that $\sum_{\sigma \in S} y_p \leq t$ for all $\sigma \in S$ (lower bd.).
 - $\forall \sigma \in S$, we have $\mathbb{E}(\# \text{pairs separated by } \sigma) \leq t$.

Prop. $\pi_f(G) \leq 3$ for every graph G.

Pf. For x: Make all orderings of $V(G)$ equally likely.
Any four vertices appear in each order equally often.
For any uv and wz, we have $\mathbb{P}(uv : wz) = 1/3$.

\[\blacksquare\]
Strategy

Idea: To prove $\pi_f(G) = 1/t$, find distributions:
- x over S such that $\sum_{\sigma \in S_p} x_\sigma \geq t$ for all $p \in P$ (upper bd.).
 - $\forall p \in P$, we have $\mathbb{P}(p \text{ is separated}) \geq t$.
- y over P such that $\sum_{p \in P_\sigma} y_p \leq t$ for all $\sigma \in S$ (lower bd.).
 - $\forall \sigma \in S$, we have $\mathbb{E}(\# \text{ pairs separated by } \sigma) \leq t$.

Prop. $\pi_f(G) \leq 3$ for every graph G.

Pf. For x: Make all orderings of $V(G)$ equally likely.
Any four vertices appear in each order equally often.
For any uv and wz, we have $\mathbb{P}(uv : wz) = 1/3$.

Prop. $\pi_f(G) = 3$ if $K_4 \subseteq G$.
Strategy

Idea: To prove $\pi_f(G) = 1/t$, find distributions:

- x over S such that $\sum_{\sigma \in S_p} x_\sigma \geq t$ for all $p \in P$ (upper bd.).
 - $\forall p \in P$, we have $\mathbb{P}(p \text{ is separated}) \geq t$.

- y over P such that $\sum_{p \in P_\sigma} y_p \leq t$ for all $\sigma \in S$ (lower bd.).
 - $\forall \sigma \in S$, we have $\mathbb{E}(\# \text{pairs separated by } \sigma) \leq t$.

Prop. $\pi_f(G) \leq 3$ for every graph G.

Pf. For x: Make all orderings of $V(G)$ equally likely. Any four vertices appear in each order equally often. For any uv and wz, we have $\mathbb{P}(uv : wz) = 1/3$. □

Prop. $\pi_f(G) = 3$ if $K_4 \subseteq G$.

Pf. For y: Make the three pairs of nonincident edges in a copy of K_4 equally likely (play no other pairs).
Strategy

Idea: To prove $\pi_f(G) = 1/t$, find distributions:

- x over S such that $\sum_{\sigma \in S_p} x_\sigma \geq t$ for all $p \in P$ (upper bd.).

 $\forall p \in P$, we have $\mathbb{P}(p \text{ is separated}) \geq t$.

- y over P such that $\sum_{p \in P_\sigma} y_p \leq t$ for all $\sigma \in S$ (lower bd.).

 $\forall \sigma \in S$, we have $\mathbb{E}(\# \text{pairs separated by } \sigma) \leq t$.

Prop. $\pi_f(G) \leq 3$ for every graph G.

Pf. For x: Make all orderings of $V(G)$ equally likely.

Any four vertices appear in each order equally often. For any uv and wz, we have $\mathbb{P}(uv : wz) = 1/3$.

Prop. $\pi_f(G) = 3$ if $K_4 \subseteq G$.

Pf. For y: Make the three pairs of nonincident edges in a copy of K_4 equally likely (play no other pairs).

$\forall \sigma$, we have $\mathbb{E}(\# \text{pairs sep'd by } \sigma \text{ against } y) = 1/3$.

Characterization of Extreme Graphs

Thm. If $K_4 \not\subseteq G$, then $\pi_f(G) \leq 3 \left(1 - \frac{12}{n^4} + O\left(\frac{1}{n^5}\right)\right)$.

Characterization of Extreme Graphs

Thm. If $K_4 \not\subseteq G$, then $\pi_f(G) \leq 3 \left(1 - \frac{12}{n^4} + O\left(\frac{1}{n^5}\right)\right)$.

Pf. Idea: $n!$ equally likely orderings separate any pair with probability $1/3$; increase weight on good orderings.
Characterization of Extreme Graphs

Thm. If $K_4 \not\subseteq G$, then $\pi_f(G) \leq 3 \left(1 - \frac{12}{n^4} + O\left(\frac{1}{n^5} \right) \right)$.

Pf. Idea: $n!$ equally likely orderings separate any pair with probability $1/3$; increase weight on good orderings. Among vertices $\{a, b, c, d\}$, we may assume $ac \notin E(G)$.
Characterization of Extreme Graphs

Thm. If $K_4 \notin G$, then $\pi_f(G) \leq 3 \left(1 - \frac{12}{n^4} + O\left(\frac{1}{n^5}\right) \right)$.

Pf. Idea: $n!$ equally likely orderings separate any pair with probability $1/3$; increase weight on good orderings. Among vertices $\{a, b, c, d\}$, we may assume $ac \notin E(G)$. For ordering τ of $V(G) - \{a, b, c, d\}$, replace 24 that end τ with 4 starting $abcd$ or $bcad$, 8 starting $cdab$ or $adbc$.
Characterization of Extreme Graphs

Thm. If $K_4 \not\subseteq G$, then $\pi_f(G) \leq 3 \left(1 - \frac{12}{n^4} + O\left(\frac{1}{n^5}\right) \right)$.

Pf. Idea: $n!$ equally likely orderings separate any pair with probability $1/3$; increase weight on good orderings. Among vertices $\{a, b, c, d\}$, we may assume $ac \notin E(G)$.

For ordering τ of $V(G) - \{a, b, c, d\}$, replace 24 that end τ with 4 starting $abcd$ or $bcad$, 8 starting $cdba$ or $adbc$.

The pairs $ab : cd$ and $ad : bc$ are separated 8 times in the usual 24 but 12 times in the new list. The increase is $\frac{4(n-4)!}{n!}$; separation probability now $\geq \frac{1}{3} + \frac{4(n-4)!}{n!} = p$.
Characterization of Extreme Graphs

Thm. If $K_4 \not\subseteq G$, then $\pi_f(G) \leq 3 \left(1 - \frac{12}{n^4} + O\left(\frac{1}{n^5}\right) \right)$.

Pf. Idea: $n!$ equally likely orderings separate any pair with probability $1/3$; increase weight on good orderings. Among vertices $\{a, b, c, d\}$, we may assume $ac \not\in E(G)$.

For ordering τ of $V(G) - \{a, b, c, d\}$, replace 24 that end τ with 4 starting $abcd$ or $bcad$, 8 starting $cdba$ or $adbc$.

The pairs $ab : cd$ and $ad : bc$ are separated 8 times in the usual 24 but 12 times in the new list. The increase is $\frac{4(n-4)!}{n!}$; separation probability now $\geq \frac{1}{3} + \frac{4(n-4)!}{n!} = p$.

Other pairs involving any of ab, cd, bc, ad, bd are still separated at least 8 times among these 24.
Characterization of Extreme Graphs

Thm. If $K_4 \not\subseteq G$, then $\pi_f(G) \leq 3 \left(1 - \frac{12}{n^4} + O\left(\frac{1}{n^5}\right) \right)$.

Pf. Idea: $n!$ equally likely orderings separate any pair with probability $1/3$; increase weight on good orderings. Among vertices $\{a, b, c, d\}$, we may assume $ac \not\in E(G)$.

For ordering τ of $V(G) - \{a, b, c, d\}$, replace 24 that end τ with 4 starting $abcd$ or $bcad$, 8 starting $cdba$ or $adbc$.

The pairs $ab : cd$ and $ad : bc$ are separated 8 times in the usual 24 but 12 times in the new list. The increase is $\frac{4(n-4)!}{n!}$; separation probability now $\geq \frac{1}{3} + \frac{4(n-4)!}{n!} = p$.

Other pairs involving any of ab, cd, bc, ad, bd are still separated at least 8 times among these 24.

This ordering strategy separates each nonincident pair with probability at least p, so $\pi_f(G) \leq 1/p$. □
Complete Bipartite Graphs

Even for bipartite G, the bound of 3 cannot be reduced.
Complete Bipartite Graphs

Even for bipartite G, the bound of 3 cannot be reduced.

Thm. $\pi_f(K_{m,m}) = 3 \left(1 - \frac{1}{m+1}\right) = \frac{3m}{m+1}$.
Complete Bipartite Graphs

Even for bipartite G, the bound of 3 cannot be reduced.

Thm. $\pi_f(K_{m,m}) = 3 \left(1 - \frac{1}{m+1} \right) = \frac{3m}{m+1}$.

Pf. Give game strategies for $t = \frac{m+1}{3m}$.
Complete Bipartite Graphs

Even for bipartite G, the bound of 3 cannot be reduced.

Thm. $\pi_f(K_{m,m}) = 3 \left(1 - \frac{1}{m+1} \right) = \frac{3m}{m+1}$.

Pf. Give game strategies for $t = \frac{m+1}{3m}$.

Pair player: Play all $2\binom{m}{2}\binom{m}{2}$ edge pairs equally.
Complete Bipartite Graphs

Even for bipartite G, the bound of 3 cannot be reduced.

Thm. $\pi_f(K_{m,m}) = 3 \left(1 - \frac{1}{m+1} \right) = \frac{3m}{m+1}$.

Pf. Give game strategies for $t = \frac{m+1}{3m}$.

- **Pair player:** Play all $2\binom{m}{2}\binom{m}{2}$ edge pairs equally.
- Show every σ separates at most $\frac{m+1}{3m}2\binom{m}{2}^2$ pairs.
Complete Bipartite Graphs

Even for bipartite G, the bound of 3 cannot be reduced.

Thm. $\pi_f(K_{m,m}) = 3 \left(1 - \frac{1}{m+1}\right) = \frac{3m}{m+1}$.

Pf. Give game strategies for $t = \frac{m+1}{3m}$.

- **Pair player:** Play all $2 \binom{m}{2} \binom{m}{2}$ edge pairs equally.
- **Ordering player:** Play all orderings ν_1, \ldots, ν_{2m} such that $\nu_{2i-1} \nu_{2i} \in E(K_{m,m})$ for $1 \leq i \leq m$, equally likely.
Complete Bipartite Graphs

Even for bipartite G, the bound of 3 cannot be reduced.

Thm. $\pi_f(K_{m,m}) = 3 \left(1 - \frac{1}{m+1}\right) = \frac{3m}{m+1}$.

Pf. Give game strategies for $t = \frac{m+1}{3m}$.

- **Pair player:** Play all $2\binom{m}{2}\binom{m}{2}$ edge pairs equally. Show every σ separates at most $\frac{m+1}{3m}2\binom{m}{2}^2$ pairs.

- **Ordering player:** Play all orderings ν_1, \ldots, ν_{2m} such that $\nu_{2i-1}\nu_{2i} \in E(K_{m,m})$ for $1 \leq i \leq m$, equally likely. If such an ordering separates $\frac{m+1}{3m}2\binom{m}{2}^2$ pairs, then by symmetry each pair is separated with probability $\frac{m+1}{3m}$.
Counting Separated Pairs

Order x_1, \ldots, x_m and y_1, \ldots, y_m separately, then order each $\{x_i, y_i\}$. How many edge pairs separated?

$$\ldots, x_i, y_i, \ldots, y_j, x_j, \ldots, x_k, y_k, \ldots, x_l y_l, \ldots$$
Counting Separated Pairs

Order x_1, \ldots, x_m and y_1, \ldots, y_m separately, then order each $\{x_i, y_i\}$. How many edge pairs separated?

$$\ldots, x_i, y_i, \ldots, y_j, x_j, \ldots, x_k, y_k, \ldots, x_l y_l, \ldots$$

Pairs hitting four indices, $i < j < k < l$, must be $x_i y_j$ or $y_i x_j$ and $x_k y_l$ or $y_k x_l$. Hence $\exists 4\binom{m}{4}$ such pairs.
Counting Separated Pairs

Order x_1, \ldots, x_m and y_1, \ldots, y_m separately, then order each $\{x_i, y_i\}$. How many edge pairs separated?

$$\ldots, x_i, y_i, \ldots, y_j, x_j, \ldots, x_k, y_k, \ldots, x_l y_l, \ldots$$

Pairs hitting four indices, $i < j < k < l$, must be $x_i y_j$ or $y_i x_j$ and $x_k y_l$ or $y_k x_l$. Hence $\exists 4 \binom{m}{4}$ such pairs.

Using three indices, $i < j < k$, one index contributes two vertices, completed two ways if it is i or k, only one way if it is j. Hence $\exists 5 \binom{m}{3}$ pairs are separated.
Counting Separated Pairs

Order \(x_1, \ldots, x_m\) and \(y_1, \ldots, y_m\) separately, then order each \(\{x_i, y_i\}\). How many edge pairs separated?

\[\ldots, x_i, y_i, \ldots, y_j, x_j, \ldots, x_k, y_k, \ldots, x_l y_l, \ldots\]

Pairs hitting four indices, \(i < j < k < l\), must be \(x_i y_j\) or \(y_i x_j\) and \(x_k y_l\) or \(y_k x_l\). Hence \(\exists 4 \binom{m}{4}\) such pairs.

Using three indices, \(i < j < k\), one index contributes two vertices, completed two ways if it is \(i\) or \(k\), only one way if it is \(j\). Hence \(\exists 5 \binom{m}{3}\) pairs are separated.

Using two indices \(i < j\), one pair \(x_i y_i : x_j y_j\) is separated.
Counting Separated Pairs

Order \(x_1, \ldots, x_m \) and \(y_1, \ldots, y_m \) separately, then order each \(\{x_i, y_i\} \). How many edge pairs separated?

\[
\ldots, x_i, y_i, \ldots, y_j, x_j, \ldots, x_k, y_k, \ldots, x_l y_l, \ldots
\]

Pairs hitting four indices, \(i < j < k < l \), must be \(x_i y_j \) or \(y_i x_j \) and \(x_k y_l \) or \(y_k x_l \). Hence \(\exists 4 \binom{m}{4} \) such pairs.

Using three indices, \(i < j < k \), one index contributes two vertices, completed two ways if it is \(i \) or \(k \), only one way if it is \(j \). Hence \(\exists 5 \binom{m}{3} \) pairs are separated.

Using two indices \(i < j \), one pair \(x_i y_i : x_j y_j \) is separated.

Hence \(4 \binom{m}{4} + 5 \binom{m}{3} + \binom{m}{2} \) pairs are separated.
Counting Separated Pairs

Order x_1, \ldots, x_m and y_1, \ldots, y_m separately, then order each $\{x_i, y_i\}$. How many edge pairs separated?

$$\ldots, x_i, y_i, \ldots, y_j, x_j, \ldots, x_k, y_k, \ldots, x_l y_l, \ldots$$

Pairs hitting four indices, $i < j < k < l$, must be $x_i y_j$ or $y_i x_j$ and $x_k y_l$ or $y_k x_l$. Hence $\exists 4\binom{m}{4}$ such pairs.

Using three indices, $i < j < k$, one index contributes two vertices, completed two ways if it is i or k, only one way if it is j. Hence $\exists 5\binom{m}{3}$ pairs are separated.

Using two indices $i < j$, one pair $x_i y_i : x_j y_j$ is separated.

Hence $4\binom{m}{4} + 5\binom{m}{3} + \binom{m}{2}$ pairs are separated.

Miraculously, $4\binom{m}{4} + 5\binom{m}{3} + \binom{m}{2} = \frac{m+1}{3m} 2\binom{m}{2}^2$.
No Ordering Separates More Pairs

For an ordering σ not of that form: by symmetry it orders X and Y as x_1, \ldots, x_m and y_1, \ldots, y_m but puts y_j immediately before x_i for some i and j with $j < i$.

$\sigma: \ldots, y_j, x_i, \ldots$
For an ordering \(\sigma \) not of that form: by symmetry it orders \(X \) and \(Y \) as \(x_1, \ldots, x_m \) and \(y_1, \ldots, y_m \) but puts \(y_j \) immediately before \(x_i \) for some \(i \) and \(j \) with \(j < i \).

\[
\sigma : \ldots, y_j, x_i, \ldots \quad \sigma' : \ldots, x_i, y_j, \ldots
\]

Form \(\sigma' \) from \(\sigma \) by interchanging \(y_j \) and \(x_i \).
No Ordering Separates More Pairs

For an ordering σ not of that form: by symmetry it orders X and Y as x_1, \ldots, x_m and y_1, \ldots, y_m but puts y_j immediately before x_i for some i and j with $j < i$.

$$\sigma: \ldots, y_j, x_i, \ldots \quad \sigma': \ldots, x_i, y_j, \ldots$$

Form σ' from σ by interchanging y_j and x_i.

Any pair separated by exactly one of σ and σ' has x_i and y_j as endpoints of distinct edges.
No Ordering Separates More Pairs

For an ordering σ not of that form: by symmetry it orders X and Y as x_1, \ldots, x_m and y_1, \ldots, y_m but puts y_j immediately before x_i for some i and j with $j < i$.

\[
\sigma : \ldots, y_j, x_i, \ldots \quad \sigma' : \ldots, x_i, y_j, \ldots
\]

Form σ' from σ by interchanging y_j and x_i.

Any pair separated by exactly one of σ and σ' has x_i and y_j as endpoints of distinct edges.

There are $(i - 1)(m - j)$ such pairs in σ and $(j - 1)(m - i)$ such pairs in σ'.
No Ordering Separates More Pairs

For an ordering σ not of that form: by symmetry it orders X and Y as x_1, \ldots, x_m and y_1, \ldots, y_m but puts y_j immediately before x_i for some i and j with $j < i$.

$$\sigma: \ldots, y_j, x_i, \ldots \quad \sigma': \ldots, x_i, y_j, \ldots$$

Form σ' from σ by interchanging y_j and x_i.

Any pair separated by exactly one of σ and σ' has x_i and y_j as endpoints of distinct edges.

There are $(i - 1)(m - j)$ such pairs in σ and $(j - 1)(m - i)$ such pairs in σ'.

Since $m \geq 2$ and $j > i$, comparing $mi + j$ and $mj + i$ shows that σ separates fewer pairs than σ'.
No Ordering Separates More Pairs

For an ordering σ not of that form: by symmetry it orders X and Y as x_1, \ldots, x_m and y_1, \ldots, y_m but puts y_j immediately before x_i for some i and j with $j < i$.

$$\sigma: \ldots, y_j, x_i, \ldots \quad \sigma': \ldots, x_i, y_j, \ldots$$

Form σ' from σ by interchanging y_j and x_i.

Any pair separated by exactly one of σ and σ' has x_i and y_j as endpoints of distinct edges.

There are $(i - 1)(m - j)$ such pairs in σ and $(j - 1)(m - i)$ such pairs in σ'.

Since $m \geq 2$ and $j > i$, comparing $mi + j$ and $mj + i$ shows that σ separates fewer pairs than σ'.

Hence the game has value $\frac{m+1}{3m}$ and $\pi_f(K_{m,m}) = 3\frac{m}{m+1}$. □
Unbalanced Complete Bipartite Graphs

Thm. \(\pi_f(K_{m+1,q_m}) = 3 \left(1 - \frac{(q+1)m-2}{(2m+1)mq-m-2} \right) \).
Unbalanced Complete Bipartite Graphs

Thm. \(\pi_f(K_{m+1,qm}) = 3 \left(1 - \frac{(q+1)m-2}{(2m+1)mq-m-2} \right) \).

Pf. Pair player: nonincident pairs equally likely.
Unbalanced Complete Bipartite Graphs

Thm. \(\pi_f(K_{m+1, qm}) = 3 \left(1 - \frac{(q+1)m-2}{(2m+1)mq-m-2} \right) \).

Pf. **Pair player**: nonincident pairs equally likely.

Ordering player: play all orderings that alternate one vertex of \(X \) with \(q \) vertices of \(Y \), equally likely.

\[x, y, \ldots, y, x, y, \ldots, y, x \]
Unbalanced Complete Bipartite Graphs

Thm. \(\pi_f(K_{m+1, qm}) = 3 \left(1 - \frac{(q+1)m-2}{(2m+1)mq-m-2}\right). \)

Pf. **Pair player:** nonincident pairs equally likely.

Ordering player: play all orderings that alternate one vertex of \(X \) with \(q \) vertices of \(Y \), equally likely.

\[x, y, \ldots, y, x, y, \ldots, y, x \]

These orderings separate the most pairs, enough so that each nonincident pair is separated with probability

\[\frac{1}{3} \left(1 - \frac{(q+1)m-2}{(2m+1)mq-m-2}\right)^{-1}. \]
\textbf{Thm.} \quad \pi_f(K_{m+1,qm}) = 3 \left(1 - \frac{(q+1)m-2}{(2m+1)mq-m-2} \right).

\textbf{Pf.} \textbf{Pair player:} nonincident pairs equally likely.

\textbf{Ordering player:} play all orderings that alternate one vertex of X with q vertices of Y, equally likely.

\[x, y, \ldots, y, x, y, \ldots, y, x \]

These orderings separate the most pairs, enough so that each nonincident pair is separated with probability

\[\frac{1}{3} \left(1 - \frac{(q+1)m-2}{(2m+1)mq-m-2} \right)^{-1} . \]

\[\lim_{q \to \infty} \pi_f(K_{m+1,qm}) = 3 \left(1 - \frac{1}{2m+1} \right). \]
Complete Tripartite Graphs

Thm. \(\pi_f(K_{m,m,m}) = 3 \left(1 - \frac{1}{2m+1} \right) \)
Complete Tripartite Graphs

Thm. $\pi_f(K_{m,m,m}) = 3 \left(1 - \frac{1}{2m+1}\right) = \frac{6m}{2m+1}$.
Thm. \(\pi_f(K_{m,m,m}) = 3 \left(1 - \frac{1}{2m+1} \right) = \frac{6m}{2m+1}. \)

Pf. **Pair player:** play nonincident pairs that hit all three parts (such as \(x_i y_j \) with \(y_k z_l \)), equally likely.
Complete Tripartite Graphs

Thm. \(\pi_f(K_{m,m,m}) = 3 \left(1 - \frac{1}{2m+1}\right) = \frac{6m}{2m+1}. \)

Pf. **Pair player:** play nonincident pairs that hit all three parts (such as \(x_iy_j \) with \(y_kz_l \)), equally likely.

Against this distribution, the expected number of pairs separated by any ordering is at most \(\frac{2m+1}{6m} \).
Complete Tripartite Graphs

Thm. $\pi_f(K_{m,m,m}) = 3 \left(1 - \frac{1}{2m+1}\right) = \frac{6m}{2m+1}$.

Pf. **Pair player**: play nonincident pairs that hit all three parts (such as $x_i y_j$ with $y_k z_l$), equally likely.

Against this distribution, the expected number of pairs separated by any ordering is at most $\frac{2m+1}{6m}$.

Ordering player: Play all orderings ν_1, \ldots, ν_{3m} with $\nu_{3i-2}, \nu_{3i-1}, \nu_{3i}$ in distinct parts, equally likely.
Thm. \(\pi_f(K_{m,m,m}) = 3 \left(1 - \frac{1}{2m+1}\right) = \frac{6m}{2m+1}. \)

Pf. Pair player: play nonincident pairs that hit all three parts (such as \(x_iy_j \) with \(y_kz_l \)), equally likely.

Against this distribution, the expected number of pairs separated by any ordering is at most \(\frac{2m+1}{6m} \).

Ordering player: Play all orderings \(\nu_1, \ldots, \nu_{3m} \) with \(\nu_{3i-2}, \nu_{3i-1}, \nu_{3i} \) in distinct parts, equally likely.

Each pair hitting three parts separated w. prob. \(\frac{2m+1}{6m} \).
Complete Tripartite Graphs

Thm. \(\pi_f(K_{m,m,m}) = 3 \left(1 - \frac{1}{2m+1}\right) = \frac{6m}{2m+1}. \)

Pf. **Pair player**: play nonincident pairs that hit all three parts (such as \(x_i y_j \) with \(y_k z_l \)), equally likely.

Against this distribution, the expected number of pairs separated by any ordering is at most \(\frac{2m+1}{6m} \).

Ordering player: Play all orderings \(\nu_1, \ldots, \nu_{3m} \) with \(\nu_{3i-2}, \nu_{3i-1}, \nu_{3i} \) in distinct parts, equally likely.

Each pair hitting three parts separated w. prob. \(\frac{2m+1}{6m} \).

Each pair hitting two parts separated w. prob. \(\frac{m+1}{3m} \). □
Complete Tripartite Graphs

Thm. \(\pi_f(K_{m,m,m}) = 3 \left(1 - \frac{1}{2m+1} \right) = \frac{6m}{2m+1}. \)

Pf. **Pair player:** play nonincident pairs that hit all three parts (such as \(x_iy_j \) with \(y_kz_l \)), equally likely.

Against this distribution, the expected number of pairs separated by any ordering is at most \(\frac{2m+1}{6m} \).

Ordering player: Play all orderings \(v_1, \ldots, v_{3m} \) with \(v_{3i-2}, v_{3i-1}, v_{3i} \) in distinct parts, equally likely.

Each pair hitting three parts separated w. prob. \(\frac{2m+1}{6m} \).

Each pair hitting two parts separated w. prob. \(\frac{m+1}{3m} \).

** Conj. ** For \(n = 3m \), the \(n \)-vertex \(K_4 \)-free graph maximizing \(\pi_f \) is \(K_{m,m,m} \).
Cycles

Thm. $\pi_f(C_n) = \frac{n}{n-2}$ for $n \geq 4$.
Cycles

Thm. $\pi_f(C_n) = \frac{n}{n-2}$ for $n \geq 4$.

Pf. Upper: For x, use the n cyclic orders equally.
Cycles

Thm. \(\pi_f(C_n) = \frac{n}{n-2} \) for \(n \geq 4 \).

Pf. Upper: For \(x \), use the \(n \) cyclic orders equally. Nonincident \(e \) and \(e' \) are separated unless \(e \) or \(e' \) consists of the first and last vertex: \(\mathbb{P}(e : e') = \frac{n-2}{n} \).
Thm. \(\pi_f(C_n) = \frac{n}{n-2} \) for \(n \geq 4 \).

Pf. Upper: For \(x \), use the \(n \) cyclic orders equally. Nonincident \(e \) and \(e' \) are separated unless \(e \) or \(e' \) consists of the first and last vertex: \(\mathbb{P}(e : e') = \frac{n-2}{n} \).

Lower: For \(y \), play the \(n \) pairs \(v_{i-1}v_i, v_{i+1}v_{i+2} \) equally.
Cycles

Thm. $\pi_f(C_n) = \frac{n}{n-2}$ for $n \geq 4$.

Pf. Upper: For x, use the n cyclic orders equally.
Nonincident e and e' are separated unless e or e'
consists of the first and last vertex: $\mathbb{P}(e : e') = \frac{n-2}{n}$.

![Diagram](image)

Lower: For y, play the n pairs $v_{i-1}v_i, v_{i+1}v_{i+2}$
equally. We show any ordering separates at most $n-2$ of these.
Cycles

Thm. \(\pi_f(C_n) = \frac{n}{n-2} \) for \(n \geq 4 \).

Pf. Upper: For \(x \), use the \(n \) cyclic orders equally. Nonincident \(e \) and \(e' \) are separated unless \(e \) or \(e' \) consists of the first and last vertex: \(\mathbb{P}(e : e') = \frac{n-2}{n} \).

![Diagram of cyclic orders](image)

Lower: For \(y \), play the \(n \) pairs \(v_{i-1}v_i, v_{i+1}v_{i+2} \) equally. We show any ordering separates at most \(n-2 \) of these. Otherwise, by symmetry \(\sigma \) separates them for \(2 \leq i \leq n \), with \(v_1v_2 \) before \(v_3v_4 \).
Cycles

Thm. \(\pi_f(C_n) = \frac{n}{n-2} \) for \(n \geq 4 \).

Pf. Upper: For \(x \), use the \(n \) cyclic orders equally. Nonincident \(e \) and \(e' \) are separated unless \(e \) or \(e' \) consists of the first and last vertex: \(\mathbb{P}(e : e') = \frac{n-2}{n} \).

Lower: For \(y \), play the \(n \) pairs \(\nu_{i-1} \nu_i, \nu_{i+1} \nu_{i+2} \) equally. We show any ordering separates at most \(n-2 \) of these. Otherwise, by symmetry \(\sigma \) separates them for \(2 \leq i \leq n \), with \(\nu_1 \nu_2 \) before \(\nu_3 \nu_4 \).

If \(\nu_i <_\sigma \nu_{i+2} \), then \(\nu_i \nu_{i+1} : \nu_{i+2} \nu_{i+3} \) requires \(\nu_{i+1} <_\sigma \nu_{i+3} \).
Cycles

Thm. \(\pi_f(C_n) = \frac{n}{n-2} \) for \(n \geq 4 \).

Pf. Upper: For \(\pi \), use the \(n \) cyclic orders equally. Nonincident \(e \) and \(e' \) are separated unless \(e \) or \(e' \) consists of the first and last vertex: \(P(e : e') = \frac{n-2}{n} \).

\[\text{• • • • • • • •} \]

Lower: For \(y \), play the \(n \) pairs \(v_{i-1} v_i, v_{i+1} v_{i+2} \) equally. We show any ordering separates at most \(n-2 \) of these. Otherwise, by symmetry \(\sigma \) separates them for \(2 \leq i \leq n \), with \(v_1 v_2 \) before \(v_3 v_4 \).

If \(v_i <_\sigma v_{i+2} \), then \(v_i v_{i+1} : v_{i+2} v_{i+3} \) requires \(v_{i+1} <_\sigma v_{i+3} \).

Iterating, \(v_{n-2} <_\sigma v_n \) and \(v_{n-1} <_\sigma v_1 \).

Now \(v_1 <_\sigma \{ v_3 \text{ or } v_4 \} <_\sigma \cdots <_\sigma v_{n-1} <_\sigma v_1 \). ■
Girth 5

Prop. $\pi_f(Petersen) = \frac{30}{17}$.
Girth 5

Prop. \(\pi_f(Petersen) = \frac{30}{17} \).

Idea: Of the 75 nonincident pairs of edges, 15 are opposite on 6-cycles (Type 1) and 60 are not (Type 2).
Girth 5

Prop. $\pi_f(Petersen) = \frac{30}{17}$.

Idea: Of the 75 nonincident pairs of edges, 15 are opposite on 6-cycles (Type 1) and 60 are not (Type 2).

Pair player: Play the 60 Type 2 pairs, equally. Every ordering separates at most 34 Type 2 pairs: $\pi_f(G) \geq \frac{30}{17}$.
Girth 5

Prop. $\pi_f(Petersen) = \frac{30}{17}$.

Idea: Of the 75 nonincident pairs of edges, 15 are opposite on 6-cycles (Type 1) and 60 are not (Type 2).

Pair player: Play the 60 Type 2 pairs, equally. Every ordering separates at most 34 Type 2 pairs: $\pi_f(G) \geq \frac{30}{17}$.

Ordering player: Use orderings that separate 34 Type 2 pairs and 9 Type 1. Note $\frac{9}{15} > \frac{17}{30}$, so $\pi_f(G) \leq \frac{30}{17}$.
Prop. \(\pi_f(Petersen) = \frac{30}{17} \).

Idea: Of the 75 nonincident pairs of edges, 15 are opposite on 6-cycles (Type 1) and 60 are not (Type 2).

Pair player: Play the 60 Type 2 pairs, equally. Every ordering separates at most 34 Type 2 pairs: \(\pi_f(G) \geq \frac{30}{17} \).

Ordering player: Use orderings that separate 34 Type 2 pairs and 9 Type 1. Note \(\frac{9}{15} > \frac{17}{30} \), so \(\pi_f(G) \leq \frac{30}{17} \).

- \(\pi_f(C_5) = \frac{5}{3} < \frac{30}{17} < 2 = \pi_f(C_4) \)
Girth 5

Prop. \(\pi_f(Petersen) = \frac{30}{17} \).

Idea: Of the 75 nonincident pairs of edges, 15 are opposite on 6-cycles (Type 1) and 60 are not (Type 2).

Pair player: Play the 60 Type 2 pairs, equally. Every ordering separates at most 34 Type 2 pairs: \(\pi_f(G) \geq \frac{30}{17} \).

Ordering player: Use orderings that separate 34 Type 2 pairs and 9 Type 1. Note \(\frac{9}{15} > \frac{17}{30} \), so \(\pi_f(G) \leq \frac{30}{17} \).

- \(\pi_f(C_5) = \frac{5}{3} < \frac{30}{17} < 2 = \pi_f(C_4) \)

Conj. \(\pi_f(G) < 2 \) if \(G \) has no cycle of length at most 4.
Girth 6

Prop. \(\pi_f(Heawood) = \frac{28}{17} \).
Girth 6

Prop. $\pi_f(Heawood) = \frac{28}{17}$.

Like Petersen graph, but searching is harder.
Girth 6

Prop. \(\pi_f(\text{Heawood}) = \frac{28}{17} \).

Like Petersen graph, but searching is harder.

- \(\pi_f(C_6) = \frac{6}{4} < \frac{28}{17} < \frac{5}{3} = \pi_f(C_5) \).
Girth 6

Prop. $\pi_f(\text{Heawood}) = \frac{28}{17}$.

Like Petersen graph, but searching is harder.

- $\pi_f(C_6) = \frac{6}{4} < \frac{28}{17} < \frac{5}{3} = \pi_f(C_5)$.

Ques. $\pi_f(G) < \frac{5}{3}$ if G has no cycle of length at most 5?
Girth 6

Prop. \(\pi_f(\text{Heawood}) = \frac{28}{17} \).

Like Petersen graph, but searching is harder.

- \(\pi_f(C_6) = \frac{6}{4} < \frac{28}{17} < \frac{5}{3} = \pi_f(C_5) \).

Ques. \(\pi_f(G) < \frac{5}{3} \) if \(G \) has no cycle of length at most 5?

Increasing girth suggests better upper bounds on \(\pi_f(G) \) (recall \(\pi_f(C_n) = \frac{n}{n-2} \)), but trees don’t have \(\pi_f(G) = 1 \).
Subdivided Stars

Thm. \(\pi_f(G) = \frac{4m-2}{3m-1} \), where \(G \) is obtained from the star with \(2m \) edges by subdividing each edge.
Subdivided Stars

Thm. \(\pi_f(G) = \frac{4m-2}{3m-1} \), where \(G \) is obtained from the star with \(2m \) edges by subdividing each edge.

\[
\begin{array}{c}
\text{Pf. Ordering Player: } \text{Play all orderings having } \nu \text{ in the middle and consecutive pairs } x_i, y_i \text{ in any order, equally.} \\
\end{array}
\]

\[
\begin{array}{c}
\nu \\
\begin{array}{c}
x_1 \\
y_1 \\
x_2m \\
y_2m
\end{array}
\end{array}
\]
Thm. \(\pi_f(G) = \frac{4m-2}{3m-1} \), where \(G \) is obtained from the star with \(2m \) edges by subdividing each edge.

\[\begin{array}{c}
& \text{\(\nu \)} \\
\text{x}_1 & \text{\(y_1 \)} & \text{\(\text{x}_{2m} \)} & \text{\(\text{y}_{2m} \)} \\
\text{y}_1 & \vdots & \vdots & \vdots \\
\end{array} \]

Pf. Ordering Player: Play all orderings having \(\nu \) in the middle and consecutive pairs \(\text{x}_i, \text{y}_i \) in any order, equally.

\[\begin{array}{c}
\text{x}_2, \text{y}_2, \text{x}_1, \text{y}_1, \text{x}_{2m} \text{y}_{2m}, \nu, \text{x}_4, \text{y}_4, \text{x}_5, \text{y}_5, \text{x}_3, \text{y}_3 \\
\end{array} \]

\[\mathbb{P}(x_i y_i : x_j y_j) = 1. \]

\[\mathbb{P}(x_i y_i : \nu x_j) = [2m^2 + m(m - 1)] \frac{(2m-2)!}{(2m)!} = \frac{3m-1}{4m-2}. \]
Subdivided Stars

Thm. \(\pi_f(G) = \frac{4m-2}{3m-1} \), where \(G \) is obtained from the star with \(2m \) edges by subdividing each edge.

Pf. **Ordering Player:** Play all orderings having \(\nu \) in the middle and consecutive pairs \(x_i, y_i \) in any order, equally.

\[
\begin{align*}
\mathbb{P}(x_iy_i : x_jy_j) &= 1. \\
\mathbb{P}(x_iy_i : \nu x_j) &= \left[2m^2 + m(m - 1)\right] \frac{(2m-2)!}{(2m)!} = \frac{3m-1}{4m-2}.
\end{align*}
\]

Row Player: Play the pairs \(x_iy_i, \nu x_j \) equally.
Subdivided Stars

Thm. \(\pi_f(G) = \frac{4m-2}{3m-1} \), where \(G \) is obtained from the star with \(2m \) edges by subdividing each edge.

Pf. Ordering Player: Play all orderings having \(\nu \) in the middle and consecutive pairs \(x_i, y_i \) in any order, equally.

\[
x_2, y_2, x_1, y_1, x_{2m} y_{2m}, \nu, x_4, y_4, x_5, y_5, x_3, y_3
\]

\[
P(x_i y_i : x_j y_j) = 1.
\]

\[
P(x_i y_i : \nu x_j) = \frac{(2m-2)!}{(2m)!} = \frac{3m-1}{4m-2}.
\]

Row Player: Play the pairs \(x_i y_i, \nu x_j \) equally. Argue that the orderings above are the best.
What Graphs Have $\pi_f(G) = 1$?
What Graphs Have $\pi_f(G) = 1$?

Thm. If G is a tree, then $\pi_f(G) = 1$ if and only if G is a caterpillar (a path plus pendant edges).
What Graphs Have $\pi_f(G) = 1$?

Thm. If G is a tree, then $\pi_f(G) = 1$ if and only if G is a caterpillar (a path plus pendant edges).

A natural ordering separates all nonincident pairs.

Diagram:

```
     1          3          6          9          11         13         15
      |          |          |          |          |          |          |
  2 |  4 |  5 |  7 |  8 | 10 | 12 | 14
```
What Graphs Have $\pi_f(G) = 1$?

Thm. If G is a tree, then $\pi_f(G) = 1$ if and only if G is a caterpillar (a path plus pendant edges).

Pf. A natural ordering separates all nonincident pairs.

A non-caterpillar tree contains Y. Separating its pendant edges prevents inserting ν.

$x_1, y_1, \ldots, x_2, y_2, \ldots, x_3, y_3$
What Graphs Have $\pi_f(G) = 1$?

Thm. If G is a tree, then $\pi_f(G) = 1$ if and only if G is a caterpillar (a path plus pendant edges).

![Graph diagram]

Pf. A natural ordering separates all nonincident pairs.

A non-caterpillar tree contains Y. Separating its pendant edges prevents inserting ν.

If G contains C_n with $n \geq 4$, then $\pi_f(G) \geq \frac{n}{n-2}$.

What about triangles?
What Graphs Have $\pi_f(G) = 1$?

Thm. If G is a tree, then $\pi_f(G) = 1$ if and only if G is a caterpillar (a path plus pendant edges).

Pf. A natural ordering separates all nonincident pairs.

A non-caterpillar tree contains Y. Separating its pendant edges prevents inserting v.

If G contains C_n with $n \geq 4$, then $\pi_f(G) \geq \frac{n}{n-2}$.

What about triangles? Edges can be added to give consecutive spine vertices a common neighbor.
What Graphs Have $\pi_f(G) = 1$?

Thm. If G is a tree, then $\pi_f(G) = 1$ if and only if G is a caterpillar (a path plus pendant edges).

![Graph Diagram]

Pf. A natural ordering separates all nonincident pairs.

A non-caterpillar tree contains Y. Separating its pendant edges prevents inserting ν.

If G contains C_n with $n \geq 4$, then $\pi_f(G) \geq \frac{n}{n-2}$.

What about triangles? Edges can be added to give consecutive spine vertices a common neighbor.

This is the same as the characterization of $\pi(G) = 1$ in B–C–G–M–R [2014], since $\pi_f(G) = 1 \iff \pi(G) = 1$.
Thm. If G is a tree, then $\pi_f(G) < \sqrt{2}$.
Upper Bound for Trees

Thm. If \(G \) is a tree, then \(\pi_f(G) < \sqrt{2} \).

Pf. Root \(G \) at some vertex \(v \). Three types of pairs:

- **Type 1:** \(a \rightarrow c \rightarrow b \)
- **Type 2:** \(a \rightarrow d \rightarrow b \)
- **Type 3:** \(a \rightarrow \) (or any other combination where \(c = w \))
Upper Bound for Trees

Thm. If G is a tree, then $\pi_f(G) < \sqrt{2}$.

Pf. Root G at some vertex v. Three types of pairs:

- **Type 1**:
 - w is the root.
 - $a < c < b < d$

- **Type 2**: $c = w$.
 - $a < d < b$

- **Type 3**: $c = w$.
 - $a < d < b$

Build a probability distribution on orderings so that:
Upper Bound for Trees

Thm. If G is a tree, then $\pi_f(G) < \sqrt{2}$.

Pf. Root G at some vertex v. Three types of pairs:

- **Type 1** pairs: b and c.
- **Type 2** pairs: d and c.
- **Type 3** pairs: b and d.

Build a probability distribution on orderings so that:

- Type 1 pairs separated with probability 1.
Upper Bound for Trees

Thm. If G is a tree, then $\pi_f(G) < \sqrt{2}$.

Pf. Root G at some vertex v. Three types of pairs:

- **Type 1**
 - b \(\cdots\) \(c\)
 - a \(\cdots\) \(w\)

- **Type 2**
 - c \(\cdots\) \(w\)
 - d \(\cdots\) \(a\)

- **Type 3**
 - c \(\cdots\) \(w\)
 - d \(\cdots\) \(a\)

Build a probability distribution on orderings so that:
- Type 1 pairs separated with probability 1.
- Type 2 pairs of are separated with probability $\frac{1}{\sqrt{2}}$.
Thm. If G is a tree, then $\pi_f(G) < \sqrt{2}$.

Pf. Root G at some vertex v. Three types of pairs:

- **Type 1**

- **Type 2**

- **Type 3**

Build a probability distribution on orderings so that:

- Type 1 pairs separated with probability 1.
- Type 2 pairs of are separated with probability $\frac{1}{\sqrt{2}}$.
- Type 3 pairs separated with probability $\geq \frac{1}{\sqrt{2}}$.
Algorithm for Upper Bound

Ordering Player generates an ordering with these properties at random, from the root v on down.

![Tree Diagrams]

Type 1

Type 2

Type 3

Let $\beta = \frac{1}{\sqrt{2}}$
Algorithm for Upper Bound

Ordering Player generates an ordering with these properties at random, from the root v on down.

- Children of the root v are assigned to the left or right of v with probability $\frac{1}{2}$, independently.

Let $\beta = \frac{1}{\sqrt{2}}$
Algorithm for Upper Bound

Ordering Player generates an ordering with these properties at random, from the root v on down.

- Children of the root v are assigned to the left or right of v with probability $\frac{1}{2}$, independently.
- Children of a non-root u are put between u and its parent u' with prob $1 - \beta$; opposite from u' with prob β.

Let $\beta = \frac{1}{\sqrt{2}}$
Algorithm for Upper Bound

Ordering Player generates an ordering with these properties at random, from the root ν on down.

- Children of the root ν are assigned to the left or right of ν with probability $\frac{1}{2}$, independently.
- Children of a non-root u are put between u and its parent u' with prob $1 - \beta$; opposite from u' with prob β.
- The children of a vertex are placed next to it by a random permutation on each side.

Let $\beta = \frac{1}{\sqrt{2}}$
Algorithm for Upper Bound

Ordering Player generates an ordering with these properties at random, from the root \(\nu \) on down.

- Children of the root \(\nu \) are assigned to the left or right of \(\nu \) with probability \(\frac{1}{2} \), independently.
- Children of a non-root \(u \) are put between \(u \) and its parent \(u' \) with prob \(1 - \beta \); opposite from \(u' \) with prob \(\beta \).
- The children of a vertex are placed next to it by a random permutation on each side.

Only descendants of \(u \) lie between \(u \) and a child of \(u \).

Let \(\beta = \frac{1}{\sqrt{2}} \)
Algorithm for Upper Bound

Ordering Player generates an ordering with these properties at random, from the root v on down.

- Children of the root v are assigned to the left or right of v with probability $\frac{1}{2}$, independently.
- Children of a non-root u are put between u and its parent u' with prob $1 - \beta$; opposite from u' with prob β.
- The children of a vertex are placed next to it by a random permutation on each side.

Let $\beta = \frac{1}{\sqrt{2}}$

Only descendants of u lie between u and a child of u. Thus Type 1 never fails to be separated.
Probability for Types 2 and 3

Type 2 fails separation only if a is between c and d, meaning the child of d above a is placed between d and its parent: prob $1 - \beta$. Hence $\mathbb{P}(ab : cd) = \beta = \frac{1}{\sqrt{2}}$.

Let $\beta = \frac{1}{\sqrt{2}}$
Probability for Types 2 and 3

Type 2 fails separation only if a is between c and d, meaning the child of d above a is placed between d and its parent: prob $1 - \beta$. Hence $\mathbb{P}(ab : cd) = \beta = \frac{1}{\sqrt{2}}$.

Type 3 also fails only if a is between c and d, needing a and d on the same side of c. This has prob $(1 - \beta)^2 + \beta^2$, and then a is between c and d with prob $\frac{1}{2}$.
Probability for Types 2 and 3

Let $\beta = \frac{1}{\sqrt{2}}$

Type 2 fails separation only if a is between c and d, meaning the child of d above a is placed between d and its parent: prob $1 - \beta$. Hence $\mathbb{P}(ab : cd) = \beta = \frac{1}{\sqrt{2}}$.

Type 3 also fails only if a is between c and d, needing a and d on the same side of c. This has prob $(1 - \beta)^2 + \beta^2$, and then a is between c and d with prob $\frac{1}{2}$.

We compute $\mathbb{P}(ab : cd) = 1 - \frac{1}{2}[1 - 2\beta + 2\beta^2] = \frac{1}{\sqrt{2}}$. □
Probability for Types 2 and 3

Let $\beta = \frac{1}{\sqrt{2}}$

Type 2 fails separation only if a is between c and d, meaning the child of d above a is placed between d and its parent: prob $1 - \beta$. Hence $\mathbb{P}(ab : cd) = \beta = \frac{1}{\sqrt{2}}$.

Type 3 also fails only if a is between c and d, needing a and d on the same side of c. This has prob $(1 - \beta)^2 + \beta^2$, and then a is between c and d with prob $\frac{1}{2}$.

We compute $\mathbb{P}(ab : cd) = 1 - \frac{1}{2}[1 - 2\beta + 2\beta^2] = \frac{1}{\sqrt{2}}$.

If $c = w = \nu$, then a and d are on the same side with prob $\frac{1}{2}$, and $\mathbb{P}(ab : cd) = \frac{3}{4}$.
Open Questions

Ques. On n-vertex trees, what is $\max \pi_f$?

To exceed $\frac{4}{3}$, pair player must play some pairs that are Type 2 and some that are Type 3 without $w = \text{root}$.
Open Questions

Ques. On n-vertex trees, what is $\max \pi_f$?

To exceed $\frac{4}{3}$, pair player must play some pairs that are Type 2 and some that are Type 3 without $w = \text{root}$.

Ques. What is the best bound on $\pi_f(G)$ when G has girth g? Is it at most 2 when $g \geq 5$? smaller?
Open Questions

Ques. On n-vertex trees, what is $\max \pi_f$?

To exceed $\frac{4}{3}$, pair player must play some pairs that are Type 2 and some that are Type 3 without $w = \text{root}$.

Ques. What is the best bound on $\pi_f(G)$ when G has girth g? Is it at most 2 when $g \geq 5$? smaller?

Ques. For n-vertex K_4-free graphs, is $\pi_f(G)$ maximized for G in $\{K_m,m,m, K_{m+1},m,m, K_{m+2},m,m\}$?
Open Questions

Ques. On n-vertex trees, what is $\max \pi_f$?

To exceed $\frac{4}{3}$, pair player must play some pairs that are Type 2 and some that are Type 3 without $w = \text{root}$.

Ques. What is the best bound on $\pi_f(G)$ when G has girth g? Is it at most 2 when $g \geq 5$? smaller?

Ques. For n-vertex K_4-free graphs, is $\pi_f(G)$ maximized for G in $\{K_{m,m,m}, K_{m+1,m,m}, K_{m+2,m,m}\}$?

Ques. For n-vertex bipartite graphs, is $\pi_f(G)$ maximized for G in $\{K_{m,m}, K_{m+1,m}\}$?
Open Questions

Ques. On n-vertex trees, what is $\max \pi_f$?

To exceed $\frac{4}{3}$, pair player must play some pairs that are Type 2 and some that are Type 3 without $w=\text{root}$.

Ques. What is the best bound on $\pi_f(G)$ when G has girth g? Is it at most 2 when $g \geq 5$? smaller?

Ques. For n-vertex K_4-free graphs, is $\pi_f(G)$ maximized for G in $\{K_{m,m,m}, K_{m+1,m,m}, K_{m+2,m,m}\}$?

Ques. For n-vertex bipartite graphs, is $\pi_f(G)$ maximized for G in $\{K_{m,m}, K_{m+1,m}\}$?

Ques. Which rational numbers x satisfy $\pi_f(G)=x$ for some graph G?