Longest Cycles in k-connected Graphs with Given Independence Number

Douglas B. West

Department of Mathematics
University of Illinois at Urbana-Champaign
west@math.uiuc.edu

Joint work with
Suil O and Hehui Wu

slides and paper at
http://www.math.uiuc.edu/~west (click "Preprints")
Spanning Cycles

Sufficient cond. for spanning cycles in n-vertex graphs:

Thm. (Dirac [1952]) $\delta(G) \geq n/2$.

Thm. (Ore [1960]) $d(x)+d(y) \geq n$ whenever $xy \notin E(G)$.

Thm. (Chvátal–Erdős [1972]) $\kappa(G) \geq \alpha(G)$.
Spanning Cycles

Sufficient cond. for spanning cycles in n-vertex graphs:

Thm. (Dirac [1952]) $\delta(G) \geq n/2$.

Thm. (Ore [1960]) $d(x) + d(y) \geq n$ whenever $xy \not\in E(G)$.

Thm. (Chvátal–Erdős [1972]) $\kappa(G) \geq \alpha(G)$.

Long-cycle versions for 2-connected graphs ($c(G) =$ circumference $=$ length of longest cycle):

Thm. (Dirac [1952]) $c(G) \geq \min\{n, 2\delta(G)\}$.

Thm. (Bondy [1971]; also Bermond [1976], Linial [1976]) $c(G) \geq \min\{n,s\}$ if $d(x) + d(y) \geq s$ whenever $xy \not\in E(G)$.
Spanning Cycles

Sufficient cond. for spanning cycles in \(n \)-vertex graphs:

Thm. (Dirac [1952]) \(\delta(G) \geq n/2 \).

Thm. (Ore [1960]) \(d(x) + d(y) \geq n \) whenever \(xy \notin E(G) \).

Thm. (Chvátal–Erdős [1972]) \(\kappa(G) \geq \alpha(G) \).

Long-cycle versions for 2-connected graphs (\(c(G) = \text{circumference} = \text{length of longest cycle} \)):

Thm. (Dirac [1952]) \(c(G) \geq \min\{n, 2\delta(G)\} \).

Thm. (Bondy [1971]; also Bermond [1976], Linial [1976]) \(c(G) \geq \min\{n, s\} \) if \(d(x) + d(y) \geq s \) whenever \(xy \notin E(G) \).

Long-cycle version of Chvátal–Erdős Theorem?
Conjecture

Conj. (Fouquet–Jolivet [1976]) If \(\kappa(G) \leq \alpha(G) \), then
\[
c(G) \geq \frac{k(n+a-k)}{a},
\]
where \(k = \kappa(G) \) and \(a = \alpha(G) \).
Conjecture (Fouquet–Jolivet [1976]) If $\kappa(G) \leq \alpha(G)$, then $c(G) \geq \frac{k(n+a-k)}{a}$, where $k = \kappa(G)$ and $a = \alpha(G)$.

- Equality holds infinitely often: $K_k \vee aK_m$ for $m \geq k \geq 2$.

![Diagram](image-url)
Conjecture

Conj. (Fouquet–Jolivet [1976]) If \(\kappa(G) \leq \alpha(G) \), then \(c(G) \geq \frac{k(n+a-k)}{a} \), where \(k = \kappa(G) \) and \(a = \alpha(G) \).

- Equality holds infinitely often: \(K_k \vee aK_m \) for \(m \geq k \geq 2 \).

\[
n = k + am, \quad \alpha(G) = a, \quad \kappa(G) = k, \quad c(G) = k(1+m) = \frac{k(n+a-k)}{a}.
\]
Conjecture

Conj. (Fouquet–Jolivet [1976]) If $\kappa(G) \leq \alpha(G)$, then $c(G) \geq \frac{k(n+a-k)}{a}$, where $k = \kappa(G)$ and $a = \alpha(G)$.

- Equality holds infinitely often: $K_k \lor aK_m$ for $m \geq k \geq 2$.

$n = k + am$, $\alpha(G) = a$, $\kappa(G) = k$, $c(G) = k(1+m) = \frac{k(n+a-k)}{a}$.

- Known true for $a \in \{k + 1, k + 2\}$ (Fournier [1982]), $k = 2$ (Fournier [1984]), $k = 3$ (Manoussakis [2009]), $k = 4$ & $a < 2k - 1$ (Chen–Hu–Y.Wu [2010(a&b)+])
Conjecture

Conj. (Fouquet–Jolivet [1976]) If \(\kappa(G) \leq \alpha(G) \), then \(c(G) \geq \frac{k(n+a-k)}{a} \), where \(k = \kappa(G) \) and \(a = \alpha(G) \).

- Equality holds infinitely often: \(K_k \sqcup aK_m \) for \(m \geq k \geq 2 \).

\[
n = k + am, \quad \alpha(G) = a, \quad \kappa(G) = k, \quad c(G) = k(1+m) = \frac{k(n+a-k)}{a}.
\]

- Known true for \(a \in \{k + 1, k + 2\} \) (Fournier [1982]), \(k = 2 \) (Fournier [1984]), \(k = 3 \) (Manoussakis [2009]), \(k = 4 \) & \(a < 2k - 1 \) (Chen–Hu–Y.Wu [2010(a&b)+])

Stronger Conjecture

Conj. (Chen–Chen–Liu) If C and C' are distinct cycles in a k-connected graph, then there are cycles D and D' with $V(C) \cup V(C') \subseteq V(D) \cup V(D')$ and $|V(D) \cap V(D')| \geq k$.
Stronger Conjecture

Conj. (Chen–Chen–Liu) If C and C' are distinct cycles in a k-connected graph, then there are cycles D and D' with $V(C) \cup V(C') \subseteq V(D) \cup V(D')$ and $|V(D) \cap V(D')| \geq k$.

- Special cases used in results on the F–J Conjecture by Fournier ($k = 2$) and Manoussakis ($k = 3$).
Stronger Conjecture

Conj. (Chen–Chen–Liu) If C and C' are distinct cycles in a k-connected graph, then there are cycles D and D' with $V(C) \cup V(C') \subseteq V(D) \cup V(D')$ and $|V(D) \cap V(D')| \geq k$.

- Special cases used in results on the F–J Conjecture by Fournier ($k = 2$) and Manoussakis ($k = 3$).

Chen–Hu–Y.Wu [2010b+]: This conjecture implies the Fouquet–Jolivet Conjecture.
Stronger Conjecture

Conj. (Chen–Chen–Liu) If C and C' are distinct cycles in a k-connected graph, then there are cycles D and D' with $V(C) \cup V(C') \subseteq V(D) \cup V(D')$ and $|V(D) \cap V(D')| \geq k$.

- Special cases used in results on the F–J Conjecture by Fournier ($k = 2$) and Manoussakis ($k = 3$).

Chen–Hu–Y.Wu [2010b+]: This conjecture implies the Fouquet–Jolivet Conjecture.

We prove the F–J Conjecture without proving the C–C–L Conjecture.
Thm. (Kouider [1994]) If H is a subgraph of a k-connected graph G, then G has a cycle C such that $\alpha(H - V(C)) \leq \max\{0, \alpha(H) - k\}$.
A Tool

Thm. (Kouider [1994]) If H is a subgraph of a k-connected graph G, then G has a cycle C such that $\alpha(H - V(C)) \leq \max\{0, \alpha(H) - k\}$.

Cor. $\kappa(G) \geq \alpha(G) \Rightarrow$ spanning cycle.

Pf. Set $H = G$.

\[\square\]
A Tool

Thm. (Kouider [1994]) If H is a subgraph of a k-connected graph G, then G has a cycle C such that $\alpha(H - V(C)) \leq \max \{0, \alpha(H) - k\}$.

Cor. $\kappa(G) \geq \alpha(G) \Rightarrow$ spanning cycle.

Pf. Set $H = G$. □

Cor. $c(G) \geq n/\lceil \alpha(G)/\kappa(G) \rceil$ when $\kappa(G) \leq \alpha(G)$.

Pf. Apply Kouider’s Theorem at most $\lceil \alpha(G)/\kappa(G) \rceil$ times to obtain cycles together covering $V(G)$. □
A Tool

Thm. (Kouider [1994]) If H is a subgraph of a k-connected graph G, then G has a cycle C such that $\alpha(H - V(C)) \leq \max \{0, \alpha(H) - k\}$.

Cor. $\kappa(G) \geq \alpha(G) \Rightarrow$ spanning cycle.

Pf. Set $H = G$. □

Cor. $c(G) \geq n/ \lceil \alpha(G)/\kappa(G) \rceil$ when $\kappa(G) \leq \alpha(G)$.

Pf. Apply Kouider’s Theorem at most $\lceil \alpha(G)/\kappa(G) \rceil$ times to obtain cycles together covering $V(G)$. □

- The F–J Conjecture requires $c(G) \geq nk/\alpha + k(1 - k/\alpha)$.
A Tool

Thm. (Kouider [1994]) If H is a subgraph of a k-connected graph G, then G has a cycle C such that $\alpha(H - V(C)) \leq \max\{0, \alpha(H) - k\}$.

Cor. $\kappa(G) \geq \alpha(G) \Rightarrow$ spanning cycle.

Pf. Set $H = G$.

Cor. $c(G) \geq n/\lceil\alpha(G)/\kappa(G)\rceil$ when $\kappa(G) \leq \alpha(G)$.

Pf. Apply Kouider’s Theorem at most $\lceil\alpha(G)/\kappa(G)\rceil$ times to obtain cycles together covering $V(G)$.

- The F–J Conjecture requires $c(G) \geq nk/\alpha + k(1 - k/\alpha)$.

Thm. (Path Lemma) If H is a subgraph of a k-connected graph G, and $u, v \in V(G)$, then G has a u, v-path P with $\alpha(H - V(P)) \leq \max\{0, \alpha(H) - (k - 1)\}$.
The Steps

Thm. (Path Lemma) If H is a subgraph of a k-connected graph G, and $u, v \in V(G)$, then G has a u, v-path P with $\alpha(H - V(P)) \leq \max\{0, \alpha(H) - (k - 1)\}$.
The Steps

Thm. (Path Lemma) If H is a subgraph of a k-connected graph G, and $u, v \in V(G)$, then G has a u, v-path P with $\alpha(H - V(P)) \leq \max\{0, \alpha(H) - (k-1)\}$.

Thm. (Cycle Lemma) Fix $k > 1$. If H and C are disjoint subgraphs of a k-connected graph G, with C being a cycle of length $\geq k$, then G has a cycle C' such that $|V(C) - V(C')| \leq \frac{|V(C)|}{k} - 1$ and $\alpha(H - V(C')) \leq \alpha(H) - 1$.
The Steps

Thm. (Path Lemma) If H is a subgraph of a k-connected graph G, and $u, v \in V(G)$, then G has a u, v-path P with $\alpha(H - V(P)) \leq \max\{0, \alpha(H) - (k - 1)\}$.

Thm. (Cycle Lemma) Fix $k > 1$. If H and C are disjoint subgraphs of a k-connected graph G, with C being a cycle of length $\geq k$, then G has a cycle C' such that $|V(C) - V(C')| \leq \frac{|V(C)|}{k} - 1$ and $\alpha(H - V(C')) \leq \alpha(H) - 1$.

Lem. (Multi-Cycle Lemma) If G is a k-connected graph with independence number α, and $0 \leq \ell \leq \alpha - k$, then there exist cycles C_0, \ldots, C_ℓ satisfying the following:

1. $\alpha(G - \bigcup_{i=0}^{\ell} V(C_i)) \leq \alpha - k - \ell$,
2. $|V(C_i) - \bigcup_{j=0}^{i-1} V(C_j)| \leq \frac{|V(C_0)|}{k} - 1$ for $1 \leq i \leq \ell$.
The Steps

Thm. (Path Lemma) If H is a subgraph of a k-connected graph G, and $u, v \in V(G)$, then G has a u, v-path P with $\alpha(H - V(P)) \leq \max \{0, \alpha(H) - (k-1)\}$.

Thm. (Cycle Lemma) Fix $k > 1$. If H and C are disjoint subgraphs of a k-connected graph G, with C being a cycle of length $\geq k$, then G has a cycle C' such that $|V(C) - V(C')| \leq \frac{|V(C)|}{k} - 1$ and $\alpha(H - V(C')) \leq \alpha(H) - 1$.

Lem. (Multi-Cycle Lemma) If G is a k-connected graph with independence number α, and $0 \leq l \leq \alpha - k$, then there exist cycles C_0, \ldots, C_l satisfying the following:

1. $\alpha(G - \bigcup_{i=0}^l V(C_i)) \leq \alpha - k - l$ \([l = 0 \text{ is Kouider w. } H = G] \)
2. $|V(C_i) - \bigcup_{j=0}^{i-1} V(C_j)| \leq \frac{|V(C_0)|}{k} - 1$ for $1 \leq i \leq l$.

The Steps

Thm. (Path Lemma) If H is a subgraph of a k-connected graph G, and $u, v \in V(G)$, then G has a u, v-path P with $\alpha(H - V(P)) \leq \max\{0, \alpha(H) - (k-1)\}$.

Thm. (Cycle Lemma) Fix $k > 1$. If H and C are disjoint subgraphs of a k-connected graph G, with C being a cycle of length $\geq k$, then G has a cycle C' such that $|V(C) - V(C')| \leq \frac{|V(C)|}{k} - 1$ and $\alpha(H - V(C')) \leq \alpha(H) - 1$.

Lem. (Multi-Cycle Lemma) If G is a k-connected graph with independence number α, and $0 \leq l \leq \alpha - k$, then there exist cycles C_0, \ldots, C_l satisfying the following:

1. $\alpha(G - \bigcup_{i=0}^{l} V(C_i)) \leq \alpha - k - l$ [\(l = 0\) is Kouider w. $H = G$]
2. $|V(C_i) - \bigcup_{j=0}^{i-1} V(C_j)| \leq \frac{|V(C_0)|}{k} - 1$ for $1 \leq i \leq l$.

Lem. (Multi-Cycle) For $0 \leq \ell \leq a - k$, $\exists C_0, \ldots, C_\ell$ with

1. $\alpha(G - \bigcup_{i=0}^{\ell} V(C_i)) \leq a - k - \ell$

2. $|V(C_i) - \bigcup_{j=0}^{i-1} V(C_j)| \leq \frac{|V(C_0)|}{k} - 1$ for $1 \leq i \leq \ell$.

Multi-Cycle \Rightarrow Fouquet–Jolivet
Lem. (Multi-Cycle) For $0 \leq \ell \leq a - k$, $\exists C_0, \ldots, C_\ell$ with

1. $\alpha(G - \bigcup_{i=0}^{\ell} V(C_i)) \leq a - k - \ell$
2. $|V(C_i) - \bigcup_{j=0}^{i-1} V(C_j)| \leq \frac{|V(C_0)|}{k} - 1$ for $1 \leq i \leq \ell$.

Cor. G has a cycle of length at least $\frac{k(n+a-k)}{a}$.
Lem. (Multi-Cycle) For \(0 \leq \ell \leq \alpha - k\), \(\exists C_0, \ldots, C_\ell\) with

(1) \(\alpha(G - \bigcup_{i=0}^\ell V(C_i)) \leq \alpha - k - \ell\)

(2) \(|V(C_i) - \bigcup_{j=0}^{i-1} V(C_j)| \leq \frac{|V(C_0)|}{k} - 1\) for \(1 \leq i \leq \ell\).

Cor. \(G\) has a cycle of length at least \(\frac{k(n + \alpha - k)}{\alpha}\).

Pf. Set \(\ell = \alpha - k\), so \(C_0, \ldots, C_\ell\) cover \(V(G)\), by (1).
Multi-Cycle ⇒ Fouquet–Jolivet

Lem. (Multi-Cycle) For $0 \leq \ell \leq a - k$, $\exists C_0, \ldots, C_\ell$ with

1. $\alpha(G - \bigcup_{i=0}^{\ell} V(C_i)) \leq a - k - \ell$
2. $|V(C_i) - \bigcup_{j=0}^{i-1} V(C_j)| \leq \frac{|V(C_0)|}{k} - 1$ for $1 \leq i \leq \ell$.

Cor. G has a cycle of length at least $\frac{k(n+a-k)}{a}$.

Pf. Set $\ell = a - k$, so C_0, \ldots, C_ℓ cover $V(G)$, by (1). Every vertex appears first in some C_i.
Multi-Cycle ⇒ Fouquet–Jolivet

Lem. (Multi-Cycle) For $0 \leq l \leq a - k$, $\exists C_0, \ldots, C_l$ with

1. $\alpha(G - \bigcup_{i=0}^{l} V(C_i)) \leq a - k - l$
2. $|V(C_i) - \bigcup_{j=0}^{i-1} V(C_j)| \leq \frac{|V(C_0)|}{k} - 1$ for $1 \leq i \leq l$.

Cor. G has a cycle of length at least $\frac{k(n + a - k)}{a}$.

Pf. Set $l = a - k$, so C_0, \ldots, C_l cover $V(G)$, by (1).

Every vertex appears first in some C_i.

Summing $|V(C_0)|$ and (2) for $1 \leq i \leq l$ yields

\[
n = |V(C_0)| + \sum_{i=1}^{l} \left| V(C_i) - \bigcup_{j=0}^{i-1} V(C_j) \right| \\
\leq |V(C_0)| + (a - k)\left(\frac{|V(C_0)|}{k} - 1\right).
\]
Multi-Cycle ⇒ Fouquet–Jolivet

Lem. (Multi-Cycle) For $0 \leq \ell \leq a - k$, $\exists C_0, \ldots, C_\ell$ with

\begin{align*}
(1) & \quad \alpha(G - \bigcup_{i=0}^{\ell} V(C_i)) \leq a - k - \ell \\
(2) & \quad |V(C_i) - \bigcup_{j=0}^{i-1} V(C_j)| \leq \frac{|V(C_0)|}{k} - 1 \quad \text{for } 1 \leq i \leq \ell.
\end{align*}

Cor. G has a cycle of length at least $\frac{k(n+a-k)}{a}$.

Pf. Set $\ell = a - k$, so C_0, \ldots, C_ℓ cover $V(G)$, by (1).
Every vertex appears first in some C_i.
Summing $|V(C_0)|$ and (2) for $1 \leq i \leq \ell$ yields

\begin{align*}
n &= |V(C_0)| + \sum_{i=1}^{\ell} \left| V(C_i) - \bigcup_{j=0}^{i-1} V(C_j) \right| \\
&\leq |V(C_0)| + (a - k) \left(\frac{|V(C_0)|}{k} - 1 \right).
\end{align*}

The inequality simplifies to $|V(C_0)| \geq \frac{k(n+a-k)}{a}$. ■
Lem. (Cycle) Given disjoint H and cycle C (length $\geq k$), $\exists \ C'$ with $|V(C) - V(C')| \leq \frac{|V(C)|}{k} - 1$ and $\alpha(H - V(C')) \leq \alpha(H) - 1$.

Cor. (Multi-Cycle) For $0 \leq l \leq \alpha - k$, $\exists C_0, \ldots, C_l$ with

1. $\alpha(G - \bigcup_{i=0}^{l} V(C_i)) \leq \alpha - k - l$
2. $|V(C_i) - \bigcup_{j=0}^{i-1} V(C_j)| \leq \frac{|V(C_0)|}{k} - 1$ for $1 \leq i \leq l$.
Cycle Lemma \implies Multi-Cycle Lemma

Lem. (Cycle) Given disjoint H and cycle C (length $\geq k$), $\exists C'$ with $|V(C) - V(C')| \leq \frac{|V(C)|}{k} - 1$ and $\alpha(H - V(C')) \leq \alpha(H) - 1$.

Cor. (Multi-Cycle) For $0 \leq l \leq \alpha - k$, $\exists C_0, \ldots, C_l$ with

1. $\alpha(G - \bigcup_{i=0}^{l} V(C_i)) \leq \alpha - k - l$
2. $|V(C_i) - \bigcup_{j=0}^{i-1} V(C_j)| \leq \frac{|V(C_0)|}{k} - 1$ for $1 \leq i \leq l$.

Pf. Use induction on l. For $l = 0$, it is Kouider’s Thm.
Cycle Lemma \[\Rightarrow\] **Multi-Cycle Lemma**

Lem. (Cycle) Given disjoint H and cycle C (length $\geq k$), $\exists C'$ with $|V(C) - V(C')| \leq \frac{|V(C)|}{k} - 1$ and $\alpha(H - V(C')) \leq \alpha(H) - 1$.

Cor. (Multi-Cycle) For $0 \leq \ell \leq \alpha - k$, $\exists C_0, \ldots, C_\ell$ with

1. $\alpha(G - \bigcup_{i=0}^{\ell} V(C_i)) \leq \alpha - k - \ell$
2. $|V(C_i) - \bigcup_{j=0}^{i-1} V(C_j)| \leq \frac{|V(C_0)|}{k} - 1$ for $1 \leq i \leq \ell$.

Pf. Use induction on ℓ. For $\ell = 0$, it is Kouider’s Thm. For $\ell > 0$, we are given $C_0, \ldots, C_{\ell-1}$.
Cycle Lemma ⇒ Multi-Cycle Lemma

Lem. (Cycle) Given disjoint H and cycle C (length $\geq k$), $\exists C'$ with $|V(C) - V(C')| \leq \frac{|V(C)|}{k} - 1$ and $\alpha(H - V(C')) \leq \alpha(H) - 1$.

Cor. (Multi-Cycle) For $0 \leq l \leq \alpha - k$, $\exists C_0, \ldots, C_l$ with

1. $\alpha(G - \bigcup_{i=0}^{l} V(C_i)) \leq \alpha - k - l$
2. $|V(C_i) - \bigcup_{j=0}^{i-1} V(C_j)| \leq \frac{|V(C_0)|}{k} - 1$ for $1 \leq i \leq l$.

Pf. Use induction on l. For $l = 0$, it is Kouider’s Thm. For $l > 0$, we are given C_0, \ldots, C_{l-1}. From (1) for $l = 0$, we have $|V(C_0)| \geq k$.
Cycle Lemma ⇒ Multi-Cycle Lemma

Lem. (Cycle) Given disjoint H and cycle C (length $\geq k$), $\exists C'$ with $|V(C) - V(C')| \leq \frac{|V(C)|}{k} - 1$ and $\alpha(H - V(C')) \leq \alpha(H) - 1$.

Cor. (Multi-Cycle) For $0 \leq l \leq \alpha - k$, $\exists C_0, \ldots, C_l$ with

1. $\alpha(G - \bigcup_{i=0}^{l} V(C_i)) \leq \alpha - k - l$
2. $|V(C_i) - \bigcup_{j=0}^{i-1} V(C_j)| \leq \frac{|V(C_0)|}{k} - 1$ for $1 \leq i \leq l$.

Pf. Use induction on l. For $l = 0$, it is Kouider’s Thm.

For $l > 0$, we are given C_0, \ldots, C_{l-1}.

From (1) for $l = 0$, we have $|V(C_0)| \geq k$.

Let $H = G - \bigcup_{i=0}^{l-1} V(C_i)$; we are given $\alpha(H) \leq \alpha - k - (l-1)$.

Lem. (Cycle) Given disjoint H and cycle C (length $\geq k$), $\exists C'$ with $|V(C) - V(C')| \leq \frac{|V(C)|}{k} - 1$ and $\alpha(H \setminus V(C')) \leq \alpha(H) - 1$.

Cor. (Multi-Cycle) For $0 \leq l \leq a - k$, $\exists C_0, \ldots, C_l$ with

1. $|V(C_i) - \bigcup_{j=0}^{i-1} V(C_j)| \leq \frac{|V(C_0)|}{k} - 1$ for $1 \leq i \leq l$.
2. $\alpha(G - \bigcup_{i=0}^{l} V(C_i)) \leq \alpha(G) - (a - k - l)$

Pf. Use induction on l. For $l = 0$, it is Kouider’s Thm.

For $l > 0$, we are given C_0, \ldots, C_{l-1}.

From (1) for $l = 0$, we have $|V(C_0)| \geq k$.

Let $H = G - \bigcup_{i=0}^{l-1} V(C_i)$; we are given $\alpha(H) \leq \alpha(G) - (a - k - (l - 1))$.

If $\alpha(H) > 0$, apply Cycle Lem. with C_0 as C to get C': $\alpha(H \setminus V(C')) \leq \alpha(H) - k - l$ and $|V(C_0) - V(C')| \leq \frac{|V(C_0)|}{k} - 1$.

Cycle Lemma \Rightarrow Multi-Cycle Lemma

Lem. (Cycle) Given disjoint H and cycle C (length $\geq k$), $\exists C'$ with $|V(C) - V(C')| \leq \frac{|V(C)|}{k} - 1$ and $\alpha(H - V(C')) \leq \alpha(H) - 1$.

Cor. (Multi-Cycle) For $0 \leq l \leq a - k$, $\exists C_0, \ldots, C_l$ with

1. $\alpha(G - \bigcup_{i=0}^{l} V(C_i)) \leq a - k - l$
2. $|V(C_i) - \bigcup_{j=0}^{i-1} V(C_j)| \leq \frac{|V(C_0)|}{k} - 1$ for $1 \leq i \leq l$.

Pf. Use induction on l. For $l = 0$, it is Kouider’s Thm.
For $l > 0$, we are given C_0, \ldots, C_{l-1}.
From (1) for $l = 0$, we have $|V(C_0)| \geq k$.
Let $H = G - \bigcup_{i=0}^{l-1} V(C_i)$; we are given $\alpha(H) \leq a - k - (l-1)$.
If $\alpha(H) > 0$, apply Cycle Lem. with C_0 as C to get C':
$\alpha(H - V(C')) \leq a - k - l$ and $|V(C_0) - V(C')| \leq \frac{|V(C_0)|}{k} - 1$.
Including C' in the list yields (1), but we also need (2).
Lem. (Cycle) Given disjoint H and cycle C (length $\geq k$), \exists C' with $|V(C) - V(C')| \leq \frac{|V(C)|}{k} - 1$ and $\alpha(H - V(C')) \leq \alpha(H) - 1$.

Cor. (Multi-Cycle) For $0 \leq l \leq a - k$, $\exists C_0, \ldots, C_l$ with

1. $\alpha(G - \bigcup_{i=0}^{l} V(C_i)) \leq a - k - l$
2. $|V(C_i) - \bigcup_{j=0}^{i-1} V(C_j)| \leq \frac{|V(C_0)|}{k} - 1$ for $1 \leq i \leq l$.

Pf. Apply Cycle Lem. with C_0 as C to get C':
$\alpha(H - V(C')) \leq a - k - l$ and $|V(C_0) - V(C')| \leq \frac{|V(C_0)|}{k} - 1$.
Lem. (Cycle) Given disjoint H and cycle C (length $\geq k$), \exists C' with $|V(C) - V(C')| \leq \frac{|V(C)|}{k} - 1$ and $\alpha(H - V(C')) \leq \alpha(H) - 1$.

Cor. (Multi-Cycle) For $0 \leq l \leq a - k$, $\exists C_0, \ldots, C_l$ with

1. $\alpha(G - \bigcup_{i=0}^{l} V(C_i)) \leq a - k - l$
2. $|V(C_i) - \bigcup_{j=0}^{i-1} V(C_j)| \leq \frac{|V(C_0)|}{k} - 1$ for $1 \leq i \leq l$.

Pf. Apply Cycle Lem. with C_0 as C to get C': $\alpha(H - V(C')) \leq a - k - l$ and $|V(C_0) - V(C')| \leq \frac{|V(C_0)|}{k} - 1$.

Case 1: $|V(C')| \leq |V(C_0)|$.
Complete the desired list by setting $C_l = C'$; okay since

$$|V(C') - \bigcup_{j=0}^{l-1} V(C_i)| \leq |V(C') - V(C_0)| \leq |V(C_0) - V(C')| \leq \frac{|V(C_0)|}{k} - 1.$$
Lem. (Cycle) Given disjoint H and cycle C (length $\geq k$), $\exists \ C'$ with $|V(C) - V(C')| \leq \frac{|V(C)|}{k} - 1$ and $\alpha(H - V(C')) \leq \alpha(H) - 1$.

Cor. (Multi-Cycle) For $0 \leq l \leq a - k$, $\exists C_0, \ldots, C_l$ with

1. $\alpha(G - \bigcup_{i=0}^{l} V(C_i)) \leq a - k - l$
2. $|V(C_i) - \bigcup_{j=0}^{i-1} V(C_j)| \leq \frac{|V(C_0)|}{k} - 1$ for $1 \leq i \leq l$.

Pf. Apply Cycle Lem. with C_0 as C to get C':

$\alpha(H - V(C')) \leq a - k - l$ and $|V(C_0) - V(C')| \leq \frac{|V(C_0)|}{k} - 1$.

Case 2: $|V(C')| > |V(C_0)|$.
New list: Set $C'_0 = C'$, with $C'_i = C_{i-1}$ for $1 \leq i \leq l$.
Lem. (Cycle) Given disjoint H and cycle C (length $\geq k$), $\exists C'$ with $|V(C) - V(C')| \leq \frac{|V(C)|}{k} - 1$ and $\alpha(H - V(C')) \leq \alpha(H) - 1$.

Cor. (Multi-Cycle) For $0 \leq l \leq a - k$, $\exists C_0, \ldots, C_l$ with
(1) $\alpha(G - \bigcup_{i=0}^{l} V(C_i)) \leq a - k - l$
(2) $|V(C_i) - \bigcup_{j=0}^{i-1} V(C_j)| \leq \frac{|V(C_0)|}{k} - 1$ for $1 \leq i \leq l$.

Pf. Apply Cycle Lem. with C_0 as C to get C': $\alpha(H - V(C')) \leq a - k - l$ and $|V(C_0) - V(C')| \leq \frac{|V(C_0)|}{k} - 1$.

Case 2: $|V(C')| > |V(C_0)|$.
New list: Set $C'_0 = C'$, with $C'_i = C_{i-1}$ for $1 \leq i \leq l$.

$i = 1$: $V(C'_1) - V(C'_0) = V(C_0) - V(C')$.

$i > 1$: $V(C'_i) - \bigcup_{j=0}^{i-1} V(C'_j) \subseteq V(C_{i-1}) - \bigcup_{j=0}^{i-2} V(C_j)$.

Case 2: $|V(C')| > |V(C_0)|$.
New list: Set $C'_0 = C'$, with $C'_i = C_{i-1}$ for $1 \leq i \leq l$.

$i = 1$: $V(C'_1) - V(C'_0) = V(C_0) - V(C')$.

$i > 1$: $V(C'_i) - \bigcup_{j=0}^{i-1} V(C'_j) \subseteq V(C_{i-1}) - \bigcup_{j=0}^{i-2} V(C_j)$.

Case 2: $|V(C')| > |V(C_0)|$.
New list: Set $C'_0 = C'$, with $C'_i = C_{i-1}$ for $1 \leq i \leq l$.

$i = 1$: $V(C'_1) - V(C'_0) = V(C_0) - V(C')$.

$i > 1$: $V(C'_i) - \bigcup_{j=0}^{i-1} V(C'_j) \subseteq V(C_{i-1}) - \bigcup_{j=0}^{i-2} V(C_j)$.

Case 2: $|V(C')| > |V(C_0)|$.
New list: Set $C'_0 = C'$, with $C'_i = C_{i-1}$ for $1 \leq i \leq l$.

$i = 1$: $V(C'_1) - V(C'_0) = V(C_0) - V(C')$.

$i > 1$: $V(C'_i) - \bigcup_{j=0}^{i-1} V(C'_j) \subseteq V(C_{i-1}) - \bigcup_{j=0}^{i-2} V(C_j)$.

Case 2: $|V(C')| > |V(C_0)|$.
New list: Set $C'_0 = C'$, with $C'_i = C_{i-1}$ for $1 \leq i \leq l$.

$i = 1$: $V(C'_1) - V(C'_0) = V(C_0) - V(C')$.

$i > 1$: $V(C'_i) - \bigcup_{j=0}^{i-1} V(C'_j) \subseteq V(C_{i-1}) - \bigcup_{j=0}^{i-2} V(C_j)$.

Case 2: $|V(C')| > |V(C_0)|$.
New list: Set $C'_0 = C'$, with $C'_i = C_{i-1}$ for $1 \leq i \leq l$.

$i = 1$: $V(C'_1) - V(C'_0) = V(C_0) - V(C')$.

$i > 1$: $V(C'_i) - \bigcup_{j=0}^{i-1} V(C'_j) \subseteq V(C_{i-1}) - \bigcup_{j=0}^{i-2} V(C_j)$.

Case 2: $|V(C')| > |V(C_0)|$.
New list: Set $C'_0 = C'$, with $C'_i = C_{i-1}$ for $1 \leq i \leq l$.

$i = 1$: $V(C'_1) - V(C'_0) = V(C_0) - V(C')$.

$i > 1$: $V(C'_i) - \bigcup_{j=0}^{i-1} V(C'_j) \subseteq V(C_{i-1}) - \bigcup_{j=0}^{i-2} V(C_j)$.

Case 2: $|V(C')| > |V(C_0)|$.
New list: Set $C'_0 = C'$, with $C'_i = C_{i-1}$ for $1 \leq i \leq l$.

$i = 1$: $V(C'_1) - V(C'_0) = V(C_0) - V(C')$.

$i > 1$: $V(C'_i) - \bigcup_{j=0}^{i-1} V(C'_j) \subseteq V(C_{i-1}) - \bigcup_{j=0}^{i-2} V(C_j)$.
Cycle Lemma ⇒ **Multi-Cycle Lemma (cont.)**

Lem. (Cycle) Given disjoint H and cycle C (length $\geq k$), $\exists C'$ with $|V(C) - V(C')| \leq \frac{|V(C)|}{k} - 1$ and $\alpha(H - V(C')) \leq \alpha(H) - 1$.

Cor. (Multi-Cycle) For $0 \leq \ell \leq a - k$, $\exists C_0, \ldots, C_\ell$ with

1. $\alpha(G - \bigcup_{i=0}^{\ell} V(C_i)) \leq a - k - \ell$
2. $|V(C_i) - \bigcup_{j=0}^{i-1} V(C_j)| \leq \frac{|V(C_0)|}{k} - 1$ for $1 \leq i \leq \ell$.

Pf. Apply Cycle Lem. with C_0 as C to get C': $\alpha(H - V(C')) \leq a - k - \ell$ and $|V(C_0) - V(C')| \leq \frac{|V(C_0)|}{k} - 1$.

Case 2: $|V(C')| > |V(C_0)|$.

New list: Set $C'_0 = C'$, with $C'_i = C_{i-1}$ for $1 \leq i \leq \ell$.

$i = 1$: $V(C'_1) - V(C'_0) = V(C_0) - V(C')$.

$i > 1$: $V(C'_i) - \bigcup_{j=0}^{i-1} V(C'_j) \subseteq V(C_{i-1}) - \bigcup_{j=0}^{i-2} V(C_j)$.

So, $|V(C'_i) - \bigcup_{j=0}^{i-1} V(C'_j)| \leq \frac{|V(C_0)|}{k} - 1 \leq \frac{|V(C'_0)|}{k} - 1$. ■
Path Lemma ⇒ Cycle Lemma

Lem. (Path) Given $H \subseteq G$, $\kappa(G) \geq k$, and $u, v \in V(G)$, there exists a path P such that $\alpha(H - V(P)) \leq \max\{0, \alpha(H) - (k - 1)\}$.

Cor. (Cycle) Given disjoint H and cycle C (length $\geq k$), there exists a cycle C' with $|V(C) - V(C')| \leq \frac{|V(C)|}{k} - 1$ and $\alpha(H - V(C')) \leq \alpha(H) - 1$.
Path Lemma ⇒ Cycle Lemma

Lem. (Path) Given $H \subseteq G$, $\kappa(G) \geq k$, and $u, v \in V(G)$, there exists a path P with $\alpha(H - V(P)) \leq \max\{0, \alpha(H) - (k-1)\}$.

Cor. (Cycle) Given disjoint H and cycle C (length $\geq k$), there exists C' with $|V(C) - V(C')| \leq \frac{|V(C)|}{k} - 1$ and $\alpha(H - V(C')) \leq \alpha(H) - 1$.

Pf. If H is disconnected or has a cut-vertex, then find C' using an induced subgraph of H. Otherwise, . . .
Path Lemma \implies Cycle Lemma

Lem. (Path) Given $H \subseteq G$, $\kappa(G) \geq k$, and $u, v \in V(G)$, \exists u, v-path P with $\alpha(H - V(P)) \leq \max\{0, \alpha(H) - (k - 1)\}$.

Cor. (Cycle) Given disjoint H and cycle C (length $\geq k$), \exists C' with $|V(C) - V(C')| \leq \frac{|V(C)|}{k} - 1$ and $\alpha(H - V(C')) \leq \alpha(H) - 1$.

Pf. If H is disconnected or has a cut-vertex, then find C' using an induced subgraph of H. Otherwise, . . .
Path Lemma ⇒ Cycle Lemma

Lem. (Path) Given $H \subseteq G$, $\kappa(G) \geq k$, and $u, v \in V(G)$, there exists a u, v-path P with $\alpha(H - V(P)) \leq \max\{0, \alpha(H) - (k-1)\}$.

Cor. (Cycle) Given disjoint H and cycle C (length $\geq k$), there exists a cycle C' with $|V(C) - V(C')| \leq \frac{|V(C)|}{k} - 1$ and $\alpha(H - V(C')) \leq \alpha(H) - 1$.

Pf. If H is disconnected or has a cut-vertex, then find C' using an induced subgraph of H. Otherwise, . . .

If $d_C(v_1, v_2) \leq L/k$, build cycle C' using P from Path Lem.
Path Lemma \Rightarrow Cycle Lemma

Lem. (Path) Given $H \subseteq G$, $\kappa(G) \geq k$, and $u, v \in V(G)$, there exists a u, v-path P with $\alpha(H - V(P)) \leq \max\{0, \alpha(H) - (k - 1)\}$.

Cor. (Cycle) Given disjoint H and cycle C (length $\geq k$), there exists a cycle C' with $|V(C) - V(C')| \leq \frac{|V(C)|}{k} - 1$ and $\alpha(H - V(C')) \leq \alpha(H) - 1$.

Pf. If H is disconnected or has a cut-vertex, then find C' using an induced subgraph of H. Otherwise, . . .

\[L = |V(C)| \]

\[B = \text{block of } G - V(C) \]

If $d_C(v_1, v_2) \leq L/k$, build cycle C' using P from Path Lem. Let $\{c_1, \ldots, c_m\}$ be arrival points on C of paths from B.
Path Lemma ⇒ Cycle Lemma

Lem. (Path) Given $H \subseteq G$, $\kappa(G) \geq k$, and $u, v \in V(G)$, there exists an u, v-path P with $\alpha(H - V(P)) \leq \max\{0, \alpha(H) - (k - 1)\}$.

Cor. (Cycle) Given disjoint H and cycle C (length $\geq k$), there exists C' with $|V(C) - V(C')| \leq \frac{|V(C)|}{k} - 1$ and $\alpha(H - V(C')) \leq \alpha(H) - 1$.

Pf.
If H is disconnected or has a cut-vertex, then find C' using an induced subgraph of H. Otherwise, . . .

If $d_C(v_1, v_2) \leq L/k$, build cycle C' using P from Path Lem. Let $\{c_1, \ldots, c_m\}$ be arrival points on C of paths from B. Strict paths from $b, b' \in B$ reaching c_i, c_{i+1} are disjoint.
Path Lemma \implies Cycle Lemma

Lem. (Path) Given \(H \subseteq G, \kappa(G) \geq k \), and \(u, v \in V(G) \), there exists a \(u, v \)-path \(P \) such that \(\alpha(H - V(P)) \leq \max\{0, \alpha(H) - (k - 1)\} \).

Cor. (Cycle) Given disjoint \(H \) and cycle \(C \) (length \(\geq k \)), there exists a cycle \(C' \) such that \(|V(C) - V(C')| \leq \frac{|V(C)|}{k} - 1 \) and \(\alpha(H - V(C')) \leq \alpha(H) - 1 \).

Pf. \(t = |\{i: c_i \& c_{i+1} \text{ reached from diff verts of } B\}| < k \).
Path Lemma ⇒ Cycle Lemma

Lem. (Path) Given $H \subseteq G$, $\kappa(G) \geq k$, and $u, v \in V(G)$,
\[\exists u, v\text{-path } P \text{ with } \alpha(H - V(P)) \leq \max\{0, \alpha(H) - (k-1)\}. \]

Cor. (Cycle) Given disjoint H and cycle C (length $\geq k$), \[\exists C' \text{ with } |V(C) - V(C')| \leq \frac{|V(C)|}{k} - 1 \text{ and } \alpha(H - V(C')) \leq \alpha(H) - 1. \]

Pf. \[t = |\{ i: c_i \& c_{i+1} \text{ reached from diff verts of } B \}| < k. \]
But, Menger ⇒ k paths from $b \in B$ to C.
Path Lemma \implies Cycle Lemma

Lem. (Path) Given $H \subseteq G$, $\kappa(G) \geq k$, and $u, v \in V(G)$,
\exists u, v-path P with $\alpha(H - V(P)) \leq \max\{0, \alpha(H) - (k - 1)\}$.

Cor. (Cycle) Given disjoint H and cycle C (length $\geq k$), \exists C' with $|V(C) - V(C')| \leq \frac{|V(C)|}{k} - 1$ and $\alpha(H - V(C')) \leq \alpha(H) - 1$.

Pf. \therefore $t = |\{i : c_i \& c_{i+1} \text{ reached from diff verts of } B\}| < k$.
But, Menger \implies k paths from $b \in B$ to C.
At least $k - t$ “b-segments” of C meet paths from no other $b' \in B$.

Path Lemma \Rightarrow Cycle Lemma

Lem. (Path) Given $H \subseteq G$, $\kappa(G) \geq k$, and $u, v \in V(G)$, there exists a u, v-path P with $\alpha(H-V(P)) \leq \max\{0, \alpha(H) - (k-1)\}$.

Cor. (Cycle) Given disjoint H and cycle C (length $\geq k$), there exists C' with $|V(C) - V(C')| \leq \frac{|V(C)|}{k} - 1$ and $\alpha(H-V(C')) \leq \alpha(H) - 1$.

Pf. $t = |\{i: c_i \& c_{i+1} \text{ reached from diff verts of } B\}| < k$. But, Menger $\Rightarrow k$ paths from $b \in B$ to C. At least $k - t$ “b-segments” of C meet paths from no other $b' \in B$. Over all $b \in B$, total length $< L - t(L/k) = L(k - t)/k$.
Path Lemma \Rightarrow Cycle Lemma

Lem. (Path) Given $H \subseteq G$, $\kappa(G) \geq k$, and $u, v \in V(G)$, there exists a u, v-path P with $\alpha(H - V(P)) \leq \max\{0, \alpha(H) - (k - 1)\}$.

Cor. (Cycle) Given disjoint H and cycle C (length $\geq k$), there exists a cycle C' with $|V(C) - V(C')| \leq \frac{|V(C)|}{k} - 1$ and $\alpha(H - V(C')) \leq \alpha(H) - 1$.

Pf. \(t = |\{i: c_i \& c_{i+1} \text{ reached from diff verts of } B\}| < k. \)

But, Menger \(\Rightarrow \) k paths from $b \in B$ to C.

At least $k - t$ “b-segments” of C meet paths from no other $b' \in B$.

Over all $b \in B$, total length $< L - t(L/k) = L(k - t)/k$.

Pick a shortest $\forall b \in B$; total length $< L/k$.

![Diagram](image)
Path Lemma \implies Cycle Lemma

Lem. (Path) Given $H \subseteq G$, $\kappa(G) \geq k$, and $u, v \in V(G)$, there exists a path P with $\alpha(H - V(P)) \leq \max\{0, \alpha(H) - (k - 1)\}$.

Cor. (Cycle) Given disjoint H and cycle C (length $\geq k$), there exists a cycle C' with $|V(C) - V(C')| \leq \frac{|V(C)|}{k} - 1$ and $\alpha(H - V(C')) \leq \alpha(H) - 1$.

Pf. $t = |\{i: c_i \& c_{i+1} \text{ reached from diff verts of } B\}| < k$. But, Menger $\implies k$ paths from $b \in B$ to C. At least $k - t$ “b-segments” of C meet paths from no other $b' \in B$.

Over all $b \in B$, total length $< L - t(L/k) = L(k - t)/k$. Pick a shortest $\forall b \in B$; total length $< L/k$. Form C'.
Proof of Path Lemma

Lem. (Path) Given $H \subseteq G$, $\kappa(G) \geq k$, and $u, v \in V(G)$, there exists a u, v-path P such that $\alpha(H - V(P)) \leq \max\{0, \alpha(H) - (k - 1)\}$.
Proof of Path Lemma

Lem. (Path) Given $H \subseteq G$, $\kappa(G) \geq k$, and $u, v \in V(G)$, there exists a u, v-path P with $\alpha(H - V(P)) \leq \max\{0, \alpha(H) - (k - 1)\}$.

Pf. For each u, v-path P, let F_P be a smallest component of $G - V(P)$ that intersects H. Choose P so that:
(i) $\alpha(H - V(P))$ is smallest;
(ii) subject to (i), F_P has the fewest vertices.
Proof of Path Lemma

Lem. (Path) Given $H \subseteq G$, $\kappa(G) \geq k$, and $u, v \in V(G)$, there exists a u, v-path P with $\alpha(H - V(P)) \leq \max\{0, \alpha(H) - (k - 1)\}$.

Pf. For each u, v-path P, let F_P be a smallest component of $G - V(P)$ that intersects H. Choose P so that:
(i) $\alpha(H - V(P))$ is smallest;
(ii) subject to (i), F_P has the fewest vertices.

If $V(H) \not\subseteq V(P)$, then let p_1, \ldots, p_m have neighbors in F_P.

![Diagram of a path P with vertices u, v, p1, ..., pm and a component F_P intersecting H]
Proof of Path Lemma

Lem. (Path) Given $H \subseteq G$, $\kappa(G) \geq k$, and $u, v \in V(G)$, \(\exists\ u, v\)-path P with $\alpha(H-V(P)) \leq \max\{0, \alpha(H)-(k-1)\}$.

Pf. For each u, v-path P, let F_P be a smallest component of $G-V(P)$ that intersects H. Choose P so that:
(i) $\alpha(H-V(P))$ is smallest;
(ii) subject to (i), F_P has the fewest vertices.

If $V(H) \not\subseteq V(P)$, then let p_1, \ldots, p_m have neighbors in F_P.
Proof of Path Lemma

Lem. (Path) Given $H \subseteq G$, $\kappa(G) \geq k$, and $u, v \in V(G)$, there exists a u, v-path P with $\alpha(H-V(P)) \leq \max\{0, \alpha(H)-(k-1)\}$.

Pf. For each u, v-path P, let F_P be a smallest component of $G - V(P)$ that intersects H. Choose P so that:

(i) $\alpha(H - V(P))$ is smallest;
(ii) subject to (i), F_P has the fewest vertices.

If $V(H) \not\subseteq V(P)$, then let p_1, \ldots, p_m have neighbors in F_P.

- $V(F_P) \cap V(H) \not\subseteq V(P')$, else $\alpha(H-V(P')) < \alpha(H-V(P))$.

![Diagram](image)
Proof of Path Lemma

Lem. (Path) Given $H \subseteq G$, $\kappa(G) \geq k$, and $u, v \in V(G)$,
$\exists u, v$-path P with $\alpha(H - V(P)) \leq \max \{0, \alpha(H) - (k - 1)\}$.

Pf. For each u, v-path P, let F_P be a smallest component of $G - V(P)$ that intersects H. Choose P so that:
(i) $\alpha(H - V(P))$ is smallest;
(ii) subject to (i), F_P has the fewest vertices.

If $V(H) \not\subseteq V(P)$, then let p_1, \ldots, p_m have neighbors in F_P.

$V(F_P) \cap V(H) \not\subseteq V(P')$, else $\alpha(H - V(P')) < \alpha(H - V(P))$.
$\therefore F_P - V(P')$ has a component intersecting H.

\begin{center}
\begin{tikzpicture}
\node (u) at (0,0) {u};
\node (p1) at (1,0) {p_1};
\node (pi) at (2,0) {p_i};
\node (pi+1) at (3,0) {p_{i+1}};
\node (pm) at (4,0) {p_m};
\node (v) at (5,0) {v};
\node (fp) at (2,-1) {F_P};
\node (qi) at (2,-2) {Q_i};
\node (ui) at (2,-3) {U_i};
\node (p) at (-1,0) {P'};
\node (p') at (6,0) {P'};
\draw (u) -- (p1);
\draw (p1) -- (pi);
\draw (pi) -- (pi+1);
\draw (pi+1) -- (pm);
\draw (pm) -- (v);
\draw (p1) -- (qi) -- (ui) -- (pm);
\end{tikzpicture}
\end{center}
Proof of Path Lemma

Lem. (Path) Given $H \subseteq G$, $\kappa(G) \geq k$, and $u, v \in V(G)$, there exists a u, v-path P with $\alpha(H - V(P)) \leq \max\{0, \alpha(H) - (k - 1)\}$.

Pf. For each u, v-path P, let F_P be a smallest component of $G - V(P)$ that intersects H. Choose P so that:

(i) $\alpha(H - V(P))$ is smallest;

(ii) subject to (i), F_P has the fewest vertices.

If $V(H) \not\subseteq V(P)$, then let p_1, \ldots, p_m have neighbors in F_P.

- $V(F_P) \cap V(H) \not\subseteq V(P')$, else $\alpha(H - V(P')) < \alpha(H - V(P))$.

$\therefore F_P - V(P')$ has a component intersecting H.

Thus $\alpha(H - V(P - U_i)) \geq \alpha(H - V(P')) > \alpha(H - V(P))$.
Proof of Path Lemma, cont.

Recall: P is chosen so that:
(i) $\alpha(H - V(P))$ is smallest;
(ii) subject to (i), F_P has the fewest vertices.

We proved: $\alpha(H - V(P - U_i)) > \alpha(H - V(P))$ for all i.

![Diagram showing a path P with vertices $u, p_i, p_{i+1}, p_j, p_{j+1}$ and the set U_i, U_j with F_P highlighted.]
Proof of Path Lemma, cont.

Recall: P is chosen so that: (i) $\alpha(H - V(P))$ is smallest; (ii) subject to (i), F_P has the fewest vertices.

We proved: $\alpha(H - V(P - U_i)) > \alpha(H - V(P))$ for all i.

 Restore U_i from the left; q_i is where α first increases.
Proof of Path Lemma, cont.

Recall: P is chosen so that: (i) $\alpha(H - V(P))$ is smallest; (ii) subject to (i), F_P has the fewest vertices.

We proved: $\alpha(H - V(P - U_i)) > \alpha(H - V(P))$ for all i.

Restore U_i from the left; q_i is where α first increases.

A path \hat{P} outside P joining U'_i and U'_j can’t visit F_P.
Proof of Path Lemma, cont.

Recall: P is chosen so that: (i) $\alpha(H - V(P))$ is smallest; (ii) subject to (i), F_P has the fewest vertices.

We proved: $\alpha(H - V(P - U_i)) > \alpha(H - V(P))$ for all i.

Restore U_i from the left; q_i is where α first increases.

A path \hat{P} outside P joining U_i' and U_j' can’t visit F_P.

Pick leftmost such r_i and form new path P'.

```plaintext

```

```
Proof of Path Lemma, cont.

**Recall:** $P$ is chosen so that: (i) $\alpha(H - V(P))$ is smallest; (ii) subject to (i), $F_P$ has the fewest vertices.

We proved: $\alpha(H - V(P - U_i)) > \alpha(H - V(P))$ for all $i$.

---

![Diagram](image)

Restore $U_i$ from the left; $q_i$ is where $\alpha$ first increases.

A path $\hat{P}$ outside $P$ joining $U'_i$ and $U'_j$ can’t visit $F_P$.

Pick leftmost such $r_i$ and form new path $P'$.

Restoring can’t increase $\alpha$: again $\alpha(H - V(P')) \leq \alpha(H - V(P))$, contradicting choice of $P$.
Proof of Path Lemma, cont.

**Recall:** $P$ is chosen so that: (i) $\alpha(H - V(P))$ is smallest; (ii) subject to (i), $F_P$ has the fewest vertices.

We proved: $\alpha(H - V(P - U_i)) > \alpha(H - V(P))$ for all $i$.

![Diagram](image)

Restore $U_i$ from the left; $q_i$ is where $\alpha$ first increases.

Sets $U'_1, \ldots, U'_{m-1}$ are in diff comps of $G - V(P - U)$. 
Proof of Path Lemma, cont.

**Recall:** $P$ is chosen so that: (i) $\alpha(H - V(P))$ is smallest; (ii) subject to (i), $F_P$ has the fewest vertices.

We proved: $\alpha(H - V(P - U_i)) > \alpha(H - V(P))$ for all $i$.

![Diagram](image)

Restore $U_i$ from the left; $q_i$ is where $\alpha$ first increases.

Sets $U'_1, \ldots, U'_{m-1}$ are in diff comps of $G - V(P - U)$.

$\therefore \alpha(H - V(P - U)) \geq \alpha(H - V(P)) + m - 1 \geq \alpha(H - V(P)) + k - 1.$
Proof of Path Lemma, cont.

**Recall:** $P$ is chosen so that: (i) $\alpha(H - V(P))$ is smallest; (ii) subject to (i), $F_P$ has the fewest vertices.

We proved: $\alpha(H - V(P - U_i)) > \alpha(H - V(P))$ for all $i$.

![Diagram of graphs](image)

Restore $U_i$ from the left; $q_i$ is where $\alpha$ first increases.

Sets $U'_1, \ldots, U'_{m-1}$ are in diff comps of $G - V(P - U)$.

\[ \therefore \alpha(H - V(P - U)) \geq \alpha(H - V(P)) + m - 1 \geq \alpha(H - V(P)) + k - 1. \]

\[ \therefore \alpha(H) \geq \alpha(H - V(P)) + k - 1. \]

\[ \Box \]