
Information Processing Letters 22 (1986) 185-187
North-Holland

17 April 1986

ELECTION IN A C O M P L E T E NETWORK W I T H A SENSE OF DIRECTION *

Michael C. LOUI, Teresa A. MATSUSHITA ** and Douglas B. WEST

Coordinated Science Laboratory, College of Engineering, University of Illinois at Urbana-Champaign,
1101 West SpringfieM Avenue, Urbana, IL 61801-3082, U.S.A.

Communicated by M.A. Harrison
Received 25 February 1985
Revised 17 May 1985

Keywords: Election, distributed algorithm, message complexity, communication complexity

1. Introduction

Consider a complete network of N asynchro-
nous processors. Every pair of processors is joined
by a bidirectional link. Each processor has a unique
integer identifier (id) . The Election Problem is to
identify the processor with the largest id.

Fix a Hamiltonian cycle that includes all the
processors. The network has a sense of direction
[6] if at each processor the label on each link gives
the distance along this Hamil tonian cycle to the
processor at the other end of the link. In particu-
lar, if processor x is at distance d from processor
y, then y is at distance N - d from x.

We present an algorithm that uses O(N) mes-
sages to solve the Election Problem in a complete
network with a sense of direction. In contrast, if at
each processor the links are unlabeled, then the
network has no sense of d i rect ion. In this latter
case, f~(N log N) messages are required to solve
the Election Problem [2], and O(N log N) mes-
sages suffice [1,2,4].

* Supported by the Joint Services Electronics Program (U.S.
Army, U.S. Navy, U.S. Air Force) under Contract N000-14-
84-C-0149, by the National Science Foundation under Grant
MCS82-17445, and by the Eastman Kodak Company. A
preliminary version of this paper was presented at the 1985
Conference on Information Sciences and Systems, Bal-
timore, MD, U.S.A.

** Current affiliation: AT&T Information Systems, Denver,
CO, U.S.A.

2. The algorithm

Every processor executes the same algorithm,
which resembles Peterson's algorithm [3]. After we
have informally described our algorithm, we
specify our algorithm formally.

Initially, all processors are active, and eventu-
ally all processors except the processor with the
largest id become passive. An active processor
becomes passive when it receives a message that
contains an id larger than its own id. Conversely,
when an active processor receives a message that
contains an id j smaller than its own id, it sends a
message with its own id directly to the processor x
whose id is j; this message ensures that x becomes
passive. Every message contains the distance from
the processor whose id is in the message to the
processor that receives the message. Processors use
the distance information to determine which links
they should use.

Every processor has its own id and local varia-
bles D, E, and Newid. Procedure SEND(d;e, j)
sends a message (e, j) along link d to the processor
at distance d. Procedure RECEIVE(e, j) waits until a
message (e, j) arrives.

active:
D : = N - 1 ;
repeat SEND(N -- D ; N - D, id);

RECEIVE(D, Newid)
until Newid >1 id;
if Newid = id then Announce "elected"

else

0020-0190/86/$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland) 185

Volume 22, Number 4 INFORMATION PROCESSING LETI'ERS 17 April 1986

passive: RECEIVE(E, Newid);
SEND(N -- D ; N - (D + E), Newid)

end

Call a processor active if it sends a message at
label "act ive", passive if it reaches label "passive".
Fig. 1 presents an example of an execution of the
algorithm. Each node represents a processor, and
the number in the node is the id of the processor.
Each arc represents the transmission of a message,
and the number on the arc is the id in the
message. The id of a passive processor is replaced

by "P" .
Initially, every processor is active, and every

processor sends its id to the processor at distance
1 f rom it. In general, when a processor y receives a
message (e, j), j is the id of the processor x such
that y is at distance e f rom x. If y is active and j is
less than the id of y, then y sends a message with
its own id directly to x, which is at distance N - e
f rom y, to ensure that x becomes passive. If y is
active and j is greater than the id of y, then y
becomes passive. If y is already passive, then y
sends a message (e', j) with the same id j to a
processor z at distance N - D from y, and z is at

(a) Phase 0 (b) Phase 1

®

(c) Phase 2

0
o
(D

0
(d) Phase 3

Fig. 1.

distance e ' = N - (D + e) from x; the id of
processor z caused y to become passive at some
previous time. Not ice that the message sent by a
passive processor y tells active processors how to
bypass y; after y sends this one message, no
processor will later send y a message.

3. Analysis

We divide the computa t ion into phases. Without
loss of generality we shall assume that all active
processors send their messages simultaneously at
the beginning of a phase. During the phase, some
passive processors may transmit messages. Phase p
ends when all active processors receive the mes-
sages sent during phase p. N u m b e r the phases so
that phase 0 is the first phase, and phase p + 1
begins when phase p ends. Let n p be the number
of processors active at the beginning of phase p.
By definition,

n 0 = N . (1)

During the execution of the algorithm a total of
N - 1 messages are sent by passive processors,
and

E n p
p>~0

messages are sent by active processors. We shall
bound this sum.

A processor remains active at the end of phase
p - 1 only if a neighboring active processor be-
came passive dur ing phase p - 2. Thus,

n p ~< n p _ 2 -- n p _ 1 for p >/2. (2)

Let ~ - - ½(1 + v~-). w e shall prove that

E n p < O2n r (3)
p>~r

by induction on the number of terms in the sum.
If this sum has one or two terms, then since

n r + 1 ~< n r,

n r ~ ~)2nr,

n r-4- n r + 1 ~ D r + n r ~ ~ 2 n r ,

and (3) holds. Assume inductively that (3) holds

186

Volume 22, Number 4 INFORMATION PROCESSING LETTERS 17 April 1986

for r + 1 and r + 2. Then

E n p = n r + Y'~ np < n r + qb2nr+l, (4)
p>~r p>~r+l

~ n p = n r + n r + l + Y'~ np
p>~r p>~r+2

< n~ + nr+ 1 + qb2nr+l. (5)

Applying (2) to (5) yields

E n p < n ~ + n r + l + q b 2 (n ~ - n ~ + l)
p>~r

= (1 + qb2)nr + (1 -- qb2)nr+ 1 . (6)

The upper bounds (4) and (6) are equal when

nr + qb2nr+l = (1 + qb2)nr + (1 - qb2)nr+,,

= qb3nr+l = qb2nr, (2qb 2 - 1)nr+l

nr+ 1 = nr/qb-

Consequently,

np < max min{n r+ qbZnr+l,
p > _ - r r l r-I- 1

(1 + qb2)nr + (1 -- qb2)nr+l }

= (1 + qb)n r = qb2nr,

as claimed in (3).
Ergo, by (1) and (3), the number of messages

used by the algorithm is

N - l + ~ n p < N - 1 + q b 2 N < 3 . 6 2 N .
p>~0

To obtain an upper bound on the total message
delay, observe that the message delay in phase p is
at most 1 plus the number of processors that

became passive at the end of phase p - 1. By (2),
there are log, N + O(1) phases [3]. Furthermore,
N - 1 processors become passive during the ex-
ecution of the algorithm. Thus the total message
delay is at most

N + log, N + O(1).

Acknowledgment

Our thanks are due to an unknown referee who
noticed that our original upper bound on the
number of messages could be improved to 3.62N.

References

[1] Y. Afek and E. Gafni, Simple and efficient distributed
algorithms for election in complete networks, Proc. 22nd
Ann. Allerton Conf. on Communication, Control, and
Computing (1984) 689-698.

[2] E. Korach, S. Moran and S. Zaks, Tight lower and upper
bounds for some distributed algorithms for a complete
network of processors, Proc. 3rd Ann. ACM Symp. on
Principles of Distributed Computing (1984) 199-207.

[3] G.L. Peterson, An O(n log n) unidirectional algorithm for
the circular extrema problem, ACM Trans. Programming
Language Systems 4 (1982) 758-762.

[4] G.L. Peterson, Efficient algorithms for elections in meshes
and complete networks, Tech. Rept. TR-140. Dept. of
Computer Science, Univ. of Rochester, 1984.

[5] J. Sack, N. Santoro and J. Urrutia, O(n) election al-
gorithms in complete graphs with sense of direction, Tech.
Rept. SCS-TR-49, Carleton Univ., 1984.

[6] N. Santoro, Sense of direction, topological awareness, and
communication complexity, SIGACT News 16 (2) (1984)
50-56.

187

