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1. Introduction 

Consider a complete network of N asynchro- 
nous processors. Every pair of processors is joined 
by a bidirectional link. Each processor has a unique 
integer identifier ( id) .  The Election Problem is to 
identify the processor with the largest id. 

Fix a Hamiltonian cycle that includes all the 
processors. The network has a sense of  direction 
[6] if at each processor the label on each link gives 
the distance along this Hamil tonian cycle to the 
processor at the other end of the link. In particu- 
lar, if processor x is at distance d from processor 
y, then y is at distance N - d from x. 

We present an algorithm that uses O(N) mes- 
sages to solve the Election Problem in a complete 
network with a sense of direction. In contrast, if at 
each processor the links are unlabeled, then the 
network has no sense of d i rect ion.  In this latter 
case, f~(N log N) messages are required to solve 
the Election Problem [2], and O(N log N) mes- 
sages suffice [1,2,4]. 
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2. The algorithm 

Every processor executes the same algorithm, 
which resembles Peterson's algorithm [3]. After we 
have informally described our algorithm, we 
specify our algorithm formally. 

Initially, all processors are active, and eventu- 
ally all processors except the processor with the 
largest id become passive. An active processor 
becomes passive when it receives a message that 
contains an id larger than its own id. Conversely, 
when an active processor receives a message that 
contains an id j smaller than its own id, it sends a 
message with its own id directly to the processor x 
whose id is j; this message ensures that x becomes 
passive. Every message contains the distance from 
the processor whose id is in the message to the 
processor that receives the message. Processors use 
the distance information to determine which links 
they should use. 

Every processor has its own id and local varia- 
bles D, E, and Newid.  Procedure SEND(d;e, j)  
sends a message (e, j) along link d to the processor 
at distance d. Procedure RECEIVE(e, j) waits until a 
message (e, j) arrives. 

active: 
D : = N - 1 ;  
repeat SEND(N -- D ; N  - D, id); 

RECEIVE(D, Newid ) 
until Newid  >1 id; 
if Newid  = id then Announce  "elected" 

else 

0020-0190/86/$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland) 185 



Volume 22, Number 4 INFORMATION PROCESSING LETI'ERS 17 April 1986 

passive: RECEIVE(E, Newid ); 
SEND(N -- D ; N - (D + E), Newid) 

end 

Call a processor active if it sends a message at 
label "act ive",  passive if it reaches label "passive".  
Fig. 1 presents an example of an execution of the 
algorithm. Each node represents a processor, and 
the number  in the node is the id of the processor. 
Each arc represents the transmission of a message, 
and the number  on the arc is the id in the 
message. The  id of a passive processor is replaced 

by "P" .  
Initially, every processor is active, and every 

processor sends its id to the processor at distance 
1 f rom it. In general, when a processor y receives a 
message (e, j), j is the id of the processor x such 
that y is at distance e f rom x. If y is active and j is 
less than the id of y, then y sends a message with 
its own id directly to x, which is at distance N - e 
f rom y, to ensure that x becomes passive. If y is 
active and j is greater than the id of y, then y 
becomes passive. If y is already passive, then y 
sends a message (e', j) with the same id j to a 
processor z at distance N - D from y, and z is at 
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Fig. 1. 

distance e ' = N - ( D + e )  from x; the id of 
processor z caused y to become passive at some 
previous time. Not ice  that the message sent by a 
passive processor y tells active processors how to 
bypass y; after y sends this one message, no 
processor will later send y a message. 

3. Analysis 

We divide the computa t ion  into phases. Without  
loss of generality we shall assume that all active 
processors send their messages simultaneously at 
the beginning of a phase. During the phase, some 
passive processors may  transmit  messages. Phase p 
ends when all active processors receive the mes- 
sages sent during phase p. N u m b e r  the phases so 
that  phase 0 is the first phase, and phase p + 1 
begins when phase p ends. Let n p be the number  
of processors active at the beginning of phase p. 
By definition, 

n 0 = N .  (1) 

During the execution of the algorithm a total of 
N -  1 messages are sent by passive processors, 
and 

E n p  
p>~0 

messages are sent by active processors. We shall 
bound  this sum. 

A processor remains active at the end of phase 
p -  1 only if a neighboring active processor be- 
came  passive dur ing phase p - 2. Thus, 

n p  ~< n p _  2 --  n p _  1 for p >/2. (2) 

Let ~ - -  ½(1 + v~-). w e  shall prove that 

E n p <  O2n r (3) 
p>~r 

by induction on the number  of terms in the sum. 
If this sum has one or two terms, then since 

n r +  1 ~< n r, 

n r ~ ~)2nr,  

n r-4- n r +  1 ~ D r +  n r ~ ~ 2 n r ,  

and (3) holds. Assume inductively that (3) holds 
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for r + 1 and r + 2. Then 

E n p =  n r + Y'~ np  < n r + qb2nr+l,  (4) 
p>~r p>~r+l 

~ n p = n r + n r + l +  Y'~ np 
p>~r p>~r+2 

< n~ + nr+ 1 + qb2nr+l. (5) 

Applying (2) to (5) yields 

E n p < n ~ + n r + l + q b 2 ( n ~ - n ~ + l )  
p>~r 

= ( 1  + qb2)nr + (1 -- qb2)nr+ 1 . (6) 

The upper bounds (4) and (6) are equal when 

nr + qb2nr+l = (1 + qb2)nr + (1 - qb2)nr+,, 

= qb3nr+l = qb2nr, (2qb 2 -  1)nr+l  

nr+ 1 = nr/qb- 

Consequently, 

np < max min{n r+  qbZnr+l, 
p > _ - r  r l  r-I- 1 

(1 + qb2)nr + (1 -- qb2)nr+l } 

= (1 + qb)n r = qb2nr, 

as claimed in (3). 
Ergo, by (1) and (3), the number of messages 

used by the algorithm is 

N - l +  ~ n p < N - 1 + q b 2 N < 3 . 6 2 N .  
p>~0 

To obtain an upper bound on the total message 
delay, observe that the message delay in phase p is 
at most 1 plus the number of processors that 

became passive at the end of phase p - 1. By (2), 
there are log,  N + O(1) phases [3]. Furthermore, 
N -  1 processors become passive during the ex- 
ecution of the algorithm. Thus the total message 
delay is at most 

N + log, N + O(1). 
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