Degree Ramsey Number of Cycles

Douglas B. West

Department of Mathematics
University of Illinois at Urbana-Champaign
west@math.uiuc.edu
http://www.math.uiuc.edu/~west/pubs/publink.html

Joint work with
Tao Jiang, Bill Kinnersley, and Kevin Milans
Parameter Ramsey Numbers

Def. \(H \rightarrow G \) means every 2-coloring of \(E(H) \) gives a monochromatic \(G \). Ramsey’s Theorem \(\Rightarrow H \) exists. Ramsey number \(R(G) = \min\{n: K_n \rightarrow G\} \).
Def. $H \rightarrow G$ means every 2-coloring of $E(H)$ gives a monochromatic G. Ramsey’s Theorem $\Rightarrow H$ exists. Ramsey number $R(G) = \min \{ n : K_n \rightarrow G \}$.

Def. For a monotone graph parameter ρ, the ρ-Ramsey number $R_{\rho}(G)$ of G is $\min \{ \rho(H) : H \rightarrow G \}$.

Definition. \(H \rightarrow G \) means every 2-coloring of \(E(H) \) gives a monochromatic \(G \). Ramsey’s Theorem \(\implies H \) exists. Ramsey number \(R(G) = \min\{n: K_n \rightarrow G\} \).

Definition. For a monotone graph parameter \(\rho \), the \(\rho \)-Ramsey number \(R_\rho(G) \) of \(G \) is \(\min\{\rho(H): H \rightarrow G\} \).

Example. When \(\rho(G) = |V(G)| \), simply \(R_\rho(G) = R(G) \).
Parameter Ramsey Numbers

Def. $H \rightarrow G$ means every 2-coloring of $E(H)$ gives a monochromatic G. Ramsey’s Theorem $\Rightarrow H$ exists. Ramsey number $R(G) = \min \{n: K_n \rightarrow G\}$.

Def. For a monotone graph parameter ρ, the ρ-Ramsey number $R_\rho(G)$ of G is $\min \{\rho(H): H \rightarrow G\}$.

Ex. When $\rho(G) = |V(G)|$, simply $R_\rho(G) = R(G)$.

- **Other parameters considered:**
 size $|E(G)|$, clique number $\omega(G)$, chromatic number $\chi(G)$, maximum degree $\Delta(G)$.

Def. \(H \rightarrow G \) means every 2-coloring of \(E(H) \) gives a monochromatic \(G \). Ramsey’s Theorem \(\Rightarrow \) \(H \) exists. Ramsey number \(R(G) = \min\{n: K_n \rightarrow G\} \).

Def. For a monotone graph parameter \(\rho \), the \(\rho \)-Ramsey number \(R_\rho(G) \) of \(G \) is \(\min\{\rho(H): H \rightarrow G\} \).

Ex. When \(\rho(G) = |V(G)| \), simply \(R_\rho(G) = R(G) \).

- **Other parameters considered:** size \(|E(G)| \), clique number \(\omega(G) \), chromatic number \(\chi(G) \), maximum degree \(\Delta(G) \).

- **Extension to many colors:** \(R_\rho(G; s) = \min\{\rho(H): \text{every } s\text{-coloring of } E(H) \text{ gives monochr. } G\} \).
Parameter Ramsey Numbers

Def. $H \rightarrow G$ means every 2-coloring of $E(H)$ gives a monochromatic G. Ramsey’s Theorem \Rightarrow H exists. Ramsey number $R(G) = \min\{n: K_n \rightarrow G\}$.

Def. For a monotone graph parameter ρ, the ρ-Ramsey number $R_\rho(G)$ of G is $\min\{\rho(H): H \rightarrow G\}$.

Ex. When $\rho(G) = |V(G)|$, simply $R_\rho(G) = R(G)$.

- **Other parameters considered:**
 size $|E(G)|$, clique number $\omega(G)$,
 chromatic number $\chi(G)$, maximum degree $\Delta(G)$.

- **Extension to many colors:** $R_\rho(G; s) = \min\{\rho(H): \text{every } s\text{-coloring of } E(H) \text{ gives monochr. } G\}.$

- $R_\rho(G_1, G_2, G_3, \ldots, G_s; s)$ not yet much studied.
Thm. (Folkman [1970]) For every G, $R_{\omega}(G) = \omega(G)$.
Clique and Size Ramsey Numbers

Thm. (Folkman [1970]) For every G, $R_\omega(G) = \omega(G)$.

Thm. (Nešetřil–Rödl [1976]) For every G, $R_\omega(G; s) = \omega(G)$.
Clique and Size Ramsey Numbers

Thm. (Folkman [1970]) For every G, $R_\omega(G) = \omega(G)$.

Thm. (Nešetřil–Rödl [1976]) For every G, $R_\omega(G; s) = \omega(G)$.

For size Ramsey number, write $R'(G)$ for $R_\rho(G)$ when $\rho(G) = |E(G)|$; always $R'(G) \leq \binom{R(G)}{2}$.

Thm. (Erdős–Faudr.–Rouss.–Schelp [1978]) $R'(K_n) = \binom{R(K_n)}{2}$.
Thm. (Folkman [1970]) For every G, $R_\omega(G) = \omega(G)$.

Thm. (Nešetřil–Rödl [1976]) For every G, $R_\omega(G; s) = \omega(G)$.

For size Ramsey number, write $R'(G)$ for $R_\rho(G)$ when $\rho(G) = |E(G)|$; always $R'(G) \leq \binom{R(G)}{2}$.

Thm. (Erdős–Faudr.–Rouss.–Schelp [1978]) $R'(K_n) = \binom{R(K_n)}{2}$.

Thm. (Beck [1983]) $R'(P_n) \leq cn$ for some c. 100E
Clique and Size Ramsey Numbers

Thm. (Folkman [1970]) For every G, $R_\omega(G) = \omega(G)$.

Thm. (Nešetřil–Rödl [1976]) For every G, $R_\omega(G; s) = \omega(G)$.

For size Ramsey number, write $R'(G)$ for $R_\rho(G)$ when $\rho(G) = |E(G)|$; always $R'(G) \leq \binom{R(G)}{2}$.

Thm. (Erdős–Faudr.–Rouss.–Schelp [1978]) $R'(K_n) = \binom{R(K_n)}{2}$.

Thm. (Beck [1983]) $R'(P_n) \leq cn$ for some c. 100E

Similarly, size Ramsey number is linear in n for cycles (Haxell–Kohayakawa–Łuczak [1995]) and bounded-degree trees (Friedman–Pippinger [1981]), but not graphs w. maxdegree 3 (Rödl–Szemerédi [2000]).
Chromatic Ramsey Number

For a family \mathcal{G}, let $R(\mathcal{G}) = \min\{|V(H)|: \text{ every 2-coloring of } E(H) \text{ gives a monochromatic subgraph in } \mathcal{G}\}$.
Chromatic Ramsey Number

For a family \mathcal{G}, let $R(\mathcal{G}) = \min\{|V(H)|: \text{every 2-coloring of } E(H) \text{ gives a monochromatic subgraph in } \mathcal{G}\}$.

A homomorphism ϕ is a map $\phi: V(G) \to V(H)$ such that $uv \in E(G)$ implies $\phi(u)\phi(v) \in E(H)$.

Ex. A proper k-coloring is a homomorphism into K_k.
Chromatic Ramsey Number

For a family \(G \), let \(R(G) = \min \{|V(H)|: \text{ every 2-coloring of } E(H) \text{ gives a monochromatic subgraph in } G \} \).

A homomorphism \(\phi \) is a map \(\phi: V(G) \to V(H) \) such that \(uv \in E(G) \) implies \(\phi(u)\phi(v) \in E(H) \).

Ex. A proper \(k \)-coloring is a homomorphism into \(K_k \).

Thm. (Burr–Erdős–Lovász [1976]) \(R_\chi(G) = R(G) \), where \(G \) is the family of all homomorphic images of \(G \). (Furthermore, \(R_\chi(G; s) = R(G; s) \).)
Chromatic Ramsey Number

For a family \mathcal{G}, let $R(\mathcal{G}) = \min\{|V(H)| : \text{every 2-coloring of } E(H) \text{ gives a monochromatic subgraph in } \mathcal{G}\}$.

A homomorphism ϕ is a map $\phi : V(G) \to V(H)$ such that $uv \in E(G)$ implies $\phi(u)\phi(v) \in E(H)$.

Ex. A proper k-coloring is a homomorphism into K_k.

Thm. (Burr–Erdős–Lovász [1976]) $R_{\chi}(G) = R(\mathcal{G})$, where \mathcal{G} is the family of all homomorphic images of G. (Furthermore, $R_{\chi}(G; s) = R(\mathcal{G}; s)$.)

Ex. $\chi(G) = 3 \implies 5 \leq R_{\chi}(G) \leq 6$.

Chromatic Ramsey Number

For a family \mathcal{G}, let $R(\mathcal{G}) = \min\{|V(H)|: \text{every 2-coloring of } E(H) \text{ gives a monochromatic subgraph in } G\}$.

A homomorphism ϕ is a map $\phi: V(G) \rightarrow V(H)$ such that $uv \in E(G)$ implies $\phi(u)\phi(v) \in E(H)$.

Ex. A proper k-coloring is a homomorphism into K_k.

Thm. (Burr–Erdős–Lovász [1976]) $R_\chi(G) = R(\mathcal{G})$, where \mathcal{G} is the family of all homomorphic images of G. (Furthermore, $R_\chi(G; s) = R(\mathcal{G}; s)$.)

Ex. $\chi(G) = 3 \Rightarrow 5 \leq R_\chi(G) \leq 6$.

Lower bound: Every 4-chromatic graph has a 2-edge-coloring with both classes bipartite.
Chromatic Ramsey Number

For a family \(G \), let \(R(G) = \min \{|V(H)|: \text{every 2-coloring of } E(H) \text{ gives a monochromatic subgraph in } G \} \).

A homomorphism \(\phi \) is a map \(\phi: V(G) \rightarrow V(H) \) such that \(uv \in E(G) \) implies \(\phi(u)\phi(v) \in E(H) \).

Ex. A proper \(k \)-coloring is a homomorphism into \(K_k \).

Thm. (Burr–Erdős–Lovász [1976]) \(R_\chi(G) = R(G) \), where \(G \) is the family of all homomorphic images of \(G \). (Furthermore, \(R_\chi(G; s) = R(G; s) \).)

Ex. \(\chi(G) = 3 \implies 5 \leq R_\chi(G) \leq 6 \).

Lower bound: Every 4-chromatic graph has a 2-edge-coloring with both classes bipartite.

Equality holds in lower bound \(\iff \exists \text{ hom. } \phi: G \rightarrow C_5 \).

In particular, \(R_\chi(C_5) = 5 \).
Chromatic Ramsey Number

Let $K_k[r] = K_{r,\ldots,r}$ (k parts, each of size r).
Chromatic Ramsey Number

Let $K_k[r] = K_{r,\ldots,r}$ (k parts, each of size r).

Lem. Fix n, k. When p is suff. large, in every 2-coloring of $E(K_k[p])$ there is a copy of $K_k[n]$ such that for every two parts, all edges joining them have the same color.

Pf. Iterated use of the bipartite Ramsey theorem that $K_{r,r} \rightarrow K_{t,t}$ when r is sufficiently large.

\[\blacksquare \]
Chromatic Ramsey Number

Let $K_k[r] = K_{r,\ldots,r}$ (k parts, each of size r).

Lem. Fix n, k. When p is suff. large, in every 2-coloring of $E(K_k[p])$ there is a copy of $K_k[n]$ such that for every two parts, all edges joining them have the same color.

Pf. Iterated use of the bipartite Ramsey theorem that $K_{r,r} \to K_{t,t}$ when r is sufficiently large.

Thm. (BEL [1976]) $R_\chi(G) = R(G)$.

Pf. Let $k = R(G)$ and $n = |V(G)|$. Let $H = K_k[p]$ with p as in the lemma. For any 2-coloring of H, the copy H' of $K_k(n)$ with restricted edge-coloring collapses to a coloring of $E(K_k)$. In it is a monochr. G' with $\phi: G \to G'$. Partite sets in H' are big enough for G' to lift back into a monochromatic copy of G in H'.

Chromatic Ramsey Number

Let \(K_k[r] = K_{r,\ldots,r} \) (\(k \) parts, each of size \(r \)).

Lem. Fix \(n, k \). When \(p \) is suff. large, in every 2-coloring of \(E(K_k[p]) \) there is a copy of \(K_k[n] \) such that for every two parts, all edges joining them have the same color.

Pf. Iterated use of the bipartite Ramsey theorem that \(K_{r,r} \to K_{t,t} \) when \(r \) is sufficiently large.

Thm. (BEL [1976]) \(R_{\chi}(G) = R(G) \).

Pf. Let \(k = R(G) \) and \(n = |V(G)| \). Let \(H = K_k[p] \) with \(p \) as in the lemma. For any 2-coloring of \(H \), the copy \(H' \) of \(K_k(n) \) with restricted edge-coloring collapses to a coloring of \(E(K_k) \). In it is a monochr. \(G' \) with \(\phi: G \to G' \). Partite sets in \(H' \) are big enough for \(G' \) to lift back into a monochromatic copy of \(G \) in \(H' \).

Conj. (BEL [1976]) \(\min\{R_{\chi}(G) : \chi(G)=k\} = (k-1)^2+1. \)
Degree Ramsey Number

Def. degree Ramsey number

\[R_\Delta(G) = \min\{\Delta(H) : H \rightarrow G\}. \]
Degree Ramsey Number

Def. degree Ramsey number

\[R_\Delta(G) = \min\{\Delta(H) : H \rightarrow G\}. \]

Results for \(K_n, K_{1,m}, \) double-stars, \(P_n, \) trees, cycles.
Degree Ramsey Number

Def. degree Ramsey number

\[R_\Delta(G) = \min\{\Delta(H) : H \rightarrow G\} \]

Results for \(K_n, K_{1,m}, \) double-stars, \(P_n, \) trees, cycles.

Burr–Erdős–Lovász [1976]: Cliques and Stars
Degree Ramsey Number

Def. degree Ramsey number
\[R_{\Delta}(G) = \min\{\Delta(H) : H \to G\}. \]

Results for \(K_n, K_{1,m}, \) double-stars, \(P_n, \) trees, cycles.

Burr–Erdős–Lováson [1976]: Cliques and Stars

Obs. \(R_\chi(G) \leq R_{\Delta}(G) + 1 \leq R(G); \) equality for \(G = K_n. \)
Degree Ramsey Number

Def. degree Ramsey number
\[R_\Delta(G) = \min\{\Delta(H) : H \rightarrow G\}. \]

Results for \(K_n, K_{1,m}, \) double-stars, \(P_n,\) trees, cycles.

Burr–Erdős–Lovász [1976]: Cliques and Stars

Obs. \(R_\chi(G) \leq R_\Delta(G) + 1 \leq R(G); \) equality for \(G = K_n. \)

Thm. (BEL): \(R_\Delta(K_{1,m}) = \begin{cases} 2m - 2 & \text{m even} \\ 2m - 1 & \text{m odd} \end{cases}. \)
Degree Ramsey Number

Def. degree Ramsey number

\[R_\Delta(G) = \min\{\Delta(H) : H \rightarrow G\}. \]

Results for \(K_n, K_{1,m}, \) double-stars, \(P_n, \) trees, cycles.

Burr–Erdős–Lovász [1976]: Cliques and Stars

Obs. \(R_\chi(G) \leq R_\Delta(G) + 1 \leq R(G); \) equality for \(G = K_n. \)

Thm. (BEL): \(R_\Delta(K_{1,m}) = \begin{cases}
2m - 2 & m \text{ even} \\
2m - 1 & m \text{ odd}
\end{cases}. \)

- These lower bounds are valid whenever \(\Delta(G) = m. \)
Degree Ramsey Number

Def. degree Ramsey number

\[R_{\Delta}(G) = \min\{\Delta(H) : H \to G\}. \]

Results for \(K_n, K_{1,m}, \) double-stars, \(P_n, \) trees, cycles.

Burr–Erdős–Lovász [1976]: Cliques and Stars

Obs. \(R_{\chi}(G) \leq R_{\Delta}(G) + 1 \leq R(G); \) equality for \(G = K_n. \)

Thm. (BEL): \(R_{\Delta}(K_{1,m}) = \begin{cases} 2m - 2 & m \text{ even} \\ 2m - 1 & m \text{ odd} \end{cases}. \)

• These lower bounds are valid whenever \(\Delta(G) = m. \)

Thm. \(R_{\Delta}(K_{1,m}; s) = \begin{cases} s(m - 1) & m \text{ even} \\ s(m - 1) + 1 & m \text{ odd} \end{cases}. \)
$s(m - 1) \leq R_\Delta(K_{1,m}; s) \leq s(m - 1) + 1$

Pf. Upper Bound: $K_{1,s(m-1)+1} \overset{s}{\rightarrow} K_{1,m}$.
\[s(m - 1) \leq R_\Delta(K_{1,m}; s) \leq s(m - 1) + 1 \]

Pf. Upper Bound: \(K_{1,s(m-1)+1}^s \rightarrow K_{1,m} \).

Improves when \(m \) is even:
When \(r > k \) and \(k \) is odd, there is an \(r \)-regular graph \(H \) having no \(k \)-factor (Bollobás–Saito–Wormald [1985]).
With \(k = m - 1 \) and \(r = s(m - 1) \), \(s \)-coloring \(E(H) \) with no monochromatic \(K_{1,m} \) requires a \(k \)-factorization.
\[s(m - 1) \leq R_{\Delta}(K_{1,m}; s) \leq s(m - 1) + 1 \]

Pf. Upper Bound: \(K_{1,s(m-1)+1} \xrightarrow{s} K_{1,m} \).

Improves when \(m \) is even:

When \(r > k \) and \(k \) is odd, there is an \(r \)-regular graph \(H \) having no \(k \)-factor (Bollobás–Saito–Wormald [1985]).

With \(k = m - 1 \) and \(r = s(m - 1) \), \(s \)-coloring \(E(H) \) with no monochromatic \(K_{1,m} \) requires a \(k \)-factorization.

Lower bound: When \(\Delta(H) \leq s(m - 1) - 1 \), Vizing’s Theorem \(\Rightarrow H \) is \(s(m - 1) \)-edge-colorable.

Put \(m - 1 \) matchings into each color.
\[s(m - 1) \leq R_{\Delta}(K_{1,m}; s) \leq s(m - 1) + 1 \]

Pf. Upper Bound: \(K_{1,s(m-1)+1} \xrightarrow{\text{s}} K_{1,m} \).

Improves when \(m \) is even:

When \(r > k \) and \(k \) is odd, there is an \(r \)-regular graph \(H \) having no \(k \)-factor (Bollobás–Saito–Wormald [1985]).

With \(k = m - 1 \) and \(r = s(m - 1) \), \(s \)-coloring \(E(H) \) with no monochromatic \(K_{1,m} \) requires a \(k \)-factorization.

Lower bound: When \(\Delta(H) \leq s(m - 1) - 1 \),

Vizing’s Theorem \(\Rightarrow H \) is \(s(m - 1) \)-edge-colorable.

Put \(m - 1 \) matchings into each color.

Improves when \(m \) is odd. When \(\Delta(H) \leq s(m - 1) \),

Petersen’s Theorem decomposes \(s(m - 1) \)-regular supergraph \(H' \) into 2-factors. Putting \((m - 1)/2 \) in each color avoids degree \(m \) in one color at any vertex. \(\blacksquare \)
Double-Stars

Def. Let $S_{a,b} = \text{double-star}$ with central vertices of degrees a and b, where $a \leq b$.
Def. Let $S_{a,b} =$ double-star with central vertices of degrees a and b, where $a \leq b$.

Thm. $R_\Delta(S_{a,b}) = \begin{cases} 2b - 2 & \text{b even and } a < b \\ 2b - 1 & \text{otherwise} \end{cases}$.
Double-Stars

Def. Let $S_{a,b} =$ double-star with central vertices of degrees a and b, where $a \leq b$.

Thm. $R_\Delta(S_{a,b}) = \begin{cases} 2b - 2 & b \text{ even and } a < b \\ 2b - 1 & \text{otherwise} \end{cases}$.

Pf. Lower bound: $R_\Delta(S_{a,b}) \geq R_\Delta(K_{1,b})$ suffices, except for $S_{b,b}$ with b even. Alternating red and blue along an Eulerian circuit of a $(2b - 2)$-regular graph avoids $S_{b,b}$.
Double-Stars

Def. Let $S_{a,b} = \text{double-star}$ with central vertices of degrees a and b, where $a \leq b$.

Thm. $R_\Delta(S_{a,b}) = \begin{cases} 2b - 2 & \text{if } b \text{ even and } a < b \\ 2b - 1 & \text{otherwise} \end{cases}$

Pf. Lower bound: $R_\Delta(S_{a,b}) \geq R_\Delta(K_{1,b})$ suffices, except for $S_{b,b}$ with b even. Alternating red and blue along an Eulerian circuit of a $(2b - 2)$-regular graph avoids $S_{b,b}$.

Upper bound: First show $K_{2b-1,2b-1} \rightarrow S_{b,b}$.
Def. Let $S_{a,b} = \text{double-star}$ with central vertices of degrees a and b, where $a \leq b$.

Thm. $R_\Delta(S_{a,b}) = \begin{cases} 2b - 2 & \text{if } b \text{ even and } a < b \\ 2b - 1 & \text{otherwise} \end{cases}$.

Pf. Lower bound: $R_\Delta(S_{a,b}) \geq R_\Delta(K_{1,b})$ suffices, except for $S_{b,b}$ with b even. Alternating red and blue along an Eulerian circuit of a $(2b - 2)$-regular graph avoids $S_{b,b}$.

Upper bound: First show $K_{2b-1,2b-1} \rightarrow S_{b,b}$.

In a red/blue coloring, each vertex is majority red or majority blue. If most of part X is red, then Y must have no red vertex. Hence Y is all blue and X is all red. Now majority of edges are blue and majority are red.
Improved upper bound (b even and $a < b$)

Claim: $H \rightarrow S_{b-1,b}$ for b even

H is $(2b - 2)$-regular
Claim: $H \rightarrow S_{b-1,b}$ for b even

Pf. Vertices are majority red or majority blue or tied. Not all are tied (would be odd regular of odd order).

No $S_{b-1,b} \Rightarrow$ all nbrs (via red) of maj red are maj blue.

A maj red vertex forces a maj blue in each direction; after 5 steps, one set has a maj red and a maj blue.

Now its neighboring sets together need b maj blue and b maj red vertices, but they have only $2b - 2$ total.
Thm. $R_\Delta(P_n) = \begin{cases}
 n - 1 & n \leq 4 \\
 3 & n \in \{4, 5\} \\
 3 \text{ or } 4 & n = 6 \quad \leftarrow \text{Open} \\
 4 & n \geq 7
\end{cases}$
Paths

Thm. $R_{\Delta}(P_n) = \begin{cases}
 n - 1 & n \leq 4 \\
 3 & n \in \{4, 5\} \\
 3 \text{ or } 4 & n = 6 \leftarrow \text{Open} \\
 4 & n \geq 7
\end{cases}$

$R_{\Delta}(P_n) \geq 3$: Alternate along paths & cycles to avoid P_4.
Thm. \(R_\Delta(P_n) = \begin{cases}
 n - 1 & n \leq 4 \\
 3 & n \in \{4, 5\} \\
 3 \text{ or } 4 & n = 6 \quad \leftarrow \text{Open} \\
 4 & n \geq 7
\end{cases} \)

\(R_\Delta(P_n) \geq 3 \): Alternate along paths & cycles to avoid \(P_4 \).

\(R_\Delta(P_4) \leq 3 \): Petersen \(\rightarrow \) \(P_4 \)
Paths

Thm. \(R_\Delta(P_n) = \begin{cases}
 n - 1 & n \leq 4 \\
 3 & n \in \{4, 5\} \\
 3 \text{ or } 4 & n = 6 \quad \leftarrow \text{Open} \\
 4 & n \geq 7
\end{cases} \)

\(R_\Delta(P_n) \geq 3 \): Alternate along paths & cycles to avoid \(P_4 \).

\(R_\Delta(P_4) \leq 3 \): Petersen \(\rightarrow P_4 \)
Paths

Thm. \(R_\Delta(P_n) = \begin{cases}
 n - 1 & n \leq 4 \\
 3 & n \in \{4, 5\} \\
 3 \text{ or } 4 & n = 6 \quad \leftarrow \text{Open} \\
 4 & n \geq 7
\end{cases} \)

\(R_\Delta(P_n) \geq 3 \): Alternate along paths & cycles to avoid \(P_4 \).

\(R_\Delta(P_4) \leq 3 \): Petersen \(\rightarrow P_4 \)
Paths

Thm. \(R_\Delta(P_n) = \begin{cases}
 n - 1 & n \leq 4 \\
 3 & n \in \{4, 5\} \\
 3 \text{ or } 4 & n = 6 \\
 4 & n \geq 7
\end{cases} \)

\(R_\Delta(P_n) \geq 3 \): Alternate along paths & cycles to avoid \(P_4 \).

\(R_\Delta(P_4) \leq 3 \): Petersen \(\rightarrow P_4 \)
Thm.
\[
R_{\Delta}(P_n) = \begin{cases}
 n - 1 & n \leq 4 \\
 3 & n \in \{4, 5\} \\
 3 \text{ or } 4 & n = 6 \\
 4 & n \geq 7
\end{cases}
\]

\(R_{\Delta}(P_n) \geq 3\): Alternate along paths & cycles to avoid \(P_4\).

\(R_{\Delta}(P_5) \leq 3\): Petersen \(\rightarrow\) \(P_5\)
Paths

\[R_\Delta(P_n) = \begin{cases}
 n - 1 & n \leq 4 \\
 3 & n \in \{4, 5\} \\
 3 \text{ or } 4 & n = 6 \\
 4 & n \geq 7
\end{cases} \]

\(R_\Delta(P_n) \geq 3 \): Alternate along paths \& cycles to avoid \(P_4 \).

\(R_\Delta(P_5) \leq 3 \): Petersen \(\rightarrow \) \(P_5 \)
Thm. Thomassen [1999] Every 3-regular graph has a 2-edge-coloring with each monochromatic component contained in P_6.
Thm. Thomassen [1999] Every 3-regular graph has a 2-edge-coloring with each monochromatic component contained in P_6. \[\therefore R_\Delta(P_n) \geq 4 \text{ for } n \geq 7. \]
Longer Paths

Thm. Thomassen [1999] Every 3-regular graph has a 2-edge-coloring with each monochromatic component contained in P_6. \[\therefore R_\Delta(P_n) \geq 4 \text{ for } n \geq 7. \]

Thm. (Alon–Ding–Oporowski–Vertigan [2003])
\[R_\Delta(P_n; s) = 2s \text{ for } n > n_0(s). \quad R_\Delta(P_n; s) \leq 2s \text{ always.} \]
Longer Paths

Thm. Thomassen [1999] Every 3-regular graph has a 2-edge-coloring with each monochromatic component contained in P_6. $\therefore R_\Delta(P_n) \geq 4$ for $n \geq 7$.

Thm. (Alon–Ding–Oporowski–Vertigan [2003]) $R_\Delta(P_n; s) = 2s$ for $n > n_0(s)$. $R_\Delta(P_n; s) \leq 2s$ always.

Lower bound: \exists function g such that if $\Delta(H) = 2s - 1$, then H has an s-edge-coloring where all monochromatic components have at most $g(s)$ edges. $\therefore n_0(s) = g(s)$ suffices.
Thm. Thomassen [1999] Every 3-regular graph has a 2-edge-coloring with each monochromatic component contained in P_6. \(\therefore R_\Delta(P_n) \geq 4 \) for \(n \geq 7 \).

Thm. (Alon–Ding–Oporowski–Vertigan [2003])
\(R_\Delta(P_n; s) = 2s \) for \(n > n_0(s) \). \(R_\Delta(P_n; s) \leq 2s \) always.

Lower bound: \(\exists \) function \(g \) such that if \(\Delta(H) = 2s - 1 \), then \(H \) has an \(s \)-edge-coloring where all monochromatic components have at most \(g(s) \) edges.
\(\therefore n_0(s) = g(s) \) suffices.

Upper bound:
Let \(H \) be 2s-regular with girth \(\geq n \), and \(m = |V(H)| \).
Longer Paths

Thm. Thomassen [1999] Every 3-regular graph has a 2-edge-coloring with each monochromatic component contained in P_6. ∴ $R_\Delta(P_n) \geq 4$ for $n \geq 7$.

Thm. (Alon–Ding–Oporowski–Vertigan [2003])

\[
R_\Delta(P_n; s) = 2s \quad \text{for} \quad n > n_0(s). \quad R_\Delta(P_n; s) \leq 2s \quad \text{always.}
\]

Lower bound: ∃ function g such that if $\Delta(H) = 2s - 1$, then H has an s-edge-coloring where all monochr. components have at most $g(s)$ edges.

∴ $n_0(s) = g(s)$ suffices.

Upper bound:
Let H be $2s$-regular with girth $\geq n$, and $m = |V(H)|$.

s colors on sm edges puts $\geq m$ in some color class. Since $|V(H)| = m$, this color class contains a cycle. Since girth$(H) \geq n$, this color class contains P_n.

Thm. (Jiang) If G is a tree, then $R_{\Delta}(G; s) \leq 2s\Delta(G)$.
Trees

Thm. (Jiang) If G is a tree, then $R_\Delta(G; s) \leq 2s\Delta(G)$.

Pf. Let H be $2s\Delta(G)$-regular with girth $> \text{diam}(G)$.
Trees

Thm. (Jiang) If G is a tree, then $R_\Delta(G; s) \leq 2s\Delta(G)$.

Pf. Let H be $2s\Delta(G)$-regular with girth $> \text{diam}(G)$. s-coloring $E(H)$ yields avgdeg $\geq 2\Delta(G)$ in some color. It has a subgraph with minimum degree $\geq \Delta(G)$.
Thm. (Jiang) If G is a tree, then $R_\Delta(G; s) \leq 2s\Delta(G)$.

Pf. Let H be $2s\Delta(G)$-regular with girth $> \text{diam}(G)$. s-coloring $E(H)$ yields $\text{avgdeg} \geq 2\Delta(G)$ in some color. It has a subgraph with minimum degree $\geq \Delta(G)$. In this color find G, since each vertex has $\Delta(G) - 1$ new children until depth $\text{radius}(G)$ is reached.
Thm. (Jiang) If G is a tree, then $R_{\Delta}(G; s) \leq 2s\Delta(G)$.

Pf. Let H be $2s\Delta(G)$-regular with girth $> \text{diam}(G)$.
s-coloring $E(H)$ yields avgdeg $\geq 2\Delta(G)$ in some color. It has a subgraph with minimum degree $\geq \Delta(G)$. In this color find G, since each vertex has $\Delta(G) – 1$ new children until depth radius(G) is reached.

Ques. Is $R_{\Delta}(G)$ bounded by a function of $\Delta(G)$?
Tree

Thm. (Jiang) If G is a tree, then $R_{\Delta}(G; s) \leq 2s\Delta(G)$.

Pf. Let H be $2s\Delta(G)$-regular with girth $> \text{diam}(G)$. s-coloring $E(H)$ yields $\text{avgdeg} \geq 2\Delta(G)$ in some color. It has a subgraph with minimum degree $\geq \Delta(G)$. In this color find G, since each vertex has $\Delta(G) - 1$ new children until depth $\text{radius}(G)$ is reached.

Ques. Is $R_{\Delta}(G)$ bounded by a function of $\Delta(G)$? For which parameters ρ is $R_{\rho}(G)$ bounded by a function of $\rho(G)$? - True for clique number, chromatic number, ...
Lower Bounds for Cycles

Thm. $R_{\Delta}(C_4) \geq 5$.
Lower Bounds for Cycles

Thm. \(R_\Delta(C_4) \geq 5. \)

Thm. (Kinnersley) If \(\Delta(G) \leq 4 \), then \(E(G) \) can be 2-colored so that each color class forms a subgraph with girth at least 5.
Lower Bounds for Cycles

Thm. $R_{\Delta}(C_4) \geq 5$.

Thm. (Kinnersley) If $\Delta(G) \leq 4$, then $E(G)$ can be 2-colored so that each color class forms a subgraph with girth at least 5.

Pf. 12 claims restricting a smallest counterexample. ■
Lower Bounds for Cycles

Thm. \(R_\Delta(C_4) \geq 5. \)

Thm. (Kinnersley) If \(\Delta(G) \leq 4 \), then \(E(G) \) can be 2-colored so that each color class forms a subgraph with girth at least 5.

Pf. 12 claims restricting a smallest counterexample. ■

Cor. \(R_\Delta(C_4) = 5. \) (Since \(K_6 \to C_4. \))
Lower Bounds for Cycles

Thm. $R_\Delta(C_4) \geq 5$.

Thm. (Kinnersley) If $\Delta(G) \leq 4$, then $E(G)$ can be 2-colored so that each color class forms a subgraph with girth at least 5.

Pf. 12 claims restricting a smallest counterexample.

Cor. $R_\Delta(C_4) = 5$. (Since $K_6 \rightarrow C_4$.)

Thm. $R_\Delta(C_{2k+1}) \geq 5$. (Equal for C_3 since $K_6 \rightarrow C_3$.)
Lower Bounds for Cycles

Thm. $R_{\Delta}(C_4) \geq 5$.

Thm. (Kinnersley) If $\Delta(G) \leq 4$, then $E(G)$ can be 2-colored so that each color class forms a subgraph with girth at least 5.

Pf. 12 claims restricting a smallest counterexample.

Cor. $R_{\Delta}(C_4) = 5$. (Since $K_6 \rightarrow C_4$.)

Thm. $R_{\Delta}(C_{2k+1}) \geq 5$. (Equal for C_3 since $K_6 \rightarrow C_3$.)

Pf. K_5 has 2-edge-colorings avoiding any fixed cycle.
Lower Bounds for Cycles

Thm. \(R_\Delta(C_4) \geq 5. \)

Thm. (Kinnersley) If \(\Delta(G) \leq 4 \), then \(E(G) \) can be 2-colored so that each color class forms a subgraph with girth at least 5.

Pf. 12 claims restricting a smallest counterexample.

Cor. \(R_\Delta(C_4) = 5. \) (Since \(K_6 \rightarrow C_4 \).)

Thm. \(R_\Delta(C_{2k+1}) \geq 5. \) (Equal for \(C_3 \) since \(K_6 \rightarrow C_3 \).)

Pf. \(K_5 \) has 2-edge-colorings avoiding any fixed cycle.

By Brooks’ Theorem, every connected \(H \) with \(\Delta(H) = 4 \) (other than \(K_5 \)) has a proper coloring \(f : V(H) \rightarrow [4] \).
Lower Bounds for Cycles

Thm. $R\Delta(C_4) \geq 5.$

Thm. (Kinnersley) If $\Delta(G) \leq 4$, then $E(G)$ can be 2-colored so that each color class forms a subgraph with girth at least 5.

Pf. 12 claims restricting a smallest counterexample.

Cor. $R\Delta(C_4) = 5.$ (Since $K_6 \rightarrow C_4$.)

Thm. $R\Delta(C_{2k+1}) \geq 5.$ (Equal for C_3 since $K_6 \rightarrow C_3$.)

Pf. K_5 has 2-edge-colorings avoiding any fixed cycle.

By Brooks’ Theorem, every connected H with $\Delta(H) = 4$ (other than K_5) has a proper coloring $f : V(H) \rightarrow [4]$.

Color each edge uv “odd” or “even” by whether $f(u) - f(v)$ is odd or even. Both classes bipartite.
Upper Bounds for Cycles

Ques. Is $R_\Delta(C_n)$ bounded?
Upper Bounds for Cycles

Ques. Is $R_\Delta(C_n)$ bounded?

Bigger question: Is there a function f such that $R_\Delta(G) \leq f(\Delta(G))$?
Upper Bounds for Cycles

Ques. Is $R_\Delta(C_n)$ bounded?

Bigger question: Is there a function f such that $R_\Delta(G) \leq f(\Delta(G))$?

Thm. (Haxell–Kohayakawa–Łuczak [1995])
s-color induced size Ramsey # of C_n is linear in n.

• The proof shows that $R_\Delta(C_n) \leq c$ (where c is huge).
Upper Bounds for Cycles

Ques. Is $R_\Delta(C_n)$ bounded?

Bigger question: Is there a function f such that $R_\Delta(G) \leq f(\Delta(G))$?

Thm. (Haxell–Kohayakawa–Łuczak [1995]) s-color induced size Ramsey # of C_n is linear in n.

- The proof shows that $R_\Delta(C_n) \leq c$ (where c is huge).

Thm. (Jiang-Milans-West [2009+]) $R_\Delta(C_{2k}) \leq 108$.
Upper Bounds for Cycles

Ques. Is $R_\Delta(C_n)$ bounded?

Bigger question: Is there a function f such that $R_\Delta(G) \leq f(\Delta(G))$?

Thm. (Haxell–Kohayakawa–Łuczak [1995]) s-color induced size Ramsey # of C_n is linear in n.

- The proof shows that $R_\Delta(C_n) \leq c$ (where c is huge).

Thm. (Jiang-Milans-West [2009+]) $R_\Delta(C_{2k}) \leq 108$.

Thm. (Jiang-Milans-West [2009+]) $R_\Delta(C_{2k+1}) \leq 3890$.
Tools for Cycles

Idea: Force a long even cycle by forcing a blowup of a long monochromatic path.
Tools for Cycles

Idea: Force a long even cycle by forcing a blowup of a long monochromatic path.

Lem. $K_{3,3} \rightarrow P_4$
Idea: Force a long even cycle by forcing a blowup of a long monochromatic path.

\[
\begin{align*}
\text{Lem. } K_{3,3} & \rightarrow P_4 \\
\text{Pf. } & \text{ Each vertex of } X \text{ has a majority in some color. Two vertices have majority in the same color, say red. Since } |Y| = 3, \text{ they have a common neighbor in } Y.
\end{align*}
\]
Even Cycles

Thm. \(R_\Delta(C_{2k}) \leq 118. \)
Thm. \(R_{\Delta}(C_{2k}) \leq 118. \)

Pf. Let \(G \) be a 36-regular \(X,Y \)-bigraph with girth \(\geq k \). Let \(H = G[\overline{K}_3] \); this is 118-regular. Claim: \(H \rightarrow C_{2k} \).
Even Cycles

Thm. $R_{\Delta}(C_{2k}) \leq 118$.

Pf. Let G be a 36-regular X,Y-bigraph with girth $\geq k$. Let $H = G[K_3]$; this is 118-regular. Claim: $H \rightarrow C_{2k}$.

Consider 2-coloring f of $E(H)$. Each edge $xy \in E(G)$ becomes $K_{3,3}$ with parts $\{x_1, x_2, x_3\}$ and $\{y_1, y_2, y_3\}$.

Thm. \(R_\Delta(C_{2k}) \leq 118. \)

Pf. Let \(G \) be a 36-regular \(X,Y \)-bigraph with girth \(\geq k \). Let \(H = G[\overline{K}_3] \); this is 118-regular. Claim: \(H \to C_{2k} \).

Consider 2-coloring \(f \) of \(E(H) \). Each edge \(xy \in E(G) \) becomes \(K_{3,3} \) with parts \(\{x_1, x_2, x_3\} \) and \(\{y_1, y_2, y_3\} \).

Say that \(xy \) has Type \((c; i, j)\) if the resulting \(P_4 \) in the copy of \(xy \) has color \(c \) and omits \(x_i \) and \(y_j \).
Thm. \(R_\Delta(C_{2k}) \leq 118. \)

Pf. Let \(G \) be a 36-regular \(X,Y \)-bigraph with girth \(\geq k \). Let \(H = G[\overline{K}_3] \); this is \(118 \)-regular. Claim: \(H \rightarrow C_{2k} \).

Consider 2-coloring \(f \) of \(E(H) \). Each edge \(xy \in E(G) \) becomes \(K_{3,3} \) with parts \(\{x_1, x_2, x_3\} \) and \(\{y_1, y_2, y_3\} \).

Say that \(xy \) has **Type** \((c; i, j) \) if the resulting \(P_4 \) in the copy of \(xy \) has color \(c \) and omits \(x_i \) and \(y_j \).

The 18 Types yield an 18-coloring of \(E(G) \). Some color class has average degree at least 2.
Thm. \(R_\Delta(C_{2k}) \leq 118. \)

Pf. Let \(G \) be a 36-regular \(X,Y \)-bigraph with girth \(\geq k \). Let \(H = G[\overline{K}_3] \); this is 118-regular. Claim: \(H \to C_{2k} \).

Consider 2-coloring \(f \) of \(E(H) \). Each edge \(xy \in E(G) \) becomes \(K_{3,3} \) with parts \(\{x_1, x_2, x_3\} \) and \(\{y_1, y_2, y_3\} \).

Say that \(xy \) has **Type** \((c; i, j)\) if the resulting \(P_4 \) in the copy of \(xy \) has color \(c \) and omits \(x_i \) and \(y_j \).

The 18 Types yield an 18-coloring of \(E(G) \). Some color class has average degree at least 2.

This class contains a cycle; length is \(\geq k \); contains \(P_k \).
Even Cycles

Thm. \(R_\Delta(C_{2k}) \leq 118 \).

Pf. Let \(G \) be a 36-regular \(X,Y \)-bigraph with girth \(\geq k \).
Let \(H = G[\overline{K}_3] \); this is 118-regular. Claim: \(H \rightarrow C_{2k} \).

Consider 2-coloring \(f \) of \(E(H) \). Each edge \(xy \in E(G) \) becomes \(K_{3,3} \) with parts \(\{x_1, x_2, x_3\} \) and \(\{y_1, y_2, y_3\} \).

Say that \(xy \) has **Type** \((c; i, j)\) if the resulting \(P_4 \) in the copy of \(xy \) has color \(c \) and omits \(x_i \) and \(y_j \).

The 18 Types yield an 18-coloring of \(E(G) \).
Some color class has average degree at least 2.

This class contains a cycle; length is \(\geq k \); contains \(P_k \).
Since the edges have the same Type, in \(H \) they yield pasted copies of \(P_4 \) in the same color \(c \).
This yields monochr. \(C_{2k} \) in \(H \).
Comments

Same type \Rightarrow pasting

![Graph](image)
Cor. If F is bipartite and $\Delta(F) = 2$, then $R_{\Delta}(F) \leq 118$.
Cor. If F is bipartite and $\Delta(F) = 2$, then $R_{\Delta}(F) \leq 118$.

Bipartite G helps pasting but gives only even cycles. In fact, H was bipartite.
Odd Cycles

Thm. $R_{\Delta}(C_{2k-1}) \leq 3890$.
Odd Cycles

Thm. \(R_\Delta(C_{2k-1}) \leq 3890. \)

Pf. Let \(G \) be a 36-regular \(X,Y \)-bigraph with girth > 2\(k \). Let \(H = G^2[K_3] \); this is 3890-regular (\(3 \times 36^2 + 2 \)). Claim: \(H \rightarrow C_{2k-1} \).
Odd Cycles

Thm. \(R_\Delta(C_{2k-1}) \leq 3890. \)

Pf. Let \(G \) be a 36-regular \(X,Y \)-bigraph with girth > \(2k \). Let \(H = G^2[K_3] \); this is 3890-regular (\(3 \times 36^2 + 2 \)).

Claim: \(H \to C_{2k-1} \).

Consider 2-coloring \(f \) of \(E(H) \). Again make 18-coloring of \(E(G) \) (not \(G^2 \)); it has monochromatic \(P_{2k} \), say red.
Odd Cycles

Thm. $R_{\Delta}(C_{2k-1}) \leq 3890$.

Pf. Let G be a 36-regular X,Y-bigraph with girth $> 2k$. Let $H = G^2[K_3]$; this is 3890-regular ($3 \times 36^2 + 2$). Claim: $H \to C_{2k-1}$.

Consider 2-coloring f of $E(H)$. Again make 18-coloring of $E(G)$ (not G^2); it has monochromatic P_{2k}, say red.

Any red edge "inside" \Rightarrow red C_{2k-1}.
Odd Cycles

Thm. \(R_\Delta(C_{2k-1}) \leq 3890. \)

Pf. Let \(G \) be a 36-regular \(X,Y \)-bigraph with girth \(> 2k \). Let \(H = G^2[K_3] \); this is 3890-regular \((3 \times 36^2 + 2) \).

Claim: \(H \rightarrow C_{2k-1}. \)

Consider 2-coloring \(f \) of \(E(H) \). Again make 18-coloring of \(E(G) \) (not \(G^2 \)); it has monochromatic \(P_{2k} \), say red.

![Graph Diagram](image)

Any red edge "inside" \(\Rightarrow \) red \(C_{2k-1} \).

If all are blue, consider the added edges of \(G^2 \) joining alternate pairs along the path. Any red \(\Rightarrow \) red \(C_{2k-1} \).
Odd Cycles

Thm. \(R_\Delta(C_{2k-1}) \leq 3890. \)

Pf. Let \(G \) be a 36-regular \(X,Y \)-bighraph with girth \(> 2k \). Let \(H = G^2[K_3] \); this is 3890-regular \((3 \times 36^2 + 2)\).

Claim: \(H \rightarrow C_{2k-1} \).

Consider 2-coloring \(f \) of \(E(H) \). Again make 18-coloring of \(E(G) \) (not \(G^2 \)); it has monochromatic \(P_{2k} \), say red.

Any red edge "inside" \(\Rightarrow \) red \(C_{2k-1} \).

If all are blue, consider the added edges of \(G^2 \) joining alternate pairs along the path. Any red \(\Rightarrow \) red \(C_{2k-1} \).

If all are blue, then we have a blue \(C_{2k-1} \).
The On-line Ramsey Problem

Graph Ramsey theory = a game
Builder presents a graph; Painter 2-colors the edges.
Builder wins if a monochromatic G is produced.
The On-line Ramsey Problem

Graph Ramsey theory = a game
Builder presents a graph; Painter 2-colors the edges. Builder wins if a monochromatic G is produced.

“Arrow” $H \rightarrow G$ \iff Builder wins by playing H.
The On-line Ramsey Problem

Graph Ramsey theory = a game
Builder presents a graph; Painter 2-colors the edges. Builder wins if a monochromatic G is produced.

“Arrow” $H \rightarrow G \iff$ Builder wins by playing H.

On-line Graph Ramsey theory = a stronger Builder
Builder presents one edge at a time; Painter colors it. Builder wins if a monochromatic G is produced.
The On-line Ramsey Problem

Graph Ramsey theory = a game
Builder presents a graph; Painter 2-colors the edges.
Builder wins if a monochromatic G is produced.

“Arrow” $H \rightarrow G \iff$ Builder wins by playing H.

On-line Graph Ramsey theory = a stronger Builder
Builder presents one edge at a time; Painter colors it.
Builder wins if a monochromatic G is produced.

Idea: Restrict Builder to a hereditary family \mathcal{H}.
After every move, the graph presented so far lies in \mathcal{H}.
The On-line Ramsey Problem

Graph Ramsey theory = a game
Builder presents a graph; Painter 2-colors the edges.
Builder wins if a monochromatic G is produced.

“Arrow” $H \rightarrow G \iff$ Builder wins by playing H.

On-line Graph Ramsey theory = a stronger Builder
Builder presents one edge at a time; Painter colors it.
Builder wins if a monochromatic G is produced.

Idea: Restrict Builder to a hereditary family \mathcal{H}.
After every move, the graph presented so far lies in \mathcal{H}.

This defines the on-line Ramsey game (G, \mathcal{H}).
Can Builder playing on \mathcal{H} force a monochromatic G?
On-Line Ramsey Parameters

Def. For a monotone graph parameter ρ, the on-line ρ-Ramsey number $\hat{R}_\rho(G)$ of G is $\min\{k: \text{Builder wins } (G, \mathcal{F}_k)\}$, where $\mathcal{F}_k = \{H: \rho(H) \leq k\}$.
On-Line Ramsey Parameters

Def. For a monotone graph parameter \(\rho \), the on-line \(\rho \)-Ramsey number \(\mathcal{R}_\rho(G) \) of \(G \) is
\[
\min\{k : \text{Builder wins } (G, \mathcal{F}_k)\},
\]
where \(\mathcal{F}_k = \{H : \rho(H) \leq k\} \).

Grytczuk–Hałuszczak–Kierstead [2004] (E-JC)
\(\mathcal{R}_\chi(G) = \chi(G) \) (Builder wins \(G \) on \(\chi(G) \)-colorable graphs)
On-Line Ramsey Parameters

Def. For a monotone graph parameter \(\rho \), the on-line \(\rho \)-Ramsey number \(\hat{R}_\rho(G) \) of \(G \) is
\[
\min \{ k : \text{Builder wins } (G, F_k) \}, \text{ where } F_k = \{ H : \rho(H) \leq k \}.
\]

Grytczuk–Hałuszczak–Kierstead [2004] (E-JC)
\(\hat{R}_\chi(G) = \chi(G) \) (Builder wins \(G \) on \(\chi(G) \)-colorable graphs)

** Conj. (GHK) ** When \(\mathcal{H} = \{ \text{planar} \} \), Builder wins \((G, \mathcal{H}) \) if and only if \(G \) is outerplanar.
On-Line Ramsey Parameters

Def. For a monotone graph parameter \(\rho\), the on-line \(\rho\)-Ramsey number \(\mathcal{R}_\rho(G)\) of \(G\) is \(\min\{k: \text{Builder wins } (G,F_k)\}\), where \(F_k = \{H: \rho(H) \leq k\}\).

Grytczuk–Hałuszczak–Kierstead [2004] (E-JC)
\(\mathcal{R}_\chi(G) = \chi(G)\) (Builder wins \(G\) on \(\chi(G)\)-colorable graphs)

Conj. (GHK) When \(\mathcal{H} = \{\text{planar}\}\), Builder wins \((G,\mathcal{H})\) if and only if \(G\) is outerplanar.

Beck [1993] - introduced on-line size Ramsey number
Grytczuk–Kierstead–Prałat [2008] For \(P_n\) at most \(4n - 7\), but for trees it can be quadratic.
On-Line Ramsey Parameters

Def. For a monotone graph parameter ρ, the on-line ρ-Ramsey number $\hat{R}_\rho(G)$ of G is $\min\{k: \text{Builder wins } (G, F_k)\}$, where $F_k = \{H: \rho(H) \leq k\}$.

Grytczuk–Hałuszczak–Kierstead [2004] (E-JC) $\hat{R}_\chi(G) = \chi(G)$ (Builder wins G on $\chi(G)$-colorable graphs)

** Conj.** (GHK) When $\mathcal{H} = \{\text{planar}\}$, Builder wins (G, \mathcal{H}) if and only if G is outerplanar.

Beck [1993] - introduced on-line size Ramsey number
Grytczuk–Kierstead–Prałat [2008] For P_n at most $4n - 7$, but for trees it can be quadratic.

Def. on-line degree Ramsey number $\hat{R}_\Delta(G) = \min\{k: \text{Builder wins } (G, S_k)\}$, where $S_k = \{H: \Delta(H) \leq k\}$.
On-line Degree Ramsey Results

Obs. $\tilde{R}_\Delta(G) \leq R_\Delta(G)$ for all G. (Always $\tilde{R}_\rho(G) \leq R_\rho(G)$.)
On-line Degree Ramsey Results

Obs. $\hat{R}_\Delta(G) \leq R_\Delta(G)$ for all G. (Always $\hat{R}_\rho(G) \leq R_\rho(G)$.)

Thm. $\hat{R}_\Delta(G) \leq 3$ \iff each component of G is a path or each component is a subgraph of $K_{1,3}$.
On-line Degree Ramsey Results

Obs. \(\hat{R}_\Delta(G) \leq R_\Delta(G) \) for all \(G \). (Always \(\hat{R}_\rho(G) \leq R_\rho(G) \).)

Thm. \(\hat{R}_\Delta(G) \leq 3 \iff \) each component of \(G \) is a path or each component is a subgraph of \(K_{1,3} \).

Thm. \(\hat{R}_\Delta(G) \leq 2\Delta(G) - 1 \) when \(G \) is a tree, sharp if \(\exists \) adjacent vertices of maximum degree. (Also, \(\hat{R}_\Delta(S_{a,b}) = a + b - 1 \).)
On-line Degree Ramsey Results

Obs. \(\hat{R}_\Delta(G) \leq R_\Delta(G) \) for all \(G \). (Always \(\hat{R}_\rho(G) \leq R_\rho(G) \).)

Thm. \(\hat{R}_\Delta(G) \leq 3 \iff \) each component of \(G \) is a path or each component is a subgraph of \(K_{1,3} \).

Thm. \(\hat{R}_\Delta(G) \leq 2\Delta(G) - 1 \) when \(G \) is a tree, sharp if \(\exists \) adjacent vertices of maximum degree. (Also, \(\hat{R}_\Delta(S_{a,b}) = a + b - 1 \).)

Thm. \(4 \leq \hat{R}_\Delta(C_n) \leq 5 \).
On-line Degree Ramsey Results

Obs. \(\hat{R}_\Delta(G) \leq R_\Delta(G) \) for all \(G \). (Always \(\hat{R}_\rho(G) \leq R_\rho(G) \).)

Thm. \(\hat{R}_\Delta(G) \leq 3 \iff \) each component of \(G \) is a path or each component is a subgraph of \(K_{1,3} \).

Thm. \(\hat{R}_\Delta(G) \leq 2\Delta(G) - 1 \) when \(G \) is a tree, sharp if \(\exists \) adjacent vertices of maximum degree. (Also, \(\hat{R}_\Delta(S_{a,b}) = a + b - 1 \).)

Thm. \(4 \leq \hat{R}_\Delta(C_n) \leq 5 \).

Thm. \(\hat{R}_\Delta(C_n) = 4 \) if \(n \) is even or large or \(3 \).
On-line Degree Ramsey Results

Obs. \(\hat{R}_\Delta(G) \leq R_\Delta(G) \) for all \(G \). (Always \(\hat{R}_\rho(G) \leq R_\rho(G) \).)

Thm. \(\hat{R}_\Delta(G) \leq 3 \iff \) each component of \(G \) is a path or each component is a subgraph of \(K_{1,3} \).

Thm. \(\hat{R}_\Delta(G) \leq 2\Delta(G) - 1 \) when \(G \) is a tree, sharp if \(\exists \) adjacent vertices of maximum degree. (Also, \(\hat{R}_\Delta(S_{a,b}) = a + b - 1 \).)

Thm. \(4 \leq \hat{R}_\Delta(C_n) \leq 5 \).

Thm. \(\hat{R}_\Delta(C_n) = 4 \) if \(n \) is even or large or 3.

Ques. Is \(\hat{R}_\Delta(G) \) bounded by a function of \(\Delta(G) \)? (Weaker than for \(R_\Delta(G) \).)
On-line Degree Ramsey Results

Obs. \(\hat{R}_\Delta(G) \leq R_\Delta(G) \) for all \(G \). (Always \(\hat{R}_\rho(G) \leq R_\rho(G) \).)

Thm. \(\hat{R}_\Delta(G) \leq 3 \iff \) each component of \(G \) is a path or each component is a subgraph of \(K_{1,3} \).

Thm. \(\hat{R}_\Delta(G) \leq 2\Delta(G) - 1 \) when \(G \) is a tree, sharp if \(\exists \) adjacent vertices of maximum degree. (Also, \(\hat{R}_\Delta(S_{a,b}) = a + b - 1 \).)

Thm. \(4 \leq \hat{R}_\Delta(C_n) \leq 5 \).

Thm. \(\hat{R}_\Delta(C_n) = 4 \) if \(n \) is even or large or \(3 \).

Ques. Is \(\hat{R}_\Delta(G) \) bounded by a function of \(\Delta(G) \)? (Weaker than for \(R_\Delta(G) \).)

Thm. \(\hat{R}_\Delta(G) \leq 8 \) if \(\Delta(G) \leq 2 \) (maybe less).
Def. The greedy \mathcal{F}-Painter colors each edge red if the resulting red graph lies in \mathcal{F}; otherwise blue.
Lower Bounds – Greedy Painter

Def. The greedy \mathcal{F}-Painter colors each edge red if the resulting red graph lies in \mathcal{F}; otherwise blue.

Thm. $\hat{R}_\Delta(G) \geq \Delta(G) - 1 + \max_{uv \in E(G)} \min \{d(u), d(v)\}$.
Lower Bounds – Greedy Painter

Def. The greedy \mathcal{F}-Painter colors each edge red if the resulting red graph lies in \mathcal{F}; otherwise blue.

Thm. $\hat{\Delta}(G) \geq \Delta(G) - 1 + \max_{uv \in E(G)} \min \{d(u), d(v)\}$.

Pf. Let $m = \Delta(G)$. S_{m-1}-Painter never makes red G. An edge gets blue \iff an endpt already has $m - 1$ red.
Lower Bounds – Greedy Painter

Def. The greedy \mathcal{F}-Painter colors each edge red if the resulting red graph lies in \mathcal{F}; otherwise blue.

Thm. $\hat{\Delta}(G) \geq \Delta(G) - 1 + \max_{uv \in E(G)} \min\{d(u), d(v)\}.$

Pf. Let $m = \Delta(G)$. S_{m-1}-Painter never makes red G. An edge gets blue \iff an endpt already has $m-1$ red.

Let xy be an edge with maxmin degree in G. A blue G has an edge for xy; it has $m-1$ red at one endpt and at least $\min\{d_G(x), d_G(y)\}$ blue there.
Lower Bounds – Greedy Painter

Def. The greedy \mathcal{F}-Painter colors each edge red if the resulting red graph lies in \mathcal{F}; otherwise blue.

Thm. $\hat{\mathcal{R}}_\Delta(G) \geq \Delta(G) - 1 + \max_{uv \in E(G)} \min \{d(u), d(v)\}$.

Pf. Let $m = \Delta(G)$. S_{m-1}-Painter never makes red G. An edge gets blue \iff an endpt already has $m - 1$ red.

Let xy be an edge with maxmin degree in G. A blue G has an edge for xy; it has $m - 1$ red at one endpt and at least $\min \{d_G(x), d_G(y)\}$ blue there.

Cor. $\hat{\mathcal{R}}_\Delta(P_n) \geq 3$; $\hat{\mathcal{R}}_\Delta(K_{1,m}) \geq m$; $\hat{\mathcal{R}}_\Delta(S_{a,b}) \geq a + b - 1$; $\hat{\mathcal{R}}_\Delta(G) \geq 2\Delta(G) - 1$ if \exists adjacent maxdegree vertices.
Def. The greedy F-Painter colors each edge red if the resulting red graph lies in F; otherwise blue.

Thm. $\hat{\mathcal{R}}_\Delta(G) \geq \Delta(G) - 1 + \max_{uv \in E(G)} \min\{d(u), d(v)\}$.

Pf. Let $m = \Delta(G)$. S_{m-1}-Painter never makes red G. An edge gets blue \iff an endpt already has $m - 1$ red. Let xy be an edge with maxmin degree in G. A blue G has an edge for xy; it has $m - 1$ red at one endpt and at least $\min\{d_G(x), d_G(y)\}$ blue there.

Cor. $\hat{\mathcal{R}}_\Delta(P_n) \geq 3$; $\hat{\mathcal{R}}_\Delta(K_{1,m}) \geq m$; $\hat{\mathcal{R}}_\Delta(S_{a,b}) \geq a + b - 1$; $\hat{\mathcal{R}}_\Delta(G) \geq 2\Delta(G) - 1$ if \exists adjacent maxdegree vertices.

• Lower bound for $\hat{\mathcal{R}}_\Delta(C_n) \geq 4$ comes from charzn of $\hat{\mathcal{R}}_\Delta(G) \leq 3$, which uses greedy linear-forest Painter.
Def. Painter follows a consistent strategy if the color used on a new edge depends only on the current 2-colored component(s) containing its endpoints (regardless of what else has been played).
Def. Painter follows a consistent strategy if the color used on a new edge depends only on the current 2-colored component(s) containing its endpoints (regardless of what else has been played).

Thm. If \mathcal{H} is an additive family (closed under disjoint unions), and A is a Painter strategy on \mathcal{H}, then there is a consistent Painter strategy A' on \mathcal{H} such that for any list E' presented by Builder, there is another list E such that $A'(E') \subseteq A(E)$ (as 2-colored graphs).
Upper Bounds – Consistent Painter

Def. Painter follows a consistent strategy if the color used on a new edge depends only on the current 2-colored component(s) containing its endpoints (regardless of what else has been played).

Thm. If \mathcal{H} is an additive family (closed under disjoint unions), and \mathcal{A} is a Painter strategy on \mathcal{H}, then there is a consistent Painter strategy \mathcal{A}' on \mathcal{H} such that for any list E' presented by Builder, there is another list E such that $\mathcal{A}'(E') \subseteq \mathcal{A}(E)$ (as 2-colored graphs).

Cor. To prove that $\hat{R}_\Delta(G) \leq k$, it suffices to show that Builder can win against any consistent Painter on S_k.
Def. Painter follows a consistent strategy if the color used on a new edge depends only on the current 2-colored component(s) containing its endpoints (regardless of what else has been played).

Thm. If \mathcal{H} is an additive family (closed under disjoint unions), and \mathcal{A} is a Painter strategy on \mathcal{H}, then there is a consistent Painter strategy \mathcal{A}' on \mathcal{H} such that for any list E' presented by Builder, there is another list E such that $\mathcal{A}'(E') \subseteq \mathcal{A}(E)$ (as 2-colored graphs).

Cor. To prove that $\hat{R}_\Delta(G) \leq k$, it suffices to show that Builder can win against any consistent Painter on S_k.

- Prove upper bounds on \hat{R}_Δ for trees and cycles by algorithms for Builder to defeat a consistent Painter.
Trees

Thm. If G is a tree, then $\hat{R}_\Delta(G) \leq 2\Delta(G) - 1$.
Trees

Thm. If G is a tree, then $\hat{\mathcal{R}}_\Delta(G) \leq 2\Delta(G) - 1$.

Pf. Idea: Builder forces a large monochromatic complete k-ary tree, where $k = \Delta(G) - 1$.
Trees

Thm. If G is a tree, then $\hat{\Delta}(G) \leq 2\Delta(G) - 1$.

Pf. Idea: Builder forces a large monochromatic complete k-ary tree, where $k = \Delta(G) - 1$.

Candidate tree T_R or T_B has an active vertex x_R or x_B - a vertex of least depth w/o k children via its own color.
Thm. If G is a tree, then $\hat{\rho}_{\Delta}(G) \leq 2\Delta(G) - 1$.

Pf. Idea: Builder forces a large monochromatic complete k-ary tree, where $k = \Delta(G) - 1$.

Candidate tree T_R or T_B has an active vertex x_R or x_B - a vertex of least depth w/o k children via its own color.

Invariant: In T_R, each vertex other than x_R either
1) is a leaf in T_R with no other incident edge, or
2) has k red children and at most k blue incident edges.

(Symmetrically for T_B).
Thm. If G is a tree, then $\hat{\Delta}(G) \leq 2\Delta(G) - 1$.

Pf. Idea: Builder forces a large monochromatic complete k-ary tree, where $k = \Delta(G) - 1$.

Candidate tree T_R or T_B has an active vertex x_R or x_B - a vertex of least depth w/o k children via its own color.

Invariant: In T_R, each vertex other than x_R either 1) is a leaf in T_R with no other incident edge, or 2) has k red children and at most k blue incident edges.

(Symmetrically for T_B).

An active vertex becomes satisfied if it has k children via its own color. dangerous if it has k incident edges of the other color.
Builder Strategy

Builder plays pendant edges at active vertices (in T_R or T_B) until Painter makes one satisfied or dangerous.
Builder Strategy

Builder plays pendant edges at active vertices (in T_R or T_B) until Painter makes one satisfied or dangerous.

When an active vertex is satisfied, Builder rechooses it (closest to root w/o k children via its own color).
Builder Strategy

Builder plays pendant edges at active vertices (in T_R or T_B) until Painter makes one satisfied or dangerous.

When an active vertex is satisfied, Builder rechooses it (closest to root w/o k children via its own color).

If x_R and x_B are both dangerous,
Builder Strategy

Builder plays pendant edges at active vertices (in T_R or T_B) until Painter makes one satisfied or dangerous.

When an active vertex is satisfied, Builder rechooses it (closest to root w/o k children via its own color).

If x_R and x_B are both dangerous, Builder plays $x_R x_B$.

![Diagram of Builder Strategy](image)
Builder Strategy

Builder plays pendant edges at active vertices (in T_R or T_B) until Painter makes one satisfied or dangerous.

When an active vertex is satisfied, Builder rechooses it (closest to root w/o k children via its own color).

If x_R and x_B are both dangerous, Builder plays $x_R x_B$.

This edge enters the tree for its color, dragging the other tree with it.
Builder Strategy

Builder plays pendant edges at active vertices (in T_R or T_B) until Painter makes one satisfied or dangerous.

When an active vertex is satisfied, Builder rechooses it (closest to root w/o k children via its own color).

If x_R and x_B are both dangerous, Builder plays x_Rx_B.

This edge enters the tree for its color, dragging the other tree with it.

Then Builder regenerates the other tree.
Even Cycles

Assume Builder plays on S_k and Painter is consistent. (Weight = bound on total red + blue at a vertex.)

Lem. Let F_1, F_2 be weighted graphs Builder can force in red, with vertices u_1, u_2. Form F from $F_1 + F_2$ by adding u_1u_2 and increasing weights on u_1 and u_2 by 2. If q is even, then Builder can force a red F or a blue C_q.
Even Cycles

Assume Builder plays on S_k and Painter is consistent. (Weight = bound on total red + blue at a vertex.)

Lem. Let F_1, F_2 be weighted graphs Builder can force in red, with vertices u_1, u_2. Form F from $F_1 + F_2$ by adding u_1u_2 and increasing weights on u_1 and u_2 by 2. If q is even, then Builder can force a red F or a blue C_q.

Pf. Builder forces $q/2$ copies of F_1 and F_2 and then adds a cycle alternating between the copies of u_1 and u_2. ■
Trees for Even Cycles

Consistent Painter makes the same monochr. P_3 (with weights 2) in any isolated triangle; we may assume it is red. Painter wants to avoid a monochromatic C_q.

\[
\begin{array}{c}
\text{2} \\
\text{2} \\
\text{2}
\end{array}
\quad
\begin{array}{c}
\text{2} \\
\text{2} \\
\text{2}
\end{array}
\]
Trees for Even Cycles

Consistent Painter makes the same monochromatic P_3 (with weights 2) in any isolated triangle; we may assume it is red. Painter wants to avoid a monochromatic C_q.

```
  4
 /|
|  |
| 4|
  2
```

```
  4
 /|
|  |
| 2|
  2
```

```
  4
 /|
|  |
| 2|
  2
```
Trees for Even Cycles

Consistent Painter makes the same monochromatic P_3 (with weights 2) in any isolated triangle; we may assume it is red. Painter wants to avoid a monochromatic C_q.

$q = 4$
Trees for Even Cycles

Consistent Painter makes the same monochr. P_3 (with weights 2) in any isolated triangle; we may assume it is red. Painter wants to avoid a monochromatic C_q.

$q = 8$
Trees for Even Cycles

Consistent Painter makes the same monochr. P_3 (with weights 2) in any isolated triangle; we may assume it is red. Painter wants to avoid a monochromatic C_q.

Further extensions of the tree force any even cycle C_q (just extend one half if $q \equiv 2 \mod 4$), but C_6 and C_{10} are special.
Special Case: C_6

Consistent Painter makes consistent triangles.

Case 1: monochromatic
Special Case: C_6

Consistent Painter makes consistent triangles.

Case 1: monochromatic
Special Case: C_6

Consistent Painter makes consistent triangles.

Case 1: monochromatic
Special Case: C_6

Consistent Painter makes consistent triangles.

Case 1: monochromatic

Case 2: not monochromatic
Special Case: C_6

Consistent Painter makes consistent triangles.

Case 1: monochromatic

Case 2: not monochromatic
Special Case: C_6

Consistent Painter makes consistent triangles.

Case 1: monochromatic

Case 2: not monochromatic
Summary for Cycles; Open Questions

\[\hat{R}_\Delta(C_{10}) = 4 \text{ done similarly; } \hat{R}_\Delta(C_3) = 4 \text{ ad hoc.} \]

Thm. For even \(n \) with \(n \geq 4 \), \(\hat{R}_\Delta(C_n) = 4 \).
Summary for Cycles; Open Questions

\[\hat{R}_\Delta(C_{10}) = 4 \] done similarly; \[\hat{R}_\Delta(C_3) = 4 \] ad hoc.

Thm. For even \(n \) with \(n \geq 4 \), \[\hat{R}_\Delta(C_n) = 4. \]

Thm. For all \(n \), \[\hat{R}_\Delta(C_n) \leq 5. \]
Summary for Cycles; Open Questions

\(\hat{R}_\Delta(C_{10}) = 4 \) done similarly; \(\hat{R}_\Delta(C_3) = 4 \) ad hoc.

Thm. For even \(n \) with \(n \geq 4 \), \(\hat{R}_\Delta(C_n) = 4 \).

Thm. For all \(n \), \(\hat{R}_\Delta(C_n) \leq 5 \).

Thm. If \(337 \leq n \leq 514 \) or \(n \geq 689 \), then \(\hat{R}_\Delta(C_n) = 4 \).
Summary for Cycles; Open Questions

\(\hat{R}_\Delta(C_{10}) = 4 \) done similarly; \(\hat{R}_\Delta(C_3) = 4 \) ad hoc.

Thm. For even \(n \) with \(n \geq 4 \), \(\hat{R}_\Delta(C_n) = 4 \).

Thm. For all \(n \), \(\hat{R}_\Delta(C_n) \leq 5 \).

Thm. If \(337 \leq n \leq 514 \) or \(n \geq 689 \), then \(\hat{R}_\Delta(C_n) = 4 \).

Ques. \(\hat{R}_\Delta(C_n) = 4 \) for all \(n \)?
Summary for Cycles; Open Questions

\(\hat{R}_\Delta(C_{10}) = 4 \) done similarly; \(\hat{R}_\Delta(C_3) = 4 \) ad hoc.

Thm. For even \(n \) with \(n \geq 4 \), \(\hat{R}_\Delta(C_n) = 4 \).

Thm. For all \(n \), \(\hat{R}_\Delta(C_n) \leq 5 \).

Thm. If \(337 \leq n \leq 514 \) or \(n \geq 689 \), then \(\hat{R}_\Delta(C_n) = 4 \).

Ques. \(\hat{R}_\Delta(C_n) = 4 \) for all \(n \)?

Ques. Is \(\hat{R}_\Delta(G) \) bounded by a function of \(\Delta(G) \)? Is \(R_\Delta(G) \) bounded by a function of \(\hat{R}_\Delta(G) \)?
Summary for Cycles; Open Questions

\(\hat{R}_\Delta(C_{10}) = 4 \) done similarly; \(\hat{R}_\Delta(C_3) = 4 \) ad hoc.

Thm. For even \(n \) with \(n \geq 4 \), \(\hat{R}_\Delta(C_n) = 4 \).

Thm. For all \(n \), \(\hat{R}_\Delta(C_n) \leq 5 \).

Thm. If \(337 \leq n \leq 514 \) or \(n \geq 689 \), then \(\hat{R}_\Delta(C_n) = 4 \).

Ques. \(\hat{R}_\Delta(C_n) = 4 \) for all \(n \)?

Ques. Is \(\hat{R}_\Delta(G) \) bounded by a function of \(\Delta(G) \)?
 Is \(R_\Delta(G) \) bounded by a function of \(\hat{R}_\Delta(G) \)?

Ques. What is \(\hat{R}_\Delta(C_5) \)? (4 or 5)
 What is \(\hat{R}_\Delta(K_{1,3} + e) \)? (4 or 5)
 What is \(\hat{R}_\Delta(C_4 + e) \)? (5 or 6 or 7.)
Lem. Against consistent Painter, if Builder can force red F or monochr. C_q (q odd), then Builder can force red $F+uv$ or monochr. C_q, with wt on u and v up by 2.
Odd Cycles

Lem. Against consistent Painter, if Builder can force red F or monochr. C_q (q odd), then Builder can force red $F + uv$ or monochr. C_q, with wt on u and v up by 2.

Thm. $\hat{R}_\Delta(C_q) \leq 5$ when q is odd.
Odd Cycles

Lem. Against consistent Painter, if Builder can force red F or monochr. C_q (q odd), then Builder can force red $F+uv$ or monochr. C_q, with wt on u and v up by 2.

Thm. $\hat{R}_\Delta(C_q) \leq 5$ when q is odd.

Pf. Force monochr. P_q (say red) with weights 3.

\[3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \]
Odd Cycles

Lem. Against consistent Painter, if Builder can force red F or monochr. C_q (q odd), then Builder can force red $F + uv$ or monochr. C_q, with wt on u and v up by 2.

Thm. $\hat{R}_\Delta(C_q) \leq 5$ when q is odd.

Pf. Force monochr. P_q (say red) with weights 3. Grow pendant paths.
Odd Cycles

Lem. Against consistent Painter, if Builder can force red F or monochr. C_q (q odd), then Builder can force red $F+uv$ or monochr. C_q, with wt on u and v up by 2.

Thm. $\hat{R}_\Delta(C_q) \leq 5$ when q is odd.

Pf. Force monochr. P_q (say red) with weights 3. Grow pendant paths.

![Diagram of a graph with weights on edges]
Odd Cycles

Lem. Against consistent Painter, if Builder can force red F or monochr. C_q (q odd), then Builder can force red $F+uv$ or monochr. C_q, with wt on u and v up by 2.

Thm. $\hat{R}_\Delta(C_q) \leq 5$ when q is odd.

Pf. Force monochr. P_q (say red) with weights 3. Grow pendant paths.

Leaf distances $q - 1$ (opposite halves or to middle). Cycle through the leaves is all blue or some red.