Degree Ramsey and On-Line Degree Ramsey Numbers

Douglas B. West

Department of Mathematics
University of Illinois at Urbana-Champaign
west@math.uiuc.edu
http://www.math.uiuc.edu/~west/pubs/publink.html

Joint work with
Jane Butterfield, Tracy Grauman, Tao Jiang, Bill Kinnersley, Kevin Milans, Christopher Stocker
Parameter Ramsey Numbers

Def. $H \rightarrow G$ means every 2-coloring of $E(H)$ gives a monochromatic G. Ramsey’s Theorem \Rightarrow H exists.
Ramsey number $R(G) = \min\{n : K_n \rightarrow G\}$.
Parameter Ramsey Numbers

Def. $H \rightarrow G$ means every 2-coloring of $E(H)$ gives a monochromatic G. Ramsey’s Theorem \Rightarrow H exists. Ramsey number $R(G) = \min\{n: K_n \rightarrow G\}$.

Def. For a monotone graph parameter ρ, the ρ-Ramsey number $R_{\rho}(G)$ of G is $\min\{\rho(H): H \rightarrow G\}$.
Parameter Ramsey Numbers

Def. $H \rightarrow G$ means every 2-coloring of $E(H)$ gives a monochromatic G. Ramsey’s Theorem $\Rightarrow H$ exists. Ramsey number $R(G) = \min\{n: K_n \rightarrow G\}$.

Def. For a monotone graph parameter ρ, the ρ-Ramsey number $R_\rho(G)$ of G is $\min\{\rho(H): H \rightarrow G\}$.

Ex. When $\rho(G) = |V(G)|$, simply $R_\rho(G) = R(G)$.
Parameter Ramsey Numbers

Def. \(H \rightarrow G \) means every 2-coloring of \(E(H) \) gives a monochromatic \(G \). Ramsey’s Theorem \(\Rightarrow \) \(H \) exists. Ramsey number \(R(G) = \min \{ n : K_n \rightarrow G \} \).

Def. For a monotone graph parameter \(\rho \), the \(\rho \)-Ramsey number \(R_\rho(G) \) of \(G \) is \(\min \{ \rho(H) : H \rightarrow G \} \).

Ex. When \(\rho(G) = |V(G)| \), simply \(R_\rho(G) = R(G) \).

- **Other parameters considered:** size \(m(G) = |E(G)| \), clique number \(\omega(G) \), chromatic number \(\chi(G) \), maximum degree \(\Delta(G) \).
Parameter Ramsey Numbers

Def. $H \rightarrow G$ means every 2-coloring of $E(H)$ gives a monochromatic G. Ramsey’s Theorem $\Rightarrow H$ exists. Ramsey number $R(G) = \min\{n: K_n \rightarrow G\}$.

Def. For a monotone graph parameter ρ, the ρ-Ramsey number $R_{\rho}(G)$ of G is $\min\{\rho(H): H \rightarrow G\}$.

Ex. When $\rho(G) = |V(G)|$, simply $R_{\rho}(G) = R(G)$.

- **Other parameters considered:** size $m(G) = |E(G)|$, clique number $\omega(G)$, chromatic number $\chi(G)$, maximum degree $\Delta(G)$.

- **Extension to many colors:** $R_{\rho}(G; s) = \min\{\rho(H): \text{every } s\text{-coloring of } E(H) \text{ gives monochr. } G\}$.
Parameter Ramsey Numbers

Def. $H \rightarrow G$ means every 2-coloring of $E(H)$ gives a monochromatic G. Ramsey’s Theorem $\Rightarrow H$ exists. Ramsey number $R(G) = \min \{n : K_n \rightarrow G\}$.

Def. For a monotone graph parameter ρ, the ρ-Ramsey number $R_\rho(G)$ of G is $\min \{\rho(H) : H \rightarrow G\}$.

Ex. When $\rho(G) = |V(G)|$, simply $R_\rho(G) = R(G)$.

- **Other parameters considered:** size $m(G) = |E(G)|$, clique number $\omega(G)$, chromatic number $\chi(G)$, maximum degree $\Delta(G)$.

- **Extension to many colors:** $R_\rho(G; s) = \min \{\rho(H) : \text{every } s\text{-coloring of } E(H) \text{ gives monochnr. } G\}$.

- $R_\rho(G_1, G_2, G_3, \ldots, G_s; s)$ not yet much studied.
Thm. (Folkman [1970]) For every G, $R_\omega(G) = \omega(G)$.
Clique and Size Ramsey Numbers

Thm. (Folkman [1970]) For every G, $R_\omega(G) = \omega(G)$.

Thm. (Nešetřil–Rödl [1976]) For every G, $R_\omega(G; s) = \omega(G)$.
Clique and Size Ramsey Numbers

Thm. (Folkman [1970]) For every G, $R_\omega(G) = \omega(G)$.

Thm. (Nešetřil–Rödl [1976]) For every G, $R_\omega(G; s) = \omega(G)$.

For size Ramsey number, always $R_m(G) \leq \binom{R(G)}{2}$.

Thm. (Erdős–Faudr.–Rouss.–Schelp [1978]) $R_m(K_n) = \binom{R(K_n)}{2}$.
Clique and Size Ramsey Numbers

Thm. (Folkman [1970]) For every G, $R_\omega(G) = \omega(G)$.

Thm. (Nešetřil–Rödl [1976]) For every G, $R_\omega(G; s) = \omega(G)$.

For size Ramsey number, always $R_m(G) \leq \binom{R(G)}{2}$.

Thm. (Erdős–Faudr.–Rouss.–Schelp [1978]) $R_m(K_n) = \binom{R(K_n)}{2}$.

Thm. (Beck [1983]) $R_m(P_n) \leq cn$ for some c.

100E
Clique and Size Ramsey Numbers

Thm. (Folkman [1970]) For every G, $R_\omega(G) = \omega(G)$.

Thm. (Nešetřil–Rödl [1976]) For every G, $R_\omega(G; s) = \omega(G)$.

For size Ramsey number, always $R_m(G) \leq \binom{R(G)}{2}$.

Thm. (Erdős–Faudr.–Rouss.–Schelp [1978]) $R_m(K_n) = \binom{R(K_n)}{2}$.

Thm. (Beck [1983]) $R_m(P_n) \leq cn$ for some c. 100E

Size Ramsey number is also linear in n for cycles (Haxell–Kohayakawa–Łuczak [1995]) and bounded-degree trees (Friedman–Pippinger [1987]), but NOT graphs w. maxdegree 3 (Rödl–Szemerédi[2000]).
Chromatic Ramsey Number

For a family G, let $R(G; s) = \min\{n: K_n \rightarrow G\}$.

Homomorphism = edge-preserving map $\phi: V(G) \rightarrow V(H)$.

Ex. A proper k-coloring is a homomorphism into K_k.
Chromatic Ramsey Number

For a family \mathcal{G}, let $R(\mathcal{G}; s) = \min\{n: K_n \overset{s}{\rightarrow} \mathcal{G}\}$.

Homomorphism = edge-preserving map $\phi: V(G) \rightarrow V(H)$.

Ex. A proper k-coloring is a homomorphism into K_k.

Thm. (Burr–Erdős–Lovász [1976]) $R_{\chi}(G; s) = R(\mathcal{G}; s)$, where \mathcal{G} is the family of all homomorphic images of G.
Chromatic Ramsey Number

For a family \(G \), let \(R(G; s) = \min\{n: K_n \rightarrow G\} \).

Homomorphism = edge-preserving map \(\phi: V(G) \rightarrow V(H) \).

Ex. A proper \(k \)-coloring is a homomorphism into \(K_k \).

Thm. (Burr–Erdős–Lovász [1976]) \(R_{\chi}(G; s) = R(G; s) \), where \(G \) is the family of all homomorphic images of \(G \).

Pf. (Idea) Let \(k = R(G; s) \). Apply the bipartite Ramsey theorem repeatedly to a complete \(k \)-partite \(H \) with huge parts to get a complete \(k \)-partite subgraph \(H' \) with parts of size \(|V(G)| \) where the edges joining any two parts have the same color.
Chromatic Ramsey Number

For a family G, let $R(G; s) = \min \{n: K_n \rightarrow G\}$.

Homomorphism = edge-preserving map $\phi: V(G) \rightarrow V(H)$.

Ex. A proper k-coloring is a homomorphism into K_k.

Thm. (Burr–Erdős–Lovász [1976]) $R_{\chi}(G; s) = R(G; s)$,
where G is the family of all homomorphic images of G.

Pf. (Idea) Let $k = R(G; s)$. Apply the bipartite Ramsey theorem repeatedly to a complete k-partite H with huge parts to get a complete k-partite subgraph H' with parts of size $|V(G)|$ where the edges joining any two parts have the same color.

The collapsed coloring of $E(K_k)$ has a monochromatic homomorphic image of G, which expands to a monochromatic G in H'.
Prop. \[R_{\chi}(G; s) > (\chi(G) - 1)^s. \]
Chromatic Ramsey Number

Prop. $R_{\chi}(G; s) > (\chi(G) - 1)^s$.

Pf. Let $k = \chi(G) - 1$.
Any H with $\chi(H) = k^s$ has proper coloring $f: V(H) \to [k]^s$.
Prop. \(R_{\chi}(G; s) > (\chi(G) - 1)^s \).

Pf. Let \(k = \chi(G) - 1 \).

Any \(H \) with \(\chi(H) = k^s \) has proper coloring \(f : V(H) \rightarrow [k]^s \).

Give each edge \(uv \) in \(H \) a color \(i \) such that \(f(u)_i \neq f(v)_i \).

\(\therefore \) Color \(i \) subgraph \(H_i \) is \(k \)-colorable (by \(f_i \)).
Prop. \(R_{\chi}(G;s) > (\chi(G) - 1)^s. \)

Pf. Let \(k = \chi(G) - 1. \)

Any \(H \) with \(\chi(H) = k^s \) has proper coloring \(f: V(H) \rightarrow [k]^s. \)

Give each edge \(uv \) in \(H \) a color \(i \) such that \(f(u)_i \neq f(v)_i. \)

\[\therefore \text{Color } i \text{ subgraph } H_i \text{ is } k \text{-colorable (by } f_i). \]

\[\therefore \text{No } k^s \text{-colorable graph } H \text{ forces monochromatic } G. \]
Chromatic Ramsey Number

Prop. \(R_{\chi}(G; s) > (\chi(G) - 1)^s \).

Pf. Let \(k = \chi(G) - 1 \).

Any \(H \) with \(\chi(H) = k^s \) has proper coloring \(f: V(H) \rightarrow [k]^s \).

Give each edge \(uv \) in \(H \) a color \(i \) such that \(f(u)_i \neq f(v)_i \).

\(\therefore \) Color \(i \) subgraph \(H_i \) is \(k \)-colorable (by \(f_i \)).

\(\therefore \) No \(k^s \)-colorable graph \(H \) forces monochromatic \(G \).

Ex. \(\chi(G) = 3 \Rightarrow 5 \leq R_{\chi}(G) \leq 6 \).

Equality holds in lower bound \(\iff \exists \) hom. \(\phi: G \rightarrow C_5 \).

Ex. \(R_{\chi}(C_5) = 5 \).
Prop. \(R_\chi(G; s) > (\chi(G) - 1)^s \).

Pf. Let \(k = \chi(G) - 1 \).

Any \(H \) with \(\chi(H) = k^s \) has proper coloring \(f: V(H) \rightarrow [k]^s \).

Give each edge \(uv \) in \(H \) a color \(i \) such that \(f(u)_i \neq f(v)_i \).

\(\therefore \) Color \(i \) subgraph \(H_i \) is \(k \)-colorable (by \(f_i \)).

\(\therefore \) No \(k^s \)-colorable graph \(H \) forces monochromatic \(G \). \(\blacksquare \)

Ex. \(\chi(G) = 3 \Rightarrow 5 \leq R_\chi(G) \leq 6 \).

Equality holds in lower bound \(\iff \exists \) hom. \(\phi: G \rightarrow C_5 \).

Ex. \(R_\chi(C_5) = 5 \).

Conj. (BEL [1976]) \(\min\{R_\chi(G) : \chi(G) = k\} = (k-1)^2 + 1 \).
Chromatic Ramsey Number

Prop. \(R_{\chi}(G; s) > (\chi(G) - 1)^s \).

Pf. Let \(k = \chi(G) - 1 \).

Any \(H \) with \(\chi(H) = k^s \) has proper coloring \(f: V(H) \rightarrow [k]^s \).

Give each edge \(uv \) in \(H \) a color \(i \) such that \(f(u)_i \neq f(v)_i \).

\[\therefore \text{Color } i \text{ subgraph } H_i \text{ is } k\text{-colorable (by } f_i). \]

\[\therefore \text{No } k^s\text{-colorable graph } H \text{ forces monochromatic } G. \quad \square \]

Ex. \(\chi(G) = 3 \Rightarrow 5 \leq R_{\chi}(G) \leq 6. \)

Equality holds in lower bound \(\iff \exists \text{ hom. } \phi: G \rightarrow C_5. \)

Ex. \(R_{\chi}(C_5) = 5. \)

** Conj.** (BEL [1976]) \(\min \{ R_{\chi}(G): \chi(G) = k \} = (k - 1)^2 + 1. \)

BEL proved it for \(k \leq 4. \)

Zhu ([1998] for \(k = 5, [2010] \) for all \(k \)) proved it!
Degree Ramsey Number

Def. degree Ramsey num. \(R_\Delta(G) = \min \{ \Delta(H) : H \to G \} \).
Degree Ramsey Number

Def. degree Ramsey num. \(R_\Delta(G) = \min\{\Delta(H) : H \rightarrow G\} \).

Burr–Erdős–Lovász [1976]: Complete graphs and Stars
Degree Ramsey Number

Def. degree Ramsey num. $R_{\Delta}(G) = \min \{ \Delta(H) : H \rightarrow G \}$.

Burr–Erdős–Lovász [1976]: Complete graphs and Stars

Obs. $R_{\chi}(G) \leq R_{\Delta}(G) \leq R(G) - 1$; equality for $G = K_n$.
Degree Ramsey Number

Def. degree Ramsey num. \(R_{\Delta}(G) = \min \{ \Delta(H) : H \rightarrow G \} \).

Burr–Erdős–Lovász [1976]: Complete graphs and Stars

Obs. \(R_{\chi}(G) \leq R_{\Delta}(G) \leq R(G) - 1 \); equality for \(G = K_n \).

Thm. (BEL): \(R_{\Delta}(K_{1,m}) = \begin{cases} 2m - 2 & m \text{ even} \\ 2m - 1 & m \text{ odd} \end{cases} \).
Degree Ramsey Number

Def. degree Ramsey num. \(R_\Delta(G) = \min\{\Delta(H) : H \rightarrow G\} \).

Burr–Erdős–Lovász [1976]: Complete graphs and Stars

Obs. \(R_\chi(G) \leq R_\Delta(G) \leq R(G) - 1 \); equality for \(G = K_n \).

Thm. (BEL): \(R_\Delta(K_{1,m}) = \left\{ \begin{array}{ll} 2m - 2 & \text{m even} \\ 2m - 1 & \text{m odd} \end{array} \right. \).

- Valid as a lower bound whenever \(\Delta(G) = m \).
Degree Ramsey Number

Def. degree Ramsey num. $R_\Delta(G) = \min\{\Delta(H): H \rightarrow G\}$.

Burr–Erdős–Lovász [1976]: Complete graphs and Stars

Obs. $R_\chi(G) \leq R_\Delta(G) \leq R(G) - 1$; equality for $G = K_n$.

Thm. (BEL): $R_\Delta(K_{1,m}) = \begin{cases} 2m - 2 & m \text{ even} \\ 2m - 1 & m \text{ odd} \end{cases}$.

- Valid as a lower bound whenever $\Delta(G) = m$.
- We have various results for trees and cycles, some for multiple colors: $R_\Delta(G; s) = \min\{\Delta(H): H \rightarrow^s G\}$.
Degree Ramsey Number

Def. degree Ramsey num. \(R_\Delta(G) = \min \{ \Delta(H) : H \rightarrow G \} \).

Burr–Erdős–Lovász [1976]: Complete graphs and Stars

Obs. \(R_\chi(G) \leq R_\Delta(G) \leq R(G) - 1 \); equality for \(G = K_n \).

Thm. (BEL): \(R_\Delta(K_{1,m}) = \begin{cases} 2m - 2 & m \text{ even} \\ 2m - 1 & m \text{ odd} \end{cases} \).

- Valid as a lower bound whenever \(\Delta(G) = m \).
- We have various results for trees and cycles, some for multiple colors: \(R_\Delta(G; s) = \min \{ \Delta(H) : H \overset{s}{\rightarrow} G \} \).

Thm. \(R_\Delta(K_{1,m}; s) = \begin{cases} s(m - 1) & m \text{ even} \\ s(m - 1) + 1 & m \text{ odd} \end{cases} \).
\[s(m - 1) \leq R_\Delta(K_{1,m}; s) \leq s(m - 1) + 1 \]

Pf. Upper Bound: \(K_{1, s(m-1)+1} \overset{s}{\rightarrow} K_{1,m} \).
\[s(m - 1) \leq R_\Delta(K_{1,m}; s) \leq s(m - 1) + 1 \]

Pf. Upper Bound: \(K_{1,s(m-1)+1} \xrightarrow{s} K_{1,m} \).

Improves when \(m \) **is even:**
When \(k \) is odd and \(r > k \), there is an \(r \)-regular graph \(H \) having no \(k \)-factor (Bollobás–Saito–Wormald [1985]).
With \(k = m - 1 \) and \(r = s(m - 1) \), \(s \)-coloring \(E(H) \) with no monochromatic \(K_{1,m} \) requires a \(k \)-factorization.
\[s(m - 1) \leq R_{\Delta}(K_{1,m}; s) \leq s(m - 1) + 1 \]

Pf. Upper Bound: \(K_{1,s(m-1)+1} \xrightarrow{s} K_{1,m} \).

Improves when \(m \) is even:
When \(k \) is odd and \(r > k \), there is an \(r \)-regular graph \(H \) having no \(k \)-factor (Bollobás–Saito–Wormald [1985]).
With \(k = m - 1 \) and \(r = s(m - 1) \), \(s \)-coloring \(E(H) \) with no monochromatic \(K_{1,m} \) requires a \(k \)-factorization.

Lower bound: When \(\Delta(H) \leq s(m - 1) - 1 \), Vizing’s Theorem \(\Rightarrow \ H \) is \(s(m - 1) \)-edge-colorable.
Put \(m - 1 \) matchings into each color.
\[s(m - 1) \leq R_{\Delta}(K_{1,m}; s) \leq s(m - 1) + 1 \]

Pf. Upper Bound: \(K_{1,s(m-1)+1} \xrightarrow{S} K_{1,m} \).

Improves when \(m \) is even:
When \(k \) is odd and \(r > k \), there is an \(r \)-regular graph \(H \) having no \(k \)-factor (Bollobás–Saito–Wormald [1985]).
With \(k = m - 1 \) and \(r = s(m - 1) \), \(s \)-coloring \(E(H) \) with no monochromatic \(K_{1,m} \) requires a \(k \)-factorization.

Lower bound: When \(\Delta(H) \leq s(m - 1) - 1 \), Vizing’s Theorem \(\Rightarrow \) \(H \) is \(s(m - 1) \)-edge-colorable.
Put \(m - 1 \) matchings into each color.

Improves when \(m \) is odd. When \(\Delta(H) \leq s(m - 1) \), Petersen’s Theorem decomposes \(s(m - 1) \)-regular supergraph \(H' \) into 2-factors. Putting \((m - 1)/2 \) in each color avoids degree \(m \) in one color at any vertex.
\[\blacksquare \]
Paths

Thm. \(R_\Delta(P_n) = \begin{cases}
3 & n \in \{4, 5\} \\
3 \text{ or } 4 & n = 6 \quad \leftarrow \text{Open} \\
4 & n \geq 7
\end{cases} \).
 Paths

Thm. \(R_\Delta(P_n) = \begin{cases}
3 & n \in \{4, 5\} \\
3 \text{ or } 4 & n = 6 \quad \leftarrow \text{Open} \ \\
4 & n \geq 7
\end{cases} \)

\(R_\Delta(P_n) > 2 \): Alternate along paths & cycles to avoid \(P_4 \).
Paths

Thm. \[R_\Delta(P_n) = \begin{cases}
3 & n \in \{4, 5\} \\
3 \text{ or } 4 & n = 6 \quad \leftarrow \text{Open} \\
4 & n \geq 7
\end{cases} \]

\[R_\Delta(P_n) > 2: \text{ Alternate along paths & cycles to avoid } P_4. \]

\[R_\Delta(P_4) \leq 3: \text{ Petersen } \rightarrow P_4 \]
Paths

Thm. $R_\Delta(P_n) = \begin{cases}
3 & n \in \{4, 5\} \\
3 \text{ or } 4 & n = 6 \quad \leftarrow \text{Open} \\
4 & n \geq 7
\end{cases}$

$R_\Delta(P_n) > 2$: Alternate along paths & cycles to avoid P_4.

$R_\Delta(P_4) \leq 3$: Petersen $\rightarrow P_4$
Thm. \[R_\Delta(P_n) = \begin{cases}
3 & n \in \{4, 5\} \\
3 \text{ or } 4 & n = 6 \\
4 & n \geq 7 \end{cases} \]

\[R_\Delta(P_n) > 2: \] Alternate along paths & cycles to avoid \(P_4 \).

\[R_\Delta(P_4) \leq 3: \] Petersen \(\rightarrow P_4 \)
Paths

Thm. $R_\Delta(P_n) = \begin{cases} 3 & n \in \{4, 5\} \\ 3 \text{ or } 4 & n = 6 \leftarrow \text{Open} \\ 4 & n \geq 7 \end{cases}$

$R_\Delta(P_n) > 2$: Alternate along paths & cycles to avoid P_4.

$R_\Delta(P_4) \leq 3$: Petersen $\rightarrow P_4$
Thm. \[R_\Delta(P_n) = \begin{cases}
3 & n \in \{4, 5\} \\
3 \text{ or } 4 & n = 6 \\
4 & n \geq 7
\end{cases} . \]

\[R_\Delta(P_n) > 2: \text{ Alternate along paths & cycles to avoid } P_4. \]

\[R_\Delta(P_5) \leq 3: \text{ Petersen } \rightarrow P_5 \]
Paths

Thm. \(R_\Delta(P_n) = \begin{cases}
3 & n \in \{4, 5\} \\
3 \text{ or } 4 & n = 6 \\
4 & n \geq 7
\end{cases} \)

\(R_\Delta(P_n) > 2 \): Alternate along paths & cycles to avoid \(P_4 \).

\(R_\Delta(P_5) \leq 3 \): Petersen \(\rightarrow \) \(P_5 \)
Thm. Thomassen [1999] Every 3-regular graph has a 2-edge-coloring with each monochromatic component contained in P_6.
Thm. Thomassen [1999] Every 3-regular graph has a 2-edge-coloring with each monochromatic component contained in P_6. \[\therefore R_\Delta(P_n) \geq 4 \text{ for } n \geq 7. \]
Longer Paths

Thm. Thomassen [1999] Every 3-regular graph has a 2-edge-coloring with each monochromatic component contained in P_6. \[\therefore R_\Delta(P_n) \geq 4 \text{ for } n \geq 7. \]

Thm. (Alon–Ding–Oporowski–Vertigan [2003])
\[R_\Delta(P_n; s) \leq 2s \text{ always.} \quad R_\Delta(P_n; s) = 2s \text{ for } n > n_0(s). \]
Longer Paths

Thm. Thomassen [1999] Every 3-regular graph has a 2-edge-coloring with each monochromatic component contained in P_6. \[\therefore R_\Delta(P_n) \geq 4 \text{ for } n \geq 7. \]

Thm. (Alon–Ding–Oporowski–Vertigan [2003])
\[R_\Delta(P_n; s) \leq 2s \text{ always. } \quad R_\Delta(P_n; s) = 2s \text{ for } n > n_0(s). \]

Lower bound: \(\exists \ n_0(s) \) such that every graph H with $\Delta(H) = 2s - 1$ has an s-edge-coloring where all monochr. components have at most $n_0(s)$ edges.
Thm. Thomassen [1999] Every 3-regular graph has a 2-edge-coloring with each monochromatic component contained in P_6. ∴ $R_\Delta(P_n) \geq 4$ for $n \geq 7$.

Thm. (Alon–Ding–Oporowski–Vertigan [2003])

$R_\Delta(P_n; s) \leq 2s$ always. $R_\Delta(P_n; s) = 2s$ for $n > n_0(s)$.

Lower bound: ∃ $n_0(s)$ such that every graph H with $\Delta(H) = 2s - 1$ has an s-edge-coloring where all monochr. components have at most $n_0(s)$ edges.

Upper bound:

Let H be $2s$-regular with girth $\geq n$, and $m = |V(H)|$.
Longer Paths

Thm. Thomassen [1999] Every 3-regular graph has a 2-edge-coloring with each monochromatic component contained in P_6. \[\therefore R_\Delta(P_n) \geq 4 \text{ for } n \geq 7. \]

Thm. (Alon–Ding–Oporowski–Vertigan [2003]) \[R_\Delta(P_n; s) \leq 2s \text{ always. } \quad R_\Delta(P_n; s) = 2s \text{ for } n > n_0(s). \]

Lower bound: \[\exists n_0(s) \text{ such that every graph } H \text{ with } \Delta(H) = 2s - 1 \text{ has an } s\text{-edge-coloring where all monochr. components have at most } n_0(s) \text{ edges.} \]

Upper bound:
Let H be 2s-regular with girth $\geq n$, and $m = |V(H)|$.
s colors on sm edges puts $\geq m$ in some color class. Since $|V(H)| = m$, this subgraph has a cycle. Since girth$(H) \geq n$, this color class contains P_n. ■
Brooms

Def. Broom $B_{l,m} = \text{tree with } l + m \text{ vertices formed by replacing an edge of } K_{1,m} \text{ with a path of length } l.$
Def. Broom $B_{l,m}$ = tree with $l + m$ vertices formed by replacing an edge of $K_{1,m}$ with a path of length l.

- $R_\Delta(K_{1,m}; s)$ grows with m, but $R_\Delta(P_l; s) \leq 2s$.

![Diagram of B4,5 tree](image-url)
Brooms

Def. Broom $B_{l,m}$ = tree with $l + m$ vertices formed by replacing an edge of $K_{1,m}$ with a path of length l.

- $R_\Delta(K_{1,m}; s)$ grows with m, but $R_\Delta(P_l; s) \leq 2s$.

Thm. $R_\Delta(B_{l,m}; s) = \begin{cases}
 s(m - 1) & m \text{ even} \\
 s(m - 1) + 1 & m \text{ odd}
\end{cases}$.
Def. Broom $B_{l,m}$ = tree with $l + m$ vertices formed by replacing an edge of $K_{1,m}$ with a path of length l.

- $R_\Delta(K_{1,m}; s)$ grows with m, but $R_\Delta(P_l; s) \leq 2s$.

Thm. $R_\Delta(B_{l,m}; s) = \begin{cases} s(m - 1) & \text{if } m \text{ even} \\ s(m - 1) + 1 & \text{if } m \text{ odd} \end{cases}$.

Pf. Lower Bound: $R_\Delta(B_{l,m}) \geq R_\Delta(K_{1,m})$.
Def. Broom $B_{l,m} = \text{tree with } l + m \text{ vertices formed by replacing an edge of } K_{1,m} \text{ with a path of length } l$.

\[B_{4,5} \]

- $R_\Delta(K_{1,m}; s)$ grows with m, but $R_\Delta(P_l; s) \leq 2s$.

Thm. $R_\Delta(B_{l,m}; s) = \begin{cases} s(m-1) & \text{if } m \text{ even} \\ s(m-1) + 1 & \text{if } m \text{ odd} \end{cases}$

Pf. Lower Bound: $R_\Delta(B_{l,m}) \geq R_\Delta(K_{1,m})$.

Upper Bound: Let H be a regular graph with the specified degree and girth at least $l + 2$. For even m, also require H to have no $(m - 1)$-factor (H exists by a variation on Bollobás–Saito–Wormald [1985]).
In an s-edge-coloring, let H_i be the spanning subgraph of H using color i. Split H_i into two subgraphs:
In an s-edge-coloring, let H_i be the spanning subgraph of H using color i. Split H_i into two subgraphs:

$A = \text{components having a vertex of degree } \geq m.$
$B = \text{components with no such vertex.}$
Brooms, continued

In an s-edge-coloring, let H_i be the spanning subgraph of H using color i. Split H_i into two subgraphs:

$A = $ components having a vertex of degree $\geq m$.

$B = $ components with no such vertex.

A cycle C in A has length $\geq l + 2$, but then a path in A from a high-degree vertex to C yields $B_{l,m} \subseteq A$). Hence

$$|E(H_i)| \leq |V(A)| + \frac{m - 1}{2} |V(B)| \leq \frac{m - 1}{2} n;$$

equality only if H_i is $(m - 1)$-regular. (Here $n = |V(H)|$.)
Brooms, continued

In an s-edge-coloring, let H_i be the spanning subgraph of H using color i. Split H_i into two subgraphs:

$A =$ components having a vertex of degree $\geq m$.
$B =$ components with no such vertex.

A cycle C in A has length $\geq l + 2$, but then a path in A from a high-degree vertex to C yields $B_{l,m} \subseteq A$). Hence

$$|E(H_i)| \leq |V(A)| + \frac{m-1}{2} |V(B)| \leq \frac{m-1}{2} n;$$

equality only if H_i is $(m-1)$-regular. (Here $n = |V(H)|$.)

Odd m: each color class has at most $(m-1)/2$ edges, but H has $[s(m-1)+1]n/2$ edges.

Even m: no $(m-1)$-factor \Rightarrow each color class has less than $(m-1)n/2$ edges, but $|E(H)| = s(m-1)n/2$.

Prop. If G is a tree, then $R_\Delta(G; s) \leq 2s(\Delta(G) - 1)$.

Prop. If G is a tree, then $R_\Delta(G; s) \leq 2s(\Delta(G) - 1)$.

Pf. Let H be $2s(\Delta(G) - 1)$-regular with girth $> \text{diam}(G)$.
Prop. If G is a tree, then $R_{\Delta}(G; s) \leq 2s(\Delta(G) - 1)$.

Pf. Let H be $2s(\Delta(G) - 1)$-regular with girth $> \text{diam}(G)$. s-coloring $E(H)$ \Rightarrow avgdeg $\geq 2(\Delta(G) - 1)$ in some color i. Color i has a subgraph with minimum degree $\geq \Delta(G)$.
Prop. If G is a tree, then $R_\Delta(G; s) \leq 2s(\Delta(G) - 1)$.

Pf. Let H be $2s(\Delta(G) - 1)$-regular with girth $> \text{diam}(G)$. s-coloring $E(H) \Rightarrow \text{avgdeg} \geq 2(\Delta(G) - 1)$ in some color i. Color i has a subgraph with minimum degree $\geq \Delta(G)$. Color i contains G, since each vertex has $\Delta(G) - 1$ new children (without completing a cycle) until G has grown from the center.
Prop. If G is a tree, then $R_{\Delta}(G; s) \leq 2s(\Delta(G) - 1)$.

Pf. Let H be $2s(\Delta(G) - 1)$-regular with girth $> \text{diam}(G)$. A s-coloring $E(H) \Rightarrow \text{avgdeg} \geq 2(\Delta(G) - 1)$ in some color i. Color i has a subgraph with minimum degree $\geq \Delta(G)$. Color i contains G, since each vertex has $\Delta(G) - 1$ new children (without completing a cycle) until G has grown from the center.

- The bound is sharp for paths and is twice the true value for brooms.
- Surprisingly, the bound is asymptotically sharp for all $\Delta(G)$, using double-stars.
Double-Stars

Def. Let $S_{a,b} = \text{double-star}$ with central vertices of degrees a and b, where $a \leq b$.
Double-Stars

Def. Let $S_{a,b} = \text{double-star}$ with central vertices of degrees a and b, where $a \leq b$.

Thm. $R_{\Delta}(S_{a,b}) = \begin{cases} 2b - 2 & b \text{ even and } a < b \\ 2b - 1 & \text{otherwise} \end{cases}$.
Double-Stars

Def. Let $S_{a,b} =$ double-star with central vertices of degrees a and b, where $a \leq b$.

Thm. $R_\Delta(S_{a,b}) = \begin{cases} 2b - 2 & \text{b even and } a < b \\ 2b - 1 & \text{otherwise} \end{cases}$

Pf. Lower bound: $R_\Delta(S_{a,b}) \geq R_\Delta(K_{1,b})$ suffices, except for $S_{b,b}$ with b even. Alternating red and blue along an Eulerian circuit of a $(2b - 2)$-regular graph avoids $S_{b,b}$.
Double-Stars

Def. Let $S_{a,b} = \text{double-star}$ with central vertices of degrees a and b, where $a \leq b$.

Thm. $R_\Delta(S_{a,b}) = \begin{cases} 2b - 2 & \text{b even and } a < b \\ 2b - 1 & \text{otherwise} \end{cases}$.

Pf.

Lower bound: $R_\Delta(S_{a,b}) \geq R_\Delta(K_{1,b})$ suffices, except for $S_{b,b}$ with b even. Alternating red and blue along an Eulerian circuit of a $(2b - 2)$-regular graph avoids $S_{b,b}$.

Upper bound: Pigeonholing shows $K_{2b-1,2b-1} \rightarrow S_{b,b}$, but we generalize the upper bound to s colors later.
Double-Stars

Def. Let $S_{a,b} = \text{double-star}$ with central vertices of degrees a and b, where $a \leq b$.

Thm. $R_\Delta(S_{a,b}) = \begin{cases}
2b - 2 & b \text{ even and } a < b \\
2b - 1 & \text{otherwise}
\end{cases}$.

Pf. Lower bound: $R_\Delta(S_{a,b}) \geq R_\Delta(K_{1,b})$ suffices, except for $S_{b,b}$ with b even. Alternating red and blue along an Eulerian circuit of a $(2b - 2)$-regular graph avoids $S_{b,b}$.

Upper bound: Pigeonholing shows $K_{2b-1, 2b-1} \to S_{b,b}$, but we generalize the upper bound to s colors later.

For b even and $a < b$, we need a stronger upper bound for $S_{b-1,b}$.
Improved upper bound \((b \text{ even and } a < b)\)

Claim: \(H \rightarrow S_{b-1,b}\) for \(b\) even

\(H\) is \((2b-2)\)-regular
Improved upper bound (\(b\) even and \(a < b\))

Claim:
\[H \rightarrow S_{b-1,b}\]
for \(b\) even

\(H\) is \((2b - 2)\)-regular

\textbf{Pf.} Vertices are majority \textcolor{red}{red} or majority \textcolor{blue}{blue} or tied. Not all are tied (would be odd regular of odd order).

No \(S_{b-1,b}\) \Rightarrow all nbrs (via \textcolor{red}{red}) of maj \textcolor{red}{red} are maj \textcolor{blue}{blue}.

A maj \textcolor{red}{red} vertex forces a maj \textcolor{blue}{blue} in each direction; after 5 steps, one set has a maj \textcolor{red}{red} and a maj \textcolor{blue}{blue}.

Now its neighboring sets together need \(b\) maj \textcolor{blue}{blue} and \(b\) maj \textcolor{red}{red} vertices, but they have only \(2b - 2\) total. ■
Double-Stars, s colors

Thm. If $s \geq 2$, then $R_\Delta(S_{a,b}; s) \leq 2(s - 1)(b - 1) + 1$. If $b \geq 2a - 1$, then $R_\Delta(S_{a,b}; s) \leq s(b - 1) + 1 \ (= R_\Delta(K_{1,b}; s))$.
Double-Stars, s colors

Thm. If $s \geq 2$, then $R_\Delta(S_{a,b};s) \leq 2(s - 1)(b - 1) + 1$. If $b \geq 2a - 1$, then $R_\Delta(S_{a,b};s) \leq s(b - 1) + 1$ ($= R_\Delta(K_{1,b};s)$).

Pf. Let H be a d-regular triangle-free n-vertex graph. Given a coloring, let $d_j(\nu) =$\#edges with color j at ν. ν is j-major when $d_j(\nu) \geq b$ and j-minor when $d_j(\nu) < a$.
Double-Stars, s colors

Thm. If $s \geq 2$, then $R_\Delta(S_{a,b}; s) \leq 2(s - 1)(b - 1) + 1$. If $b \geq 2a - 1$, then $R_\Delta(S_{a,b}; s) \leq s(b - 1) + 1$ ($= R_\Delta(K_{1,b}; s)$).

Pf. Let H be a d-regular triangle-free n-vertex graph. Given a coloring, let $d_j(\nu) =$ #edges with color j at ν. ν is j-major when $d_j(\nu) \geq b$ and j-minor when $d_j(\nu) < a$.

To avoid $S_{b,b}$, exists j-minor endpt for each edge of color j. Each vertex is j-major for some j if $d > s(b - 1)$. Hence

$$\frac{nd}{2} = |E(H)| \leq \sum_{\nu} \sum_{j \in M(\nu)} d_j(\nu) \leq n(s - 1)(b - 1),$$

so $d \leq 2(s - 1)(b - 1)$.
Double-Stars, s colors

Thm. If $s \geq 2$, then $R_{\Delta}(S_{a,b};s) \leq 2(s - 1)(b - 1) + 1$. If $b \geq 2a - 1$, then $R_{\Delta}(S_{a,b};s) \leq s(b - 1) + 1$ ($= R_{\Delta}(K_{1,b};s)$).

Pf. Let H be a d-regular triangle-free n-vertex graph. Given a coloring, let $d_j(\nu) =$ #edges with color j at ν. ν is j-major when $d_j(\nu) \geq b$ and j-minor when $d_j(\nu) < a$.

To avoid $S_{b,b}$, \exists j-minor endpt for each edge of color j. Each vertex is j-major for some j if $d > s(b - 1)$. Hence

$$\frac{nd}{2} = |E(H)| \leq \sum_{\nu} \sum_{j \in M(\nu)} d_j(\nu) \leq n(s - 1)(b - 1),$$

so $d \leq 2(s - 1)(b - 1)$.

To study $S_{a,b}$, vertices not j-major or j-minor are j-medium. With more careful counting, using $b \geq 2a - 1$, the upper bound on d to avoid $S_{a,b}$ becomes $s(b - 1)$. ■
Asymptotic Sharpness

Thm. $R_{\Delta}(S_{b,b},s) > (2-\epsilon)s(b-1)$ for sufficiently large b.
Asymptotic Sharpness

Thm. $R_{\Delta}(S_{b,b},s) > (2 - \epsilon)s(b - 1)$ for sufficiently large b.

Pf. (Idea) Consider G with $\Delta(G) = (2 - \epsilon)s(b - 1)$. Choose for each vertex a random color. When adjacent vertices have the same color, give the edge some other color, at random. When adjacent vertices have different colors, give the edge one of those two colors.
Asymptotic Sharpness

Thm. $R_{\Delta}(S_{b,b}, s) > (2 - \epsilon)s(b - 1)$ for sufficiently large b.

Pf. (Idea) Consider G with $\Delta(G) = (2 - \epsilon)s(b - 1)$. Choose for each vertex a random color. When adjacent vertices have the same color, give the edge some other color, at random. When adjacent vertices have different colors, give the edge one of those two colors.

When b is large enough, with positive probability every vertex now has its chosen color as its only major color; the edge-coloring then by construction avoids $S_{b,b}$. ■
Thm. $R_{\Delta}(S_{b,b},s) > (2 - \epsilon)s(b - 1)$ for sufficiently large b.

Pf. (Idea) Consider G with $\Delta(G) = (2 - \epsilon)s(b - 1)$. Choose for each vertex a random color. When adjacent vertices have the same color, give the edge some other color, at random. When adjacent vertices have different colors, give the edge one of those two colors.

When b is large enough, with positive probability every vertex now has its chosen color as its only major color; the edge-coloring then by construction avoids $S_{b,b}$.

The same idea constructs an s-edge-coloring of $K_{n,n}$ that avoids $S_{b,b}$, where $n = \left\lceil 2 \frac{s - 1}{s + 1} s(b - 1) \right\rceil$. This gives a lower bound for the “bipartite Ramsey number” of $S_{b,b}$.

Fixed Cycles, s colors

Cycles are much more difficult to analyze than paths.
Fixed Cycles, s colors

Cycles are much more difficult to analyze than paths.

Thm. $R_\Delta(C_{2k}; s) \geq 2s.$
Cycles are much more difficult to analyze than paths.

Thm. \(R_{\Delta}(C_{2k}; s) \geq 2s. \)

Pf. If \(\Delta(H) < 2s \), then \(H \) decomposes into \(s \) forests, by Nash-Williams’ Arboricity Formula.
Cycles are much more difficult to analyze than paths.

Thm. \(R_{\Delta}(C_{2k}; s) \geq 2s. \)

Pf. If \(\Delta(H) < 2s \), then \(H \) decomposes into \(s \) forests, by Nash-Williams’ Arboricity Formula.

- Carnielli and Monte Carmelo [1999] proved \(B(C_4; s) \sim s^2 \), where \(B(G; s) \) is the bipartite Ramsey number of \(G \). Hence \(R_{\Delta}(C_4; s) \leq s^2(1 + o(1)). \)
Fixed Cycles, \(s \) colors

Cycles are much more difficult to analyze than paths.

Thm. \(R_\Delta(C_{2k}; s) \geq 2s \).

Pf. If \(\Delta(H) < 2s \), then \(H \) decomposes into \(s \) forests, by Nash-Williams’ Arboricity Formula.

- Carnielli and Monte Carmelo [1999] proved \(B(C_4; s) \sim s^2 \), where \(B(G; s) \) is the bipartite Ramsey number of \(G \). Hence \(R_\Delta(C_4; s) \leq s^2(1 + o(1)) \).

Thm. \(R_\Delta(C_{2k+1}; s) \geq 2^s + 1 \).
Cycles are much more difficult to analyze than paths.

Thm. $R_{\Delta}(C_{2k}; s) \geq 2s$.

Pf. If $\Delta(H) < 2s$, then H decomposes into s forests, by Nash-Williams’ Arboricity Formula.

- Carnielli and Monte Carmelo [1999] proved $B(C_4; s) \sim s^2$, where $B(G; s)$ is the bipartite Ramsey number of G. Hence $R_{\Delta}(C_4; s) \leq s^2(1 + o(1))$.

Thm. $R_{\Delta}(C_{2k+1}; s) \geq 2^s + 1$.

Pf. $R_{\Delta}(G; s) \geq R_{\chi}(G; s) \geq (\chi(G) - 1)^s + 1$.

Fixed Cycles, s colors

Cycles are much more difficult to analyze than paths.

Thm. $R_{\Delta}(C_{2k}; s) \geq 2s$.

Pf. If $\Delta(H) < 2s$, then H decomposes into s forests, by Nash-Williams’ Arboricity Formula.

- Carnielli and Monte Carmelo [1999] proved $B(C_4; s) \sim s^2$, where $B(G; s)$ is the bipartite Ramsey number of G. Hence $R_{\Delta}(C_4; s) \leq s^2(1 + o(1))$.

Thm. $R_{\Delta}(C_{2k+1}; s) \geq 2^s + 1$.

Pf. $R_{\Delta}(G; s) \geq R_{\chi}(G; s) \geq (\chi(G) - 1)^s + 1$.

Cor. $R_{\Delta}(C_3) = 5$.

Fixed Cycles, 2 colors

Thm. (Kinnersley–Milans–West) $R_\Delta(C_4) = 5$.

Thm. (Kinnersley–Milans–West) $R_\Delta(C_4) = 5$.

Pf. Upper bound: $K_{5,5} \rightarrow C_4$. The lower bound is six pages of detailed graph theory (!) to prove that every graph with maximum degree 4 has a red/blue coloring with no monochromatic 3-cycle or 4-cycle.
Thm. (Kinnersley–Milans–West) $R_\Delta(C_4) = 5$.

Pf. Upper bound: $K_{5,5} \rightarrow C_4$. The lower bound is six pages of detailed graph theory (!) to prove that every graph with maximum degree 4 has a red/blue coloring with no monochromatic 3-cycle or 4-cycle.

Ques. Is $R_\Delta(C_n)$ bounded?
Fixed Cycles, 2 colors

Thm. (Kinnersley–Milans–West) $R_\Delta(C_4) = 5$.

Pf. Upper bound: $K_{5,5} \rightarrow C_4$. The lower bound is six pages of detailed graph theory (!) to prove that every graph with maximum degree 4 has a red/blue coloring with no monochromatic 3-cycle or 4-cycle.

Ques. Is $R_\Delta(C_n)$ bounded?

Thm. (Haxell–Kohayakawa– Łuczak [1995]) s-color induced size Ramsey # of C_n is linear in n.

- The proof shows that $R_\Delta(C_n) \leq c$ (where c is huge).
Fixed Cycles, 2 colors

Thm. (Kinnersley–Milans–West) $R_\Delta(C_4) = 5$.

Pf. Upper bound: $K_{5,5} \to C_4$. The lower bound is six pages of detailed graph theory (!) to prove that every graph with maximum degree 4 has a red/blue coloring with no monochromatic 3-cycle or 4-cycle.

Ques. Is $R_\Delta(C_n)$ bounded?

Thm. (Haxell–Kohayakawa–Łuczak [1995]) s-color induced size Ramsey # of C_n is linear in n.

- The proof shows that $R_\Delta(C_n) \leq c$ (where c is huge).

Thm. (Jiang–Milans–West)

$R_\Delta(C_{2k}) \leq 96$ and $R_\Delta(C_{2k+1}) \leq 3458$.
Trick to Force Cycles

Idea: Force a long even cycle by forcing a blowup of a long monochromatic path.
Trick to Force Cycles

Idea: Force a long even cycle by forcing a blowup of a long monochromatic path.

\[\text{Lem. } K_{3,3} \rightarrow P_4. \]
Trick to Force Cycles

Idea: Force a long even cycle by forcing a blowup of a long monochromatic path.

![Graph showing the idea](image)

Lem. $K_{3,3} \rightarrow P_4$.

Pf. Each vertex of X has a majority in some color. Two vertices have majority in the same color, say red. Since $|Y| = 3$, they have a common neighbor in Y. ![End of proof]

Even Cycles

Thm. \(R_\Delta(C_{2k}) \leq 108. \)
Thm. \(R_\Delta(C_{2k}) \leq 108. \)

Pf. Let \(G \) be a 36-regular \(X,Y \)-bigraph with girth \(\geq k \). Let \(H = G[\overline{K}_3] \); this is 108-regular. Claim: \(H \rightarrow C_{2k} \).
Even Cycles

Thm. $R_{\Delta}(C_{2k}) \leq 108$.

Pf. Let G be a 36-regular X,Y-bigraph with girth $\geq k$. Let $H = G\overline{K_3}$; this is 108-regular. Claim: $H \rightarrow C_{2k}$.

Consider a 2-coloring f of $E(H)$. Each edge $xy \in E(G)$ becomes $K_{3,3}$ with parts $\{x_1, x_2, x_3\}$ and $\{y_1, y_2, y_3\}$.
Even Cycles

\textbf{Thm.} \quad R_{\Delta}(C_{2k}) \leq 108.

\textbf{Pf.} Let G be a 36-regular X,Y-bigraph with girth $\geq k$. Let $H = G[\overline{K}_3]$; this is 108-regular. Claim: $H \rightarrow C_{2k}$.

Consider a 2-coloring f of $E(H)$. Each edge $xy \in E(G)$ becomes $K_{3,3}$ with parts $\{x_1, x_2, x_3\}$ and $\{y_1, y_2, y_3\}$. Say that xy has \textbf{Type} $(c; i, j)$ if the resulting P_4 in the xy-copy of $K_{3,3}$ has color c and omits x_i and y_j.
Even Cycles

Thm. \(R_\Delta(C_{2k}) \leq 108. \)

Pf. Let \(G \) be a 36-regular \(X,Y \)-bigraph with girth \(\geq k \). Let \(H = G[\overline{K}_3] \); this is 108-regular. Claim: \(H \rightarrow C_{2k} \).

Consider a 2-coloring \(f \) of \(E(H) \). Each edge \(xy \in E(G) \) becomes \(K_{3,3} \) with parts \(\{x_1, x_2, x_3\} \) and \(\{y_1, y_2, y_3\} \).

Say that \(xy \) has **Type** \((c; i, j) \) if the resulting \(P_4 \) in the \(xy \)-copy of \(K_{3,3} \) has color \(c \) and omits \(x_i \) and \(y_j \).

The **18 Types** yield an **18-coloring** of \(E(G) \). Some color class has average degree at least **2**.
Even Cycles

Thm. \(R_\Delta(C_{2k}) \leq 108. \)

Pf. Let \(G \) be a 36-regular \(X,Y \)-bigraph with girth \(\geq k \). Let \(H = G[K_3] \); this is 108-regular. Claim: \(H \rightarrow C_{2k} \).

Consider a 2-coloring \(f \) of \(E(H) \). Each edge \(xy \in E(G) \) becomes \(K_{3,3} \) with parts \(\{x_1, x_2, x_3\} \) and \(\{y_1, y_2, y_3\} \).

Say that \(xy \) has **Type** \((c; i, j)\) if the resulting \(P_4 \) in the \(xy \)-copy of \(K_{3,3} \) has color \(c \) and omits \(x_i \) and \(y_j \).

The 18 Types yield an 18-coloring of \(E(G) \). Some color class has average degree at least 2.

This class contains a cycle; length is \(\geq k \); contains \(P_k \).
Even Cycles

Thm. $R_{\Delta}(C_{2k}) \leq 108$.

Pf. Let G be a 36-regular X,Y-bigraph with girth $\geq k$. Let $H = G[K_3]$; this is 108-regular. Claim: $H \to C_{2k}$.

Consider a 2-coloring f of $E(H)$. Each edge $xy \in E(G)$ becomes $K_{3,3}$ with parts $\{x_1, x_2, x_3\}$ and $\{y_1, y_2, y_3\}$.

Say that xy has Type $(c; i, j)$ if the resulting P_4 in the xy-copy of $K_{3,3}$ has color c and omits x_i and y_j.

The 18 Types yield an 18-coloring of $E(G)$. Some color class has average degree at least 2.

This class contains a cycle; length is $\geq k$; contains P_k.

Since the edges have the same Type, in H they yield pasted copies of P_4 in the same color c.
This yields a monochromatic C_{2k}. ■
Comments

Same type ⇒ can paste X-side onto same vertices, similarly for Y
Comments

Same type ⇒ can paste X-side onto same vertices, similarly for Y

Cor. If F is bipartite and $\Delta(F) = 2$, then $R_\Delta(F) \leq 108$.
Same type ⇒ can paste X-side onto same vertices, similarly for Y

Cor. If F is bipartite and $\Delta(F) = 2$, then $R_{\Delta(F)} \leq 108$.

- Bipartite G helps pasting but gives only even cycles. In fact, the resulting H was also bipartite.
Comments

Same type \Rightarrow can paste X-side onto same vertices, similarly for Y

Cor. If F is bipartite and $\Delta(F) = 2$, then $R_{\Delta}(F) \leq 108$.

- Bipartite G helps pasting but gives only even cycles. In fact, the resulting H was also bipartite.

- Reduction to $R_{\Delta}(F) \leq 96$ uses that only 8 of the 9 edges in $K_{3,3}$ are needed to arrow P_4.
Odd Cycles

Thm. $R_{\Delta}(C_{2k-1}) \leq 3890$.
Odd Cycles

Thm. \(R_\Delta(C_{2k-1}) \leq 3890 \).

Pf. Let \(G \) be a 36-regular \(X,Y \)-bigraph with girth \(> 2k \). Let \(H = G^2[K_3] \); this is 3890-regular \((3 \times 36^2 + 2)\). Claim: \(H \to C_{2k-1} \).
Odd Cycles

Thm. $R_\Delta(C_{2k-1}) \leq 3890$.

Pf. Let G be a 36-regular X,Y-bigraph with girth $> 2k$. Let $H = G^2[K_3]$; this is 3890-regular ($3 \times 36^2 + 2$).

Claim: $H \to C_{2k-1}$.

Consider 2-coloring f of $E(H)$. Again make 18-coloring of $E(G)$ (not G^2); it has monochromatic P_{2k}, say red.
Odd Cycles

Thm. $R_\Delta(C_{2k-1}) \leq 3890$.

Pf. Let G be a 36-regular X,Y-bigraph with girth $> 2k$. Let $H = G^2[K_3]$; this is 3890-regular $(3 \times 36^2 + 2)$. Claim: $H \rightarrow C_{2k-1}$.

Consider 2-coloring f of $E(H)$. Again make 18-coloring of $E(G)$ (not G^2); it has monochromatic P_{2k}, say red.

Any red edge "inside" \Rightarrow red C_{2k-1}.
Odd Cycles

Thm. $R_\Delta(C_{2k-1}) \leq 3890$.

Pf. Let G be a 36-regular X,Y-bigraph with girth $> 2k$. Let $H = G^2[K_3]$; this is 3890-regular ($3 \times 36^2 + 2$). Claim: $H \rightarrow C_{2k-1}$.

Consider 2-coloring f of $E(H)$. Again make 18-coloring of $E(G)$ (not G^2); it has monochromatic P_{2k}, say red.

Any red edge "inside" \Rightarrow red C_{2k-1}.

If all are blue, consider the added edges of G^2 joining alternate pairs along the path. Any red \Rightarrow red C_{2k-1}.

![Graph diagram](image-url)
Odd Cycles

Thm. \(R_\Delta(C_{2k-1}) \leq 3890. \)

Pf. Let \(G \) be a 36-regular \(X,Y \)-bipartite graph with girth > 2k. Let \(H = G^2[K_3] \); this is 3890-regular \((3 \times 36^2 + 2)\).

Claim: \(H \rightarrow C_{2k-1} \).

Consider 2-coloring \(f \) of \(E(H) \). Again make 18-coloring of \(E(G) \) (not \(G^2 \)); it has monochromatic \(P_{2k} \), say red.

Any red edge "inside" \(\Rightarrow \) red \(C_{2k-1} \).

If all are blue, consider the added edges of \(G^2 \) joining alternate pairs along the path. Any red \(\Rightarrow \) red \(C_{2k-1} \).

If all are blue, then we have a blue \(C_{2k-1} \). \(\blacksquare \)
The Big Question

Ques. Does there exist a function f such that every graph G satisfies $R_{\Delta(G)} \leq f(\Delta(G))$?

The answer is yes for $\Delta(G) = 2$, but maybe it is unbounded for $\Delta(G) = 3$.
The Big Question

Ques. Does there exist a function f such that every graph G satisfies $R_{\Delta(G)} \leq f(\Delta(G))$?

The answer is yes for $\Delta(G) = 2$, but maybe it is unbounded for $\Delta(G) = 3$.

And Now For Something Sort Of Completely Different
The On-line Ramsey Problem

Graph Ramsey theory = a game
Builder presents a graph; Painter 2-colors the edges. Builder wins if a monochromatic G is produced.
The On-line Ramsey Problem

Graph Ramsey theory = a game
Builder presents a graph; Painter 2-colors the edges.
Builder wins if a monochromatic G is produced.

“Arrow” $H \rightarrow G \iff$ Builder wins by playing H.
The On-line Ramsey Problem

Graph Ramsey theory = a game
Builder presents a graph; Painter 2-colors the edges. Builder wins if a monochromatic G is produced.

“Arrow” $H \rightarrow G \iff$ Builder wins by playing H.

On-line Graph Ramsey theory = a stronger Builder
Builder presents one edge at a time; Painter colors it. Builder wins if a monochromatic G is produced.
The On-line Ramsey Problem

Graph Ramsey theory = a game
Builder presents a graph; Painter 2-colors the edges.
Builder wins if a monochromatic G is produced.

“Arrow” $H \rightarrow G \iff$ Builder wins by playing H.

On-line Graph Ramsey theory = a stronger Builder
Builder presents one edge at a time; Painter colors it.
Builder wins if a monochromatic G is produced.

Idea: Restrict Builder to a hereditary family \mathcal{H}.
After every move, the graph presented so far lies in \mathcal{H}.
The On-line Ramsey Problem

Graph Ramsey theory = a game
Builder presents a graph; Painter 2-colors the edges.
Builder wins if a monochromatic G is produced.

“Arrow” $H \rightarrow G \iff$ Builder wins by playing H.

On-line Graph Ramsey theory = a stronger Builder
Builder presents one edge at a time; Painter colors it.
Builder wins if a monochromatic G is produced.

Idea: Restrict Builder to a hereditary family \mathcal{H}.
After every move, the graph presented so far lies in \mathcal{H}.
This defines the on-line Ramsey game (G, \mathcal{H}).
Can Builder playing on \mathcal{H} force a monochromatic G?
Def. For a monotone graph parameter ρ, the on-line ρ-Ramsey number $\hat{R}_\rho(G)$ of G is $\min\{k: \text{Builder wins } (G, F_k)\}$, where $F_k = \{H: \rho(H) \leq k\}$.

On-Line Ramsey Parameters
Def. For a monotone graph parameter ρ, the on-line ρ-Ramsey number $\hat{R}_\rho(G)$ of G is $\min\{k: \text{Builder wins } (G,F_k)\}$, where $F_k = \{H: \rho(H) \leq k\}$.

Grytczuk–Hałuszczak–Kierstead [2004] $\hat{R}_\chi(G) = \chi(G)$.
On-Line Ramsey Parameters

Def. For a monotone graph parameter ρ, the on-line ρ-Ramsey number $\hat{R}_\rho(G)$ of G is $\min\{k: \text{Builder wins } (G, \mathcal{F}_k)\}$, where $\mathcal{F}_k = \{H: \rho(H) \leq k\}$.

Grytczuk–Hałuszczak–Kierstead [2004] $\hat{R}_\chi(G) = \chi(G)$.

** Conj.** (GHK) When $\mathcal{H} = \{\text{planar}\}$, Builder wins (G, \mathcal{H}) if and only if G is outerplanar. Disproved by Petříčková.
On-Line Ramsey Parameters

Def. For a monotone graph parameter ρ, the on-line ρ-Ramsey number $\hat{R}_\rho(G)$ of G is $\min\{k : \text{Builder wins } (G, \mathcal{F}_k)\}$, where $\mathcal{F}_k = \{H : \rho(H) \leq k\}$.

Grytczuk–Hałuszczak–Kierstead [2004] $\hat{R}_\chi(G) = \chi(G)$.

Conj. (GHK) When $\mathcal{H} = \{\text{planar}\}$, Builder wins (G, \mathcal{H}) if and only if G is outerplanar. Disproved by Petříčková.

Grytczuk–Kierstead–Prałat [2008] For P_n at most $4n - 7$, but for trees it can be quadratic.
On-Line Ramsey Parameters

Def. For a monotone graph parameter ρ, the on-line ρ-Ramsey number $\hat{R}_\rho(G)$ of G is
\[
\min \{ k : \text{Builder wins } (G, \mathcal{F}_k) \}, \text{ where } \mathcal{F}_k = \{ H : \rho(H) \leq k \}.
\]

Grytczuk–Hałuszczak–Kierstead [2004] $\hat{R}_\chi(G) = \chi(G)$.

Conj. (GHK) When $\mathcal{H} = \{ \text{planar} \}$, Builder wins (G, \mathcal{H}) if and only if G is outerplanar. Disproved by Petříčková.

Beck [1993] - introduced on-line size Ramsey number

Grytczuk–Kierstead–Prałat [2008] For P_n at most $4n - 7$, but for trees it can be quadratic.

Def. on-line degree Ramsey number $\hat{R}_\Delta(G) = \min \{ k : \text{Builder wins } (G, \mathcal{S}_k) \}, \text{ where } \mathcal{S}_k = \{ H : \Delta(H) \leq k \}.$
On-line Degree Ramsey Results

Obs. $\hat{R}_\Delta(G) \leq R_\Delta(G)$ for all G (always $\hat{R}_\rho(G) \leq R_\rho(G)$).
On-line Degree Ramsey Results

Obs. \(\hat{R}_\Delta(G) \leq R_\Delta(G) \) for all \(G \) (always \(\hat{R}_\rho(G) \leq R_\rho(G) \)).

Thm. \(\hat{R}_\Delta(G) \leq 3 \iff \) each component of \(G \) is a path or each component is a subgraph of \(K_{1,3} \).
On-line Degree Ramsey Results

Obs. $\hat{R}_\Delta(G) \leq R_\Delta(G)$ for all G (always $\hat{R}_\rho(G) \leq R_\rho(G)$).

Thm. $\hat{R}_\Delta(G) \leq 3 \iff$ each component of G is a path or each component is a subgraph of $K_{1,3}$.

Thm. $\hat{R}_\Delta(G) \leq 2\Delta(G) - 1$ when G is a tree, sharp when \exists adjacent maxdeg vertices. (Also $\hat{R}_\Delta(S_{a,b}) = a+b-1$.)
On-line Degree Ramsey Results

Obs. $\hat{R}_\Delta(G) \leq R_\Delta(G)$ for all G (always $\hat{R}_\rho(G) \leq R_\rho(G)$).

Thm. $\hat{R}_\Delta(G) \leq 3 \iff$ each component of G is a path or each component is a subgraph of $K_{1,3}$.

Thm. $\hat{R}_\Delta(G) \leq 2\Delta(G) - 1$ when G is a tree, sharp when \exists adjacent maxdeg vertices. (Also $\hat{R}_\Delta(S_{a,b}) = a+b-1$.)

Kinnersley: $\hat{R}_\Delta(T_1, \ldots, T_s; s) \leq 1 + \sum_{i=1}^{s}(\Delta(T_i) - 1)$.
On-line Degree Ramsey Results

Obs. $\hat{R}_\Delta(G) \leq R_\Delta(G)$ for all G (always $\hat{R}_\rho(G) \leq R_\rho(G)$).

Thm. $\hat{R}_\Delta(G) \leq 3 \iff$ each component of G is a path or each component is a subgraph of $K_{1,3}$.

Thm. $\hat{R}_\Delta(G) \leq 2\Delta(G) - 1$ when G is a tree, sharp when \exists adjacent maxdeg vertices. (Also $\hat{R}_\Delta(S_{a,b}) = a+b-1$.)

Kinnersley: $\hat{R}_\Delta(T_1, \ldots, T_s; s) \leq 1 + \sum_{i=1}^{s} (\Delta(T_i) - 1)$.

Thm. $4 \leq \hat{R}_\Delta(C_n) \leq 5$, equal to 4 if n is even or large.
On-line Degree Ramsey Results

Obs. $\hat{R}_\Delta(G) \leq R_\Delta(G)$ for all G (always $\hat{R}_\rho(G) \leq R_\rho(G)$).

Thm. $\hat{R}_\Delta(G) \leq 3 \iff$ each component of G is a path or each component is a subgraph of $K_{1,3}$.

Thm. $\hat{R}_\Delta(G) \leq 2\Delta(G) - 1$ when G is a tree, sharp when \exists adjacent maxdeg vertices. (Also $\hat{R}_\Delta(S_{a,b}) = a+b-1$.)

Kinnersley: $\hat{R}_\Delta(T_1, \ldots, T_s; s) \leq 1 + \sum_{i=1}^{s} (\Delta(T_i) - 1)$.

Thm. $4 \leq \hat{R}_\Delta(C_n) \leq 5$, equal to 4 if n is even or large.

D. Rolnick proved $\hat{R}_\Delta(C_n) = 4$ for all n.
On-line Degree Ramsey Results

Obs. $\hat{R}_\Delta(G) \leq R_\Delta(G)$ for all G (always $\hat{R}_\rho(G) \leq R_\rho(G)$).

Thm. $\hat{R}_\Delta(G) \leq 3$ \iff each component of G is a path or each component is a subgraph of $K_{1,3}$.

Thm. $\hat{R}_\Delta(G) \leq 2\Delta(G) - 1$ when G is a tree, sharp when \exists adjacent maxdeg vertices. (Also $\hat{R}_\Delta(S_{a,b}) = a+b-1$.)

Kinnersley: $\hat{R}_\Delta(T_1, \ldots, T_s; s) \leq 1 + \sum_{i=1}^{s} (\Delta(T_i) - 1)$.

Thm. $4 \leq \hat{R}_\Delta(C_n) \leq 5$, equal to 4 if n is even or large.

D. Rolnick proved $\hat{R}_\Delta(C_n) = 4$ for all n.

Kinnersley: $\hat{R}_\Delta(C_{2k}; s) \leq 2^{2^s}$.
On-line Degree Ramsey Results

Obs. $\hat{R}_\Delta(G) \leq R_\Delta(G)$ for all G (always $\hat{R}_\rho(G) \leq R_\rho(G)$).

Thm. $\hat{R}_\Delta(G) \leq 3 \iff$ each component of G is a path or each component is a subgraph of $K_{1,3}$.

Thm. $\hat{R}_\Delta(G) \leq 2\Delta(G) - 1$ when G is a tree, sharp when \exists adjacent maxdeg vertices. (Also $\hat{R}_\Delta(S_{a,b}) = a + b - 1$.)

Kinnersley: $\hat{R}_\Delta(T_1, \ldots, T_s; s) \leq 1 + \sum_{i=1}^{s}(\Delta(T_i) - 1)$.

Thm. $4 \leq \hat{R}_\Delta(C_n) \leq 5$, equal to 4 if n is even or large.

D. Rolnick proved $\hat{R}_\Delta(C_n) = 4$ for all n.

Kinnersley: $\hat{R}_\Delta(C_{2k}; s) \leq 2^{2s}$.

Ques. Is $\hat{R}_\Delta(G)$ bounded by a function of $\Delta(G)$?
On-line Degree Ramsey Results

Obs. $\hat{R}_\Delta(G) \leq R_\Delta(G)$ for all G (always $\hat{R}_\rho(G) \leq R_\rho(G)$).

Thm. $\hat{R}_\Delta(G) \leq 3 \iff$ each component of G is a path or each component is a subgraph of $K_{1,3}$.

Thm. $\hat{R}_\Delta(G) \leq 2\Delta(G) - 1$ when G is a tree, sharp when \exists adjacent maxdeg vertices. (Also $\hat{R}_\Delta(S_{a,b}) = a+b-1$.)

Kinnersley: $\hat{R}_\Delta(T_1, \ldots, T_s; s) \leq 1 + \sum_{i=1}^{s} (\Delta(T_i) - 1)$.

Thm. $4 \leq \hat{R}_\Delta(C_n) \leq 5$, equal to 4 if n is even or large.

D. Rolnick proved $\hat{R}_\Delta(C_n) = 4$ for all n.

Kinnersley: $\hat{R}_\Delta(C_{2k}; s) \leq 2^{2s}$.

Ques. Is $\hat{R}_\Delta(G)$ bounded by a function of $\Delta(G)$?

Thm. $\hat{R}_\Delta(G) \leq 6$ if $\Delta(G) \leq 2$.
Lower Bounds – Greedy Painter

Def. The greedy \mathcal{F}-Painter colors each edge red if the resulting red graph lies in \mathcal{F}; otherwise blue.
Def. The greedy \mathcal{F}-Painter colors each edge red if the resulting red graph lies in \mathcal{F}; otherwise blue.

Thm. $\hat{\Delta}(G) \geq \Delta(G) - 1 + \max_{uv \in E(G)} \min\{d(u), d(v)\}$.
Lower Bounds – Greedy Painter

Def. The greedy \(\mathcal{F} \)-Painter colors each edge red if the resulting red graph lies in \(\mathcal{F} \); otherwise blue.

Thm. \(\hat{\chi}_\Delta(G) \geq \Delta(G) - 1 + \max_{uv \in E(G)} \min\{d(u), d(v)\} \).

Pf. Let \(m = \Delta(G) \). \(S_{m-1} \)-Painter never makes red \(G \). An edge gets blue \iff\ an endpt already has \(m - 1 \) red.
Lower Bounds – Greedy Painter

Def. The greedy \mathcal{F}-Painter colors each edge red if the resulting red graph lies in \mathcal{F}; otherwise blue.

Thm. $\hat{R}_\Delta(G) \geq \Delta(G) - 1 + \max_{uv \in E(G)} \min \{d(u), d(v)\}$.

Pf. Let $m = \Delta(G)$. S_{m-1}-Painter never makes red G. An edge gets blue \iff an endpt already has $m - 1$ red. Let xy be an edge with maxmin degree in G. A blue G has an edge for xy; it has $m - 1$ red at one endpt and at least $\min \{d_G(x), d_G(y)\}$ blue there. ■
Def. The greedy \(F \)-Painter colors each edge red if the resulting red graph lies in \(F \); otherwise blue.

Thm. \(\hat{\Delta}(G) \geq \Delta(G) - 1 + \max_{uv \in E(G)} \min \{d(u), d(v)\}. \)

Pf. Let \(m = \Delta(G) \). \(S_{m-1} \)-Painter never makes red \(G \). An edge gets blue \(\iff \) an endpt already has \(m - 1 \) red.

Let \(xy \) be an edge with maxmin degree in \(G \). A blue \(G \) has an edge for \(xy \); it has \(m - 1 \) red at one endpt and at least \(\min \{d_G(x), d_G(y)\} \) blue there.

Cor. \(\hat{\Delta}(P_n) \geq 3; \hat{\Delta}(K_{1,m}) \geq m; \hat{\Delta}(S_{a,b}) \geq a + b - 1; \)
\(\hat{\Delta}(G) \geq 2\Delta(G) - 1 \) if \(\exists \) adjacent maxdegree vertices.
Lower Bounds – Greedy Painter

Def. The greedy \mathcal{F}-Painter colors each edge red if the resulting red graph lies in \mathcal{F}; otherwise blue.

Thm. $\hat{R}_\Delta(G) \geq \Delta(G) - 1 + \max_{uv \in E(G)} \min\{d(u), d(v)\}$.

Pf. Let $m = \Delta(G)$. S_{m-1}-Painter never makes red G. An edge gets blue \iff an endpt already has $m - 1$ red.

Let xy be an edge with maxmin degree in G. A blue G has an edge for xy; it has $m - 1$ red at one endpt and at least $\min\{d_G(x), d_G(y)\}$ blue there.

Cor. $\hat{R}_\Delta(P_n) \geq 3$; $\hat{R}_\Delta(K_{1,m}) \geq m$; $\hat{R}_\Delta(S_{a,b}) \geq a + b - 1$; $\hat{R}_\Delta(G) \geq 2\Delta(G) - 1$ if \exists adjacent maxdegree vertices.

- Lower bound for $\hat{R}_\Delta(C_n) \geq 4$ comes from charzn of $\hat{R}_\Delta(G) \leq 3$, which uses greedy linear-forest Painter.
Upper Bounds – Consistent Painter

Def. Painter follows a consistent strategy if the color used on a new edge depends only on the current 2-colored component(s) containing its endpoints (regardless of what else has been played).
Def. Painter follows a **consistent** strategy if the color used on a new edge depends only on the current 2-colored component(s) containing its endpoints (regardless of what else has been played).

Thm. If \mathcal{H} is an additive family (closed under disjoint unions), and \mathcal{A} is a Painter strategy on \mathcal{H}, then there is a consistent Painter strategy \mathcal{A}' on \mathcal{H} such that for any list E' presented by Builder, there is another list E such that $\mathcal{A}'(E') \subseteq \mathcal{A}(E)$ (as 2-colored graphs).
Def. Painter follows a consistent strategy if the color used on a new edge depends only on the current 2-colored component(s) containing its endpoints (regardless of what else has been played).

Thm. If \mathcal{H} is an additive family (closed under disjoint unions), and \mathcal{A} is a Painter strategy on \mathcal{H}, then there is a consistent Painter strategy \mathcal{A}' on \mathcal{H} such that for any list E' presented by Builder, there is another list E such that $\mathcal{A}'(E') \subseteq \mathcal{A}(E)$ (as 2-colored graphs).

Cor. To prove that $\hat{R}_\Delta(G) \leq k$, it suffices to show that Builder can win against any consistent Painter on S_k.
Def. Painter follows a consistent strategy if the color used on a new edge depends only on the current 2-colored component(s) containing its endpoints (regardless of what else has been played).

Thm. If \mathcal{H} is an additive family (closed under disjoint unions), and \mathcal{A} is a Painter strategy on \mathcal{H}, then there is a consistent Painter strategy \mathcal{A}' on \mathcal{H} such that for any list E' presented by Builder, there is another list E such that $\mathcal{A}'(E') \subseteq \mathcal{A}(E)$ (as 2-colored graphs).

Cor. To prove that $\mathring{\mathcal{R}}_\Delta(G) \leq k$, it suffices to show that Builder can win against any consistent Painter on S_k.

• Prove upper bounds on $\mathring{\mathcal{R}}_\Delta$ for trees and cycles by algorithms for Builder to defeat a consistent Painter.
Thm. If G is a tree, then $\hat{R}_\Delta(G) \leq 2\Delta(G) - 1$.
Trees

Thm. If G is a tree, then $\mathcal{R}_\Delta(G) \leq 2\Delta(G) - 1$.

Pf. Idea: Builder forces a large monochromatic complete k-ary tree, where $k = \Delta(G) - 1$.
Thm. If G is a tree, then $\hat{R}_\Delta(G) \leq 2\Delta(G) - 1$.

Pf. Idea: Builder forces a large monochromatic complete k-ary tree, where $k = \Delta(G) - 1$.

Candidate tree T_R or T_B has an active vertex x_R or x_B - a vertex of least depth w/o k children via its own color.
Thm. If G is a tree, then $\hat{R}_\Delta(G) \leq 2\Delta(G) - 1$.

Pf. Idea: Builder forces a large monochromatic complete k-ary tree, where $k = \Delta(G) - 1$.

Candidate tree T_R or T_B has an active vertex x_R or x_B - a vertex of least depth w/o k children via its own color.

Invariant: In T_R, each vertex other than x_R either 1) is a leaf in T_R with no other incident edge, or 2) has k red children and at most k blue incident edges. (Symmetrically for T_B).
Thm. If G is a tree, then $\hat{R}_\Delta(G) \leq 2\Delta(G) - 1$.

Pf. Idea: Builder forces a large monochromatic complete k-ary tree, where $k = \Delta(G) - 1$.

Candidate tree T_R or T_B has an active vertex x_R or x_B - a vertex of least depth w/o k children via its own color.

Invariant: In T_R, each vertex other than x_R either
1) is a leaf in T_R with no other incident edge, or
2) has k red children and at most k blue incident edges.

(Symmetrically for T_B).

An active vertex becomes satisfied if it has k children via its own color.
dangerous if it has k incident edges of the other color.
Builder Strategy

Builder plays pendant edges at active vertices (in T_R or T_B) until **Painter** makes one satisfied or dangerous.
Builder Strategy

Builder plays pendant edges at active vertices (in T_R or T_B) until **Painter** makes one satisfied or dangerous.

When an active vertex is satisfied, **Builder** rechooses it (closest to root w/o k children via its own color).
Builder Strategy

Builder plays pendant edges at active vertices (in T_R or T_B) until Painter makes one satisfied or dangerous.

When an active vertex is satisfied, Builder rechooses it (closest to root w/o k children via its own color).

If x_R and x_B are both dangerous,
Builder Strategy

Builder plays pendant edges at active vertices (in T_R or T_B) until Painter makes one satisfied or dangerous.

When an active vertex is satisfied, Builder rechooses it (closest to root w/o k children via its own color).

If x_R and x_B are both dangerous, Builder plays x_Rx_B.
Builder Strategy

Builder plays pendant edges at active vertices (in T_R or T_B) until Painter makes one satisfied or dangerous.

When an active vertex is satisfied, Builder rechooses it (closest to root w/o k children via its own color).

If x_R and x_B are both dangerous, Builder plays $x_R x_B$.

This edge enters the tree for its color, dragging the other tree with it.
Builder Strategy

Builder plays pendant edges at active vertices (in T_R or T_B) until Painter makes one satisfied or dangerous.

When an active vertex is satisfied, Builder rechooses it (closest to root w/o k children via its own color).

If x_R and x_B are both dangerous, Builder plays $x_R x_B$.

This edge enters the tree for its color, dragging the other tree with it.

Then Builder regenerates the other tree.
Even Cycles

Assume Builder plays on S_k and Painter is consistent. (Weight = bound on total red + blue at a vertex.)

Lem. Let F_1, F_2 be weighted graphs Builder can force in red, with vertices u_1, u_2. Form F from $F_1 + F_2$ by adding u_1u_2 and increasing weights on u_1 and u_2 by 2. If q is even, then Builder can force a red F or a blue C_q.
Even Cycles

Assume Builder plays on S_k and Painter is consistent. (Weight = bound on total red + blue at a vertex.)

Lem. Let F_1, F_2 be weighted graphs Builder can force in red, with vertices u_1, u_2. Form F from $F_1 + F_2$ by adding u_1u_2 and increasing weights on u_1 and u_2 by 2. If q is even, then Builder can force a red F or a blue C_q.

Pf. Builder forces $q/2$ copies of F_1 and F_2 and then adds a cycle alternating between the copies of u_1 and u_2. ■
Trees for Even Cycles

Consistent Painter makes the same monochromatic P_3 (with weights 2) in any isolated triangle; we may assume it is red. Painter wants to avoid a monochromatic C_q.

![Diagram showing two trees with weights 2, one red and one black.](image)
Trees for Even Cycles

Consistent Painter makes the same monochromatic P_3 (with weights 2) in any isolated triangle; we may assume it is red. Painter wants to avoid a monochromatic C_q.

![Diagram of a tree with even cycles]

- Node labeled 4 is connected to two nodes labeled 2.
- Node labeled 4 is connected to two nodes labeled 2.

Weights: 2, 2, 2, 2.
Trees for Even Cycles

Consistent Painter makes the same monochr. P_3 (with weights 2) in any isolated triangle; we may assume it is red. Painter wants to avoid a monochromatic C_q.
Trees for Even Cycles

Consistent Painter makes the same monochr. \(P_3 \) (with weights 2) in any isolated triangle; we may assume it is red. Painter wants to avoid a monochromatic \(C_q \).
Trees for Even Cycles

Consistent Painter makes the same monochromatic P_3 (with weights 2) in any isolated triangle; we may assume it is red. Painter wants to avoid a monochromatic C_q.

Further extensions of the tree force any even cycle C_q (just extend one half if $q \equiv 2 \pmod{4}$), but C_6 and C_{10} are special.
Special Case: C_6 (C_{10} is similar)

Consistent Painter makes consistent triangles.

Case 1: monochromatic
Special Case: C_6 (C_{10} is similar)

Consistent Painter makes consistent triangles.

Case 1: monochromatic
Special Case: C_6 (C_{10} is similar)

Consistent Painter makes consistent triangles.

Case 1: monochromatic
Special Case: C_6 (C_{10} is similar)

Consistent Painter makes consistent triangles.

Case 1: monochromatic

Case 2: not monochromatic
Special Case: C_6 (C_{10} is similar)

Consistent Painter makes consistent triangles.

Case 1: monochromatic

Case 2: not monochromatic
Special Case: C_6 (C_{10} is similar)

Consistent Painter makes consistent triangles.

Case 1: monochromatic

Case 2: not monochromatic
Lem. Against consistent Painter, if Builder can force red F or monochr. C_q (q odd), then Builder can force red $F+uv$ or monochr. C_q, with wt on u and v up by 2.
Odd Cycles

Lem. Against consistent Painter, if Builder can force red F or monochr. C_q (q odd), then Builder can force red $F+uv$ or monochr. C_q, with wt on u and v up by 2.

Thm. $\hat{R}_\Delta(C_q) \leq 5$ when q is odd.
Odd Cycles

Lem. Against consistent Painter, if Builder can force red F or monochr. C_q (q odd), then Builder can force red $F+uv$ or monochr. C_q, with wt on u and v up by 2.

Thm. $\hat{R}_\Delta(C_q) \leq 5$ when q is odd.

Pf. Force monochr. P_q (say red) with weights 3.
Odd Cycles

Lem. Against consistent Painter, if Builder can force red F or monochr. C_q (q odd), then Builder can force red $F+uv$ or monochr. C_q, with wt on u and v up by 2.

Thm. $\hat{R}_\Delta(C_q) \leq 5$ when q is odd.

Pf. Force monochr. P_q (say red) with weights 3. Grow pendant paths.

```
3 5 5 5 5 5 5 5 3
2 2 2 2 2 2 2
```
Odd Cycles

Lem. Against consistent Painter, if Builder can force red F or monochr. C_q (q odd), then Builder can force red $F+uv$ or monochr. C_q, with wt on u and v up by 2.

Thm. $\hat{R}_\Delta(C_q) \leq 5$ when q is odd.

Pf. Force monochr. P_q (say red) with weights 3. Grow pendant paths.

```
  3  5  5  5  5  5  5  5  3
  2  4  4  4  4  4  4  2
  2  4  4  4  4  2
  2  2
```

Lem. Against consistent Painter, if Builder can force red F or monochr. C_q (q odd), then Builder can force red $F+uv$ or monochr. C_q, with wt on u and v up by 2.

Thm. $\hat{R}_\Delta(C_q) \leq 5$ when q is odd.

Pf. Force monochr. P_q (say red) with weights 3. Grow pendant paths.

Leaf distances $q - 1$ (opposite halves or to middle). Cycle through the leaves is all blue or some red.
Idea for Max Degree 2

\[\Delta(G) = 2; \text{ we may assume each component is a cycle.} \]
Idea for Max Degree 2

$\Delta(G) = 2$; we may assume each component is a cycle.

If Builder can’t force G against a consistent Painter, then $\exists \; r$ and b where Builder can’t force red C_r or blue C_b. One Case: both are odd ($b \leq r$ by symmetry).
\(\Delta(G) = 2 \); we may assume each component is a cycle.

If Builder can’t force \(G \) against a consistent Painter, then \(\exists \ r \) and \(b \) where Builder can’t force red \(C_r \) or blue \(C_b \). One Case: both are odd (\(b \leq r \) by symmetry).

Builder forces red 2-weighted \(P_2 \) by playing a \(b \)-cycle.
Δ(G) = 2; we may assume each component is a cycle.

If Builder can’t force G against a consistent Painter, then ∃ r and b where Builder can’t force red C_r or blue C_b. One Case: both are odd (b ≤ r by symmetry).

Builder forces red 2-weighted P_2 by playing a b-cycle. By earlier lemmas, Builder can force red 4-weighted P_r.
Idea for Max Degree 2

$\Delta(G) = 2$; we may assume each component is a cycle.

If Builder can’t force G against a consistent Painter, then \exists r and b where Builder can’t force red C_r or blue C_b. One Case: both are odd $(b \leq r$ by symmetry).

Builder forces red 2-weighted P_2 by playing a b-cycle.

By earlier lemmas, Builder can force red 4-weighted P_r. Similarly, Builder can force the red 6-weighted tree.
Idea for Max Degree 2

\(\Delta(G) = 2 \); we may assume each component is a cycle.

If Builder can’t force \(G \) against a consistent Painter, then \(\exists \ r \) and \(b \) where Builder can’t force red \(C_r \) or blue \(C_b \). One Case: both are odd (\(b \leq r \) by symmetry).

Builder forces red 2-weighted \(P_2 \) by playing a \(b \)-cycle.

By earlier lemmas, Builder can force red 4-weighted \(P_r \). Similarly, Builder can force the red 6-weighted tree.
\[\Delta(G) = 2; \text{ we may assume each component is a cycle.} \]

If Builder can’t force \(G \) against a consistent Painter, then \(\exists r \) and \(b \) where Builder can’t force red \(C_r \) or blue \(C_b \). One Case: both are odd \((b \leq r \text{ by symmetry})\).

Builder forces red 2-weighted \(P_2 \) by playing a \(b \)-cycle.

By earlier lemmas, Builder can force red 4-weighted \(P_r \). Similarly, Builder can force the red 6-weighted tree.

Finally, Builder plays a \(b \)-cycle on the leaves.