Acquisition Parameters of Graphs

Douglas B. West

Department of Mathematics
Zhejiang Normal University, Jinhua and
University of Illinois at Urbana-Champaign
west@math.uiuc.edu

Results with or by

Timothy D. LeSaulnier, Daniel C. McDonald, Kevin G. Milans, Noah Prince, Chris Stocker, Paul S. Wenger, Leslie Wiglesworth, Pratik Worah

Model: People start with one vote. Some are friends.

A person can give his or her votes to a friend if the friend has at least as many votes.

Model: People start with one vote. Some are friends.

A person can give his or her votes to a friend if the friend has at least as many votes.

Can one person acquire all the votes?

Model: People start with one vote. Some are friends.

A person can give his or her votes to a friend if the friend has at least as many votes.

Can one person acquire all the votes?

Model: (Wenger) Each city starts with one regiment.

The troops in one city can withdraw to a neighboring city if that city already has at least as many troops.

Model: People start with one vote. Some are friends.

A person can give his or her votes to a friend if the friend has at least as many votes.

Can one person acquire all the votes?

Model: (Wenger) Each city starts with one regiment.

The troops in one city can withdraw to a neighboring city if that city already has at least as many troops.

Can the troops be gathered in a single city?

Model: People start with one vote. Some are friends.

A person can give his or her votes to a friend if the friend has at least as many votes.

Can one person acquire all the votes?

Model: (Wenger) Each city starts with one regiment.

The troops in one city can withdraw to a neighboring city if that city already has at least as many troops.

Can the troops be gathered in a single city?

Def. total aquisition move = transfer all weight from u to a neighbor v; allowed if currently $w(u) \le w(v)$.

Model: People start with one vote. Some are friends.

A person can give his or her votes to a friend if the friend has at least as many votes.

Can one person acquire all the votes?

Model: (Wenger) Each city starts with one regiment.

The troops in one city can withdraw to a neighboring city if that city already has at least as many troops.

Can the troops be gathered in a single city?

Def. total aquisition move = transfer all weight from u to a neighbor v; allowed if currently $w(u) \le w(v)$.

• End when $\{v: w(v) > 0\}$ is an independent set.

Model: People start with one vote. Some are friends.

A person can give his or her votes to a friend if the friend has at least as many votes.

Can one person acquire all the votes?

Model: (Wenger) Each city starts with one regiment.

The troops in one city can withdraw to a neighboring city if that city already has at least as many troops.

Can the troops be gathered in a single city?

Def. total aquisition move = transfer all weight from u to a neighbor v; allowed if currently $w(u) \le w(v)$.

• End when $\{v: w(v) > 0\}$ is an independent set.

Def. total aquisition number $a_t(G)$ = min size of the final indep. set when each vertex starts with weight 1.

Ex. $a_t(T) = 4$, 11 vertices.

Ex. $a_t(T) = 4$, 11 vertices.

Alternative Models — Start with weight 1 on all. Moving weight from u to v requires $w(v) \ge w(u)$.

Ex. $a_t(T) = 4$, 11 vertices.

Alternative Models — Start with weight 1 on all. Moving weight from u to v requires $w(v) \ge w(u)$.

total acquisition: move all weight from $u - a_t(G)$

Ex. $a_t(T) = 4$, 11 vertices.

Alternative Models — Start with weight 1 on all. Moving weight from u to v requires $w(v) \ge w(u)$.

total acquisition: move all weight from $u - a_t(G)$ unit acquisition: move any integer amount $-a_{tt}(G)$

Ex. $a_t(T) = 4$, 11 vertices.

Alternative Models — Start with weight 1 on all. Moving weight from u to v requires $w(v) \ge w(u)$.

total acquisition: move all weight from $u - a_t(G)$

unit acquisition: move any integer amount — $a_u(G)$

fractional acquisition: move any positive amt — $a_f(G)$

Ex. $a_t(T) = 4$, 11 vertices.

Alternative Models — Start with weight 1 on all. Moving weight from u to v requires $w(v) \ge w(u)$.

total acquisition: move all weight from $u - a_t(G)$

unit acquisition: move any integer amount — $a_u(G)$

fractional acquisition: move any positive amt — $a_f(G)$

game acquisition: move all weight, but two players Min and Max alternate moves — $a_g(G)$

All our graphs have *n* vertices.

Thm. (Lampert–Slater [1995]) If G is connected and nontrivial, then $a_t(G) \leq \frac{n+1}{3}$, and this is sharp.

All our graphs have *n* vertices.

Thm. (Lampert–Slater [1995]) If G is connected and nontrivial, then $a_t(G) \leq \frac{n+1}{3}$, and this is sharp.

Pf. Since $H \subseteq G \Rightarrow a_t(H) \ge a_t(G)$, it suffices to prove the bound for trees.

All our graphs have *n* vertices.

Thm. (Lampert–Slater [1995]) If G is connected and nontrivial, then $a_t(G) \leq \frac{n+1}{3}$, and this is sharp.

Pf. Since $H \subseteq G \Rightarrow a_t(H) \ge a_t(G)$, it suffices to prove the bound for trees.

Idea: Induction on n. Find a subtree T' with m vertices, $a_t(T') \le m/3$, and T - V(T') connected.

All our graphs have *n* vertices.

Thm. (Lampert–Slater [1995]) If G is connected and nontrivial, then $a_t(G) \leq \frac{n+1}{3}$, and this is sharp.

Pf. Since $H \subseteq G \Rightarrow a_t(H) \ge a_t(G)$, it suffices to prove the bound for trees.

Idea: Induction on n. Find a subtree T' with m vertices, $a_t(T') \le m/3$, and T - V(T') connected.

Easy cases:

Hard Case:

Hard Case:

Sharpness:

View each initial unit of weight as a token or chip.

Lem. For total or unit acquisition, at most one chip can pass through a vertex ν of degree 2, and it must be the chip from a neighbor.

• View each initial unit of weight as a token or chip.

Lem. For total or unit acquisition, at most one chip can pass through a vertex ν of degree 2, and it must be the chip from a neighbor.

• View each initial unit of weight as a token or chip.

Lem. For total or unit acquisition, at most one chip can pass through a vertex ν of degree 2, and it must be the chip from a neighbor.

Cor. If the x, y-path in a tree has a vertex of degree 2 adjacent to neither x nor y, then the chips starting at x and y cannot combine.

• View each initial unit of weight as a token or chip.

Lem. For total or unit acquisition, at most one chip can pass through a vertex ν of degree 2, and it must be the chip from a neighbor.

Cor. If the x, y-path in a tree has a vertex of degree 2 adjacent to neither x nor y, then the chips starting at x and y cannot combine.

• The lower bounds on a_t that use these observation apply also to a_u .

Ex. The tree $T_{l,m}$ with (l, m) = (4, 3).

Ex. The tree $T_{l,m}$ with (l,m)=(4,3).

Ex. The tree $T_{l,m}$ with (l, m) = (4, 3).

#vertices = 3l + 3m + 2, #leaves = l + m + 1 diameter = 2m + 4, maxdegree = l + 2.

Ex. The tree $T_{l,m}$ with (l,m)=(4,3).

#vertices =
$$3l + 3m + 2$$
, #leaves = $l + m + 1$ diameter = $2m + 4$, maxdegree = $l + 2$.

Prop. (LPWWW [2013])
$$a_t(T_{l,m}) = l + m + 1 = \frac{n+1}{3}$$
.

Pf. Chips from marked vertices cannot combine.

Ex. The tree $T_{l,m}$ with (l, m) = (4, 3).

#vertices =
$$3l + 3m + 2$$
, #leaves = $l + m + 1$ diameter = $2m + 4$, maxdegree = $l + 2$.

Prop. (LPWWW [2013])
$$a_t(T_{l,m}) = l + m + 1 = \frac{n+1}{3}$$
.

Pf. Chips from marked vertices cannot combine.

Ex. The tree $T_{l,m}$ with (l,m)=(4,3).

#vertices =
$$3l + 3m + 2$$
, #leaves = $l + m + 1$ diameter = $2m + 4$, maxdegree = $l + 2$.

Prop. (LPWWW [2013])
$$a_t(T_{l,m}) = l + m + 1 = \frac{n+1}{3}$$
.

Pf. Chips from marked vertices cannot combine.

Thm. For $d \ge 3$ and $k \ge 6$, there is a tree T with $\Delta(T) = d$, diam $T \ge k$, and $a_u(T) = a_t(T) = \frac{|V(T)|+1}{3}$.

The Extremal Graphs

Thm. (LeSaulnier–West [2013]) An *n*-vertex graph G satisfies $a_t(G) = \frac{n+1}{3}$ if and only if G is a tree obtained from P_2 by iteratively growing a 3-edge path from a neighbor of a leaf.

The Extremal Graphs

Thm. (LeSaulnier–West [2013]) An *n*-vertex graph G satisfies $a_t(G) = \frac{n+1}{3}$ if and only if G is a tree obtained from P_2 by iteratively growing a 3-edge path from a neighbor of a leaf.

• The graphs G such that $a_u(G) = \frac{n+1}{3}$ are precisely those such that $a_t(G) = \frac{n+1}{3}$.

• For diameter 6 or higher, $\max a_t(T) = \left| \frac{n+1}{3} \right|$.

- For diameter 6 or higher, $\max a_t(T) = \lfloor \frac{n+1}{3} \rfloor$.
- For diameter 2 or 3, $a_t(T) = 1$. "double-stars"

- For diameter 6 or higher, $\max a_t(T) = \lfloor \frac{n+1}{3} \rfloor$.
- For diameter 2 or 3, $a_t(T) = 1$. "double-stars"

What about diameter 4 and diameter 5?

- For diameter 6 or higher, $\max a_t(T) = \lfloor \frac{n+1}{3} \rfloor$.
- For diameter 2 or 3, $a_t(T) = 1$. "double-stars"

What about diameter 4 and diameter 5?

Thm. For diameter 4 or 5, $\max a_t(T) = \Theta(\sqrt{n \lg n})$.

- For diameter 6 or higher, $\max a_t(T) = \lfloor \frac{n+1}{3} \rfloor$.
- For diameter 2 or 3, $a_t(T) = 1$. "double-stars"

What about diameter 4 and diameter 5?

Thm. For diameter 4 or 5, $\max a_t(T) = \Theta(\sqrt{n \lg n})$.

• When diam(T) = 5, delete the central edge and use the result for trees of diameter 4.

Thm. $a_t(T) \leq \sqrt{n \lg n}$.

Pf. Case 1: $k \le \sqrt{n \lg n} \Rightarrow N(u)$ absorbs all.

Thm. $a_t(T) \leq \sqrt{n \lg n}$.

Pf. Case 1: $k \le \sqrt{n \lg n} \Rightarrow N(u)$ absorbs all. Case 2: $d(v_k) \ge \sqrt{n} \Rightarrow a_t(T) \le 1 + \sqrt{(n - \sqrt{n}) \lg n}$.

Thm. $a_t(T) \leq \sqrt{n \lg n}$.

Pf. Case 1: $k \le \sqrt{n \lg n} \Rightarrow N(u)$ absorbs all. Case 2: $d(\mathbf{v}_k) \ge \sqrt{n} \Rightarrow a_t(T) \le 1 + \sqrt{(n - \sqrt{n}) \lg n}$.

Case 3: let w_i = weight on u before processing v_i ; algorithm moves weight $\min\{w_i, d(v_i)\}$ from v_i to u.

Thm. $a_t(T) \leq \sqrt{n \lg n}$.

Pf. Case 1: $k \le \sqrt{n \lg n} \Rightarrow N(u)$ absorbs all. Case 2: $d(\mathbf{v}_k) \ge \sqrt{n} \Rightarrow a_t(T) \le 1 + \sqrt{(n - \sqrt{n}) \lg n}$.

Case 3: let \mathbf{w}_i = weight on u before processing v_i ;

algorithm moves weight $\min\{w_i, d(v_i)\}\$ from v_i to u.

Thm. $a_t(T) \leq \sqrt{n \lg n}$.

Pf. Case 1: $k \le \sqrt{n \lg n} \Rightarrow N(u)$ absorbs all.

Case 2: $d(\mathbf{v}_k) \ge \sqrt{n} \Rightarrow a_t(T) \le \mathbf{1} + \sqrt{(n - \sqrt{n}) \lg n}$.

Case 3: let w_i = weight on u before processing v_i ; algorithm moves weight $\min\{w_i, d(v_i)\}\$ from v_i to u.

Thm. $a_t(T) \leq \sqrt{n \lg n}$.

Pf. Case 1: $k \le \sqrt{n \lg n} \Rightarrow N(u)$ absorbs all. Case 2: $d(\mathbf{v}_k) \ge \sqrt{n} \Rightarrow a_t(T) \le 1 + \sqrt{(n - \sqrt{n}) \lg n}$.

Case 3: let w_i = weight on u before processing v_i ; algorithm moves weight $\min\{w_i, d(v_i)\}$ from v_i to u.

Thm. $a_t(T) \leq \sqrt{n \lg n}$.

Pf. Case 1: $k \le \sqrt{n \lg n} \Rightarrow N(u)$ absorbs all. Case 2: $d(\mathbf{v}_k) \ge \sqrt{n} \Rightarrow a_t(T) \le 1 + \sqrt{(n - \sqrt{n}) \lg n}$.

Case 3: let \mathbf{w}_i = weight on u before processing v_i ; algorithm moves weight $\min\{w_i, d(v_i)\}$ from v_i to u.

Thm. $a_t(T) \leq \sqrt{n \lg n}$.

Pf. Case 1: $k \le \sqrt{n \lg n} \Rightarrow N(u)$ absorbs all. Case 2: $d(\mathbf{v}_k) \ge \sqrt{n} \Rightarrow a_t(T) \le 1 + \sqrt{(n - \sqrt{n}) \lg n}$.

Case 3: let w_i = weight on u before processing v_i ; algorithm moves weight $\min\{w_i, d(v_i)\}\$ from v_i to u.

Let $S = \{i : d(v_i) > w_i\}$; some of $N(v_i)$ stays when $i \in S$.

Thm. $a_t(T) \leq \sqrt{n \lg n}$.

Pf. Case 1: $k \le \sqrt{n \lg n} \Rightarrow N(u)$ absorbs all. Case 2: $d(\mathbf{v}_k) \ge \sqrt{n} \Rightarrow a_t(T) \le 1 + \sqrt{(n - \sqrt{n}) \lg n}$.

Case 3: let w_i = weight on u before processing v_i ; algorithm moves weight $\min\{w_i, d(v_i)\}$ from v_i to u.

Let $S = \{i: d(v_i) > w_i\}$; some of $N(v_i)$ stays when $i \in S$.

Let $m = \max S$. Weight doubles $\Rightarrow |S| \leq |g| d(v_m)$.

Thm. $a_t(T) \leq \sqrt{n \lg n}$.

Pf. Case 1: $k \le \sqrt{n \lg n} \Rightarrow N(u)$ absorbs all. Case 2: $d(\mathbf{v}_k) \ge \sqrt{n} \Rightarrow a_t(T) \le 1 + \sqrt{(n - \sqrt{n}) \lg n}$.

Case 3: let w_i = weight on u before processing v_i ; algorithm moves weight $\min\{w_i, d(v_i)\}$ from v_i to u.

Let $S = \{i: d(v_i) > w_i\}$; some of $N(v_i)$ stays when $i \in S$.

Let $m = \max S$. Weight doubles $\Rightarrow |S| \leq \lg d(v_m)$.

 $a_t(T) \le d(v_m) \lg d(v_m)$ (later weight goes to u).

Thm. $a_t(T) \leq \sqrt{n \lg n}$.

Pf. Case 1:
$$k \le \sqrt{n \lg n} \Rightarrow N(u)$$
 absorbs all.
Case 2: $d(\mathbf{v}_k) \ge \sqrt{n} \Rightarrow a_t(T) \le 1 + \sqrt{(n - \sqrt{n}) \lg n}$.

Case 3: let w_i = weight on u before processing v_i ; algorithm moves weight $\min\{w_i, d(v_i)\}$ from v_i to u.

Let $S = \{i: d(v_i) > w_i\}$; some of $N(v_i)$ stays when $i \in S$.

Let
$$m = \max S$$
. Weight doubles $\Rightarrow |S| \leq \lg d(v_m)$.

$$a_t(T) \le d(v_m) \lg d(v_m)$$
 (later weight goes to u).

$$m \le w_m < d(v_m) \le d(v_k) < \sqrt{n} < k/2.$$

Thm. $a_t(T) \leq \sqrt{n \lg n}$.

Pf. Case 1:
$$k \le \sqrt{n \lg n} \Rightarrow N(u)$$
 absorbs all.
Case 2: $d(v_k) \ge \sqrt{n} \Rightarrow a_t(T) \le 1 + \sqrt{(n - \sqrt{n}) \lg n}$.

Case 3: let w_i = weight on u before processing v_i ; algorithm moves weight $\min\{w_i, d(v_i)\}$ from v_i to u.

Let $S = \{i: d(v_i) > w_i\}$; some of $N(v_i)$ stays when $i \in S$.

Let $m = \max S$. Weight doubles $\Rightarrow |S| \leq \lg d(\nu_m)$.

$$a_t(T) \le d(v_m) \lg d(v_m)$$
 (later weight goes to u).
 $m < w_m < d(v_m) < d(v_k) < \sqrt{n} < k/2$.

$$\frac{d(v_m) < \frac{n-m}{k-m} < \frac{2n}{k}}{(using m < k/2)}.$$

Thm. $a_t(T) \leq \sqrt{n \lg n}$.

Pf. Case 1:
$$k \le \sqrt{n \lg n} \Rightarrow N(u)$$
 absorbs all.

Case 2:
$$d(\mathbf{v}_k) \ge \sqrt{n} \Rightarrow a_t(T) \le 1 + \sqrt{(n - \sqrt{n}) \lg n}$$
.

Case 3: let w_i = weight on u before processing v_i ; algorithm moves weight $\min\{w_i, d(v_i)\}$ from v_i to u.

Let
$$S = \{i: d(v_i) > w_i\}$$
; some of $N(v_i)$ stays when $i \in S$.

Let $m = \max S$. Weight doubles $\Rightarrow |S| \leq \lg d(\nu_m)$.

$$a_t(T) \le d(v_m) \lg d(v_m)$$
 (later weight goes to u).

$$m \le w_m < d(v_m) \le d(v_k) < \sqrt{n} < k/2.$$

$$\frac{d(v_m) < \frac{n-m}{k-m} < \frac{2n}{k}}{\sqrt{2n}} \quad \text{(using } m < k/2\text{)}.$$

Hence
$$a_t(T) < \frac{2n}{k} \lg \frac{2n}{k} < \sqrt{n \lg n}$$
.

Thm. $a_t(T) \ge (1 - o(1))\sqrt{.5n \lg n}$.

Thm. $a_t(T) \ge (1 - o(1))\sqrt{.5n \lg n}$.

Pf. Let
$$r = \sqrt{2n/\lg n}$$
 and $k = \lfloor \frac{n-1}{r+1} \rfloor \approx \sqrt{.5n \lg n}$.

Thm. $a_t(T) \ge (1 - o(1))\sqrt{.5n \lg n}$.

Pf. Let $r = \sqrt{2n/\lg n}$ and $k = \lfloor \frac{n-1}{r+1} \rfloor \approx \sqrt{.5n \lg n}$.

Let q = #nbrs giving weight to u in optimal algorithm. We may assume they are v_1, \ldots, v_q in order.

Thm. $a_t(T) \ge (1 - o(1))\sqrt{.5n \lg n}$.

Pf. Let $r = \sqrt{2n/\lg n}$ and $k = \lfloor \frac{n-1}{r+1} \rfloor \approx \sqrt{.5n \lg n}$.

Let q = #nbrs giving weight to u in optimal algorithm.

We may assume they are v_1, \ldots, v_q in order.

If $q < \lg r$, then weight remains in k - o(k) subtrees.

Thm. $a_t(T) \ge (1 - o(1))\sqrt{.5n \lg n}$.

Pf. Let $r = \sqrt{2n/\lg n}$ and $k = \lfloor \frac{n-1}{r+1} \rfloor \approx \sqrt{.5n \lg n}$.

Let q = #nbrs giving weight to u in optimal algorithm. We may assume they are v_1, \ldots, v_q in order.

If $q < \lg r$, then weight remains in k - o(k) subtrees.

If $q \ge \lg r$, then at least $r - (2^{i-1} - 1)$ leaf neighbors of v_i are stranded, for $i \le \lg r$.

Thm. $a_t(T) \ge (1 - o(1))\sqrt{.5n \lg n}$.

Pf. Let
$$r = \sqrt{2n/\lg n}$$
 and $k = \lfloor \frac{n-1}{r+1} \rfloor \approx \sqrt{.5n \lg n}$.

Let q = #nbrs giving weight to u in optimal algorithm. We may assume they are v_1, \ldots, v_q in order.

If $q < \lg r$, then weight remains in k - o(k) subtrees.

If $q \ge \lg r$, then at least $r - (2^{i-1} - 1)$ leaf neighbors of v_i are stranded, for $i \le \lg r$.

Thus #leaves stranded $\geq r \lfloor \lg r \rfloor - \sum_{i=1}^{\lfloor \lg r \rfloor} (2^{i-1} - 1)$

Thm. $a_t(T) \ge (1 - o(1))\sqrt{.5n \lg n}$.

Pf. Let $r = \sqrt{2n/\lg n}$ and $k = \lfloor \frac{n-1}{r+1} \rfloor \approx \sqrt{.5n \lg n}$.

Let q = #nbrs giving weight to u in optimal algorithm. We may assume they are v_1, \ldots, v_q in order.

If $q < \lg r$, then weight remains in k - o(k) subtrees.

If $q \ge \lg r$, then at least $r - (2^{i-1} - 1)$ leaf neighbors of v_i are stranded, for $i \le \lg r$.

Thus #leaves stranded $\geq r \lfloor \lg r \rfloor - \sum_{i=1}^{\lfloor \lg r \rfloor} (2^{i-1} - 1)$ = $(1 - o(1))(r \lg r) = (1 - o(1))\sqrt{.5n \lg n}$.

Trees with $a_t(T) = 1$ are recognizable in quadratic time (Cai [1993]).

Trees with $a_t(T) = 1$ are recognizable in quadratic time (Cai [1993]).

Thm. On trees, $a_t(T) \le k$ is testable in time $O(n^{k+1})$.

Pf. Try all sets of k-1 edges to delete and form k components. Test each for being a union tree.

Trees with $a_t(T) = 1$ are recognizable in quadratic time (Cai [1993]).

Thm. On trees, $a_t(T) \le k$ is testable in time $O(n^{k+1})$.

Pf. Try all sets of k-1 edges to delete and form k components. Test each for being a union tree.

Thm. (Lampert–Slater [1995]) Testing $a_t(G) = 1$ on general graphs is NP-complete.

Trees with $a_t(T) = 1$ are recognizable in quadratic time (Cai [1993]).

Thm. On trees, $a_t(T) \le k$ is testable in time $O(n^{k+1})$.

Pf. Try all sets of k-1 edges to delete and form k components. Test each for being a union tree.

Thm. (Lampert–Slater [1995]) Testing $a_t(G) = 1$ on general graphs is NP-complete.

Sufficient Conditions for $a_t(G) = 1$:

Trees with $a_t(T) = 1$ are recognizable in quadratic time (Cai [1993]).

Thm. On trees, $a_t(T) \le k$ is testable in time $O(n^{k+1})$.

Pf. Try all sets of k-1 edges to delete and form k components. Test each for being a union tree.

Thm. (Lampert–Slater [1995]) Testing $a_t(G) = 1$ on general graphs is NP-complete.

Sufficient Conditions for $a_t(G) = 1$:

• $\exists v$ with $d(v) \ge \frac{n}{2}$ such that N(v) is a dominating set.

Trees with $a_t(T) = 1$ are recognizable in quadratic time (Cai [1993]).

Thm. On trees, $a_t(T) \le k$ is testable in time $O(n^{k+1})$.

Pf. Try all sets of k-1 edges to delete and form k components. Test each for being a union tree.

Thm. (Lampert–Slater [1995]) Testing $a_t(G) = 1$ on general graphs is NP-complete.

Sufficient Conditions for $a_t(G) = 1$:

- $\exists v$ with $d(v) \ge \frac{n}{2}$ such that N(v) is a dominating set.
- G is (n-1)/2-regular.

Trees with $a_t(T) = 1$ are recognizable in quadratic time (Cai [1993]).

Thm. On trees, $a_t(T) \le k$ is testable in time $O(n^{k+1})$.

Pf. Try all sets of k-1 edges to delete and form k components. Test each for being a union tree.

Thm. (Lampert–Slater [1995]) Testing $a_t(G) = 1$ on general graphs is NP-complete.

Sufficient Conditions for $a_t(G) = 1$:

- $\exists v$ with $d(v) \ge \frac{n}{2}$ such that N(v) is a dominating set.
- G is (n-1)/2-regular.

Thm. If $G \neq C_5$, then $a_t(G) = 1$ or $a_t(\overline{G}) = 1$.

Trees with $a_t(T) = 1$ are recognizable in quadratic time (Cai [1993]).

Thm. On trees, $a_t(T) \le k$ is testable in time $O(n^{k+1})$.

Pf. Try all sets of k-1 edges to delete and form k components. Test each for being a union tree.

Thm. (Lampert–Slater [1995]) Testing $a_t(G) = 1$ on general graphs is NP-complete.

Sufficient Conditions for $a_t(G) = 1$:

- $\exists v$ with $d(v) \ge \frac{n}{2}$ such that N(v) is a dominating set.
- G is (n-1)/2-regular.

Thm. If $G \neq C_5$, then $a_t(G) = 1$ or $a_t(\overline{G}) = 1$.

Thm. If $G \neq C_5$ and $d(u) + d(v) \geq n - 1$ whenever $uv \notin E(G)$, then $a_t(G) = 1$.

Edge-deletion

Thm. If $e \in E(G)$, then $a_t(G - e) < a_t(G) + 7\sqrt{n}$.

Edge-deletion

Thm. If $e \in E(G)$, then $a_t(G - e) < a_t(G) + 7\sqrt{n}$.

Thm. There exists a tree T with an edge e such that $a_t(T) = 1$ and $a_t(T - e) > \sqrt{n}/2$.

Edge-deletion

Thm. If
$$e \in E(G)$$
, then $a_t(G - e) < a_t(G) + 7\sqrt{n}$.

Thm. There exists a tree T with an edge e such that $a_t(T) = 1$ and $a_t(T - e) > \sqrt{n}/2$.

Diameter 2

Thm. diam $G = 2 \Rightarrow a_t(G) \le 250 \lg n \lg \lg n$.

Edge-deletion

Thm. If
$$e \in E(G)$$
, then $a_t(G - e) < a_t(G) + 7\sqrt{n}$.

Thm. There exists a tree T with an edge e such that $a_t(T) = 1$ and $a_t(T - e) > \sqrt{n}/2$.

Diameter 2

Thm. diam
$$G = 2 \Rightarrow a_t(G) \le 250 \lg n \lg \lg n$$
.

Thm. diam
$$G = 2 \& C_4 \not\subseteq G \& \Delta(G) \ge 8 \Rightarrow a_t(G) = 1.$$

Edge-deletion

Thm. If $e \in E(G)$, then $a_t(G - e) < a_t(G) + 7\sqrt{n}$.

Thm. There exists a tree T with an edge e such that $a_t(T) = 1$ and $a_t(T - e) > \sqrt{n}/2$.

Diameter 2

Thm. diam $G = 2 \Rightarrow a_t(G) \le 250 \lg n \lg \lg n$.

Thm. diam $G = 2 \& C_4 \not\subseteq G \& \Delta(G) \ge 8 \Rightarrow a_t(G) = 1.$

Conj. $\exists c$ such that $diamG = 2 \Rightarrow a_t(G) \leq c$.

Edge-deletion

Thm. If $e \in E(G)$, then $a_t(G - e) < a_t(G) + 7\sqrt{n}$.

Thm. There exists a tree T with an edge e such that $a_t(T) = 1$ and $a_t(T - e) > \sqrt{n}/2$.

Diameter 2

Thm. diam $G = 2 \Rightarrow a_t(G) \le 250 \lg n \lg \lg n$.

Thm. diam $G = 2 \& C_4 \not\subseteq G \& \Delta(G) \ge 8 \Rightarrow a_t(G) = 1$.

Conj. $\exists c$ such that $diamG = 2 \Rightarrow a_t(G) \leq c$.

Perhaps c=2. This suffices for Moore graphs, polarity graphs, and graphs without 4-cycles.

Conj. For random graphs,

Conj. For random graphs,

 $\exists c$ such that $p_n \ge \sqrt{\frac{c \ln n}{n}} \Rightarrow \text{almost always } a_t(G) = 1.$

Conj. For random graphs,

 $\exists c$ such that $p_n \ge \sqrt{\frac{c \ln n}{n}} \Rightarrow \text{almost always } a_t(G) = 1.$

 $\exists c$ such that $p_n \le c/n \Rightarrow \text{ almost always } a_t(G) = \Theta(n)$.

Conj. For almost all trees, $a_t(T) = \Theta(n)$.

Conj. For random graphs,

$$\exists c$$
 such that $p_n \ge \sqrt{\frac{c \ln n}{n}} \Rightarrow \text{almost always } a_t(G) = 1.$

$$\exists c$$
 such that $p_n \le c/n \Rightarrow \text{almost always } a_t(G) = \Theta(n)$.

Conj. For almost all trees, $a_t(T) = \Theta(n)$.

Ques. What is the maximum of $a_t(G)$ when G is a connected n-vertex graph with minimum degree k?

Conj. For random graphs,

$$\exists c$$
 such that $p_n \ge \sqrt{\frac{c \ln n}{n}} \Rightarrow \text{almost always } a_t(G) = 1.$

$$\exists c$$
 such that $p_n \le c/n \Rightarrow \text{almost always } a_t(G) = \Theta(n)$.

Conj. For almost all trees, $a_t(T) = \Theta(n)$.

Ques. What is the maximum of $a_t(G)$ when G is a connected n-vertex graph with minimum degree k?

Always
$$a_t(G) \leq \frac{1+\ln(k+1)}{k+1}n$$
, since $a_t(G) \leq \gamma(G)$.

Conj. For random graphs,

$$\exists c$$
 such that $p_n \ge \sqrt{\frac{c \ln n}{n}} \Rightarrow \text{almost always } a_t(G) = 1.$

$$\exists c$$
 such that $p_n \le c/n \Rightarrow \text{almost always } a_t(G) = \Theta(n)$.

Conj. For almost all trees, $a_t(T) = \Theta(n)$.

Ques. What is the maximum of $a_t(G)$ when G is a connected n-vertex graph with minimum degree k?

Always
$$a_t(G) \leq \frac{1+\ln(k+1)}{k+1}n$$
, since $a_t(G) \leq \gamma(G)$.

For k = 2, we know $a_t(C_n) = \lceil n/4 \rceil$, but another construction has a larger value.

Conj. For random graphs,

$$\exists c$$
 such that $p_n \ge \sqrt{\frac{c \ln n}{n}} \Rightarrow \text{almost always } a_t(G) = 1.$

$$\exists c$$
 such that $p_n \le c/n \Rightarrow \text{almost always } a_t(G) = \Theta(n)$.

Conj. For almost all trees, $a_t(T) = \Theta(n)$.

Ques. What is the maximum of $a_t(G)$ when G is a connected n-vertex graph with minimum degree k?

Always
$$a_t(G) \leq \frac{1+\ln(k+1)}{k+1}n$$
, since $a_t(G) \leq \gamma(G)$.

For k = 2, we know $a_t(C_n) = \lceil n/4 \rceil$, but another construction has a larger value.

For a binary tree with triangles appended at the leaves, $\delta(G) = 2$ but $a_t(G) > (\frac{1}{4} + \frac{1}{1024})n$.

Def. An ascending tree is a rooted tree such that each leaf has weight at most that of its neighbor, and other weights strictly increase along paths to the root.

Def. An ascending tree is a rooted tree such that each leaf has weight at most that of its neighbor, and other weights strictly increase along paths to the root.

Lem. All weight in an ascending tree can be acquired to the root by unit acquisition moves.

Def. An ascending tree is a rooted tree such that each leaf has weight at most that of its neighbor, and other weights strictly increase along paths to the root.

Lem. All weight in an ascending tree can be acquired to the root by unit acquisition moves.

Def. An ascending tree is a rooted tree such that each leaf has weight at most that of its neighbor, and other weights strictly increase along paths to the root.

Lem. All weight in an ascending tree can be acquired to the root by unit acquisition moves.

Def. An ascending tree is a rooted tree such that each leaf has weight at most that of its neighbor, and other weights strictly increase along paths to the root.

Lem. All weight in an ascending tree can be acquired to the root by unit acquisition moves.

Def. An ascending tree is a rooted tree such that each leaf has weight at most that of its neighbor, and other weights strictly increase along paths to the root.

Lem. All weight in an ascending tree can be acquired to the root by unit acquisition moves.

Def. An ascending tree is a rooted tree such that each leaf has weight at most that of its neighbor, and other weights strictly increase along paths to the root.

Lem. All weight in an ascending tree can be acquired to the root by unit acquisition moves.

Pf. One unit can be moved from any leaf to the root.

Thm. $a_u(T) = 1 \Leftrightarrow$ an ascending tree can be produced.

• $\max a_t(T) = \Theta(\sqrt{n \lg n}).$

• $\max a_t(T) = \Theta(\sqrt{n \lg n}).$

Thm. For trees of diameter 4, $\max a_u(T) = |\sqrt{n-1}|$.

• $\max a_t(T) = \Theta(\sqrt{n \lg n}).$

Thm. For trees of diameter 4, $\max a_u(T) = |\sqrt{n-1}|$.

Pf. Upper Bd: If $d(u) \le \sqrt{n-1}$, then N(u) absorbs all.

• $\max a_t(T) = \Theta(\sqrt{n \lg n}).$

Thm. For trees of diameter 4, $\max a_u(T) = |\sqrt{n-1}|$.

Pf. Upper Bd: If $d(u) \le \sqrt{n-1}$, then N(u) absorbs all.

Else $\exists x \in N(u)$ with $d(x) < \sqrt{n-1}$. Moving $x \to u$ makes an ascending tree omitting $< \lfloor \sqrt{n-1} \rfloor$ chips.

• $\max a_t(T) = \Theta(\sqrt{n \lg n}).$

Thm. For trees of diameter 4, $\max a_u(T) = |\sqrt{n-1}|$.

Pf. Upper Bd: If $d(u) \le \sqrt{n-1}$, then N(u) absorbs all.

Else $\exists x \in N(u)$ with $d(x) < \sqrt{n-1}$. Moving $x \to u$ makes an ascending tree omitting $< \lfloor \sqrt{n-1} \rfloor$ chips.

Lower Bound: Make tree with d(u) = m and d(v) = m for $v \in N(u)$, so $n = m^2 + 1$. The first move involving u makes at least m components with positive weight.

• If $\delta(G) = k$, then $a_t(G) \le \gamma(G) \le \frac{1 + \ln(k+1)}{k+1} n$.

• If $\delta(G) = k$, then $\alpha_t(G) \le \gamma(G) \le \frac{1 + \ln(k+1)}{k+1} n$.

Thm. If $\delta(G) = k$, then $\alpha_u(G) \leq \frac{1}{k}n$.

• If $\delta(G) = k$, then $a_t(G) \le \gamma(G) \le \frac{1 + \ln(k+1)}{k+1} n$.

Thm. If $\delta(G) = k$, then $a_u(G) \le \frac{1}{k}n$.

Pf. Idea: Partition V(G) into trees of diameter 4; acquire to 1/k of the vertices in each tree.

• If $\delta(G) = k$, then $a_t(G) \le \gamma(G) \le \frac{1 + \ln(k+1)}{k+1} n$.

Thm. If
$$\delta(G) = k$$
, then $a_u(G) \le \frac{1}{k}n$.

Pf. Idea: Partition V(G) into trees of diameter 4; acquire to 1/k of the vertices in each tree.

• (Lampert–Slater [1995]) $\alpha_t(G) \ge n/2^{\Delta(G)}$, since the weight of vertex ν can never exceed $2^{d(\nu)}$.

• If $\delta(G) = k$, then $a_t(G) \le \gamma(G) \le \frac{1 + \ln(k+1)}{k+1} n$.

Thm. If
$$\delta(G) = k$$
, then $a_u(G) \leq \frac{1}{k}n$.

Pf. Idea: Partition V(G) into trees of diameter 4; acquire to 1/k of the vertices in each tree.

- (Lampert–Slater [1995]) $\alpha_t(G) \ge n/2^{\Delta(G)}$, since the weight of vertex ν can never exceed $2^{d(\nu)}$.
- Max vertex weight reachable under unit acquisition:

$$\Delta(G) \rightarrow 1$$
 2 3 4 5 max wt \rightarrow 1 4 10 239 ???

• If $\delta(G) = k$, then $a_t(G) \le \gamma(G) \le \frac{1 + \ln(k+1)}{k+1} n$.

Thm. If
$$\delta(G) = k$$
, then $a_u(G) \le \frac{1}{k}n$.

Pf. Idea: Partition V(G) into trees of diameter 4; acquire to 1/k of the vertices in each tree.

- (Lampert–Slater [1995]) $a_t(G) \ge n/2^{\Delta(G)}$, since the weight of vertex ν can never exceed $2^{d(\nu)}$.
- Max vertex weight reachable under unit acquisition:

$$\Delta(G) \rightarrow 1$$
 2 3 4 5 max wt \rightarrow 1 4 10 239 ???

Thm. (Wenger) There is an infinite family of trees with maximum degree 5 and unit acquisition number 1.

• Conj: $a_t(G) \le 2$ when G has diameter 2.

• Conj: $a_t(G) \le 2$ when G has diameter 2.

Thm. (Wenger) If $\operatorname{diam} G = 2$ and G is not C_5 or the Petersen graph, then $a_u(G) = 1$.

• Conj: $a_t(G) \le 2$ when G has diameter 2.

Thm. (Wenger) If $\operatorname{diam} G = 2$ and G is not C_5 or the Petersen graph, then $\alpha_u(G) = 1$.

Pf. (Idea) In each of several cases depending on neighborhoods within a largest clique, a few moves create an ascending tree on the remaining vertices.

• Conj: $a_t(G) \le 2$ when G has diameter 2.

Thm. (Wenger) If $\operatorname{diam} G = 2$ and G is not C_5 or the Petersen graph, then $\alpha_u(G) = 1$.

Pf. (Idea) In each of several cases depending on neighborhoods within a largest clique, a few moves create an ascending tree on the remaining vertices.

Open Problems:

Diameter 2

• Conj: $a_t(G) \le 2$ when G has diameter 2.

Thm. (Wenger) If $\operatorname{diam} G = 2$ and G is not C_5 or the Petersen graph, then $\alpha_u(G) = 1$.

Pf. (Idea) In each of several cases depending on neighborhoods within a largest clique, a few moves create an ascending tree on the remaining vertices.

Open Problems:

• Find $\max(a_u(G))$ when |V(G)| = n and $\delta(G) = k$.

Diameter 2

• Conj: $a_t(G) \le 2$ when G has diameter 2.

Thm. (Wenger) If $\operatorname{diam} G = 2$ and G is not C_5 or the Petersen graph, then $\alpha_u(G) = 1$.

Pf. (Idea) In each of several cases depending on neighborhoods within a largest clique, a few moves create an ascending tree on the remaining vertices.

Open Problems:

- Find $\max(a_u(G))$ when |V(G)| = n and $\delta(G) = k$.
- Characterize the trees with $a_u(T) = 1$. (We think we know which caterpillars work.)

Diameter 2

• Conj: $a_t(G) \le 2$ when G has diameter 2.

Thm. (Wenger) If $\operatorname{diam} G = 2$ and G is not C_5 or the Petersen graph, then $a_u(G) = 1$.

Pf. (Idea) In each of several cases depending on neighborhoods within a largest clique, a few moves create an ascending tree on the remaining vertices.

Open Problems:

- Find $\max(a_u(G))$ when |V(G)| = n and $\delta(G) = k$.
- Characterize the trees with $a_u(T) = 1$. (We think we know which caterpillars work.)
- What is the complexity of recognizing $a_u(G) = 1$?

Fractional Acquisition

• Always $a_f(G) \le a_u(G) \le a_t(G)$, but $a_f(P_n) = a_u(P_n) = a_t(P_n) = \lceil n/4 \rceil$. (Same values for C_n .)

Fractional Acquisition

• Always $a_f(G) \le a_u(G) \le a_t(G)$, but $a_f(P_n) = a_u(P_n) = a_t(P_n) = \lceil n/4 \rceil$. (Same values for C_n .)

Ex. Fractional moves may help: In the graph below, $a_u(G) = a_t(G) = 2$ (no ascending tree can be made).

Fractional Acquisition

• Always $a_f(G) \le a_u(G) \le a_t(G)$, but $a_f(P_n) = a_u(P_n) = a_t(P_n) = \lceil n/4 \rceil$. (Same values for C_n .)

Ex. Fractional moves may help: In the graph below, $a_u(G) = a_t(G) = 2$ (no ascending tree can be made).

Fractional moves create an ascending tree: $a_f(G) = 1$.

• If *G* is a path or cycle, then $a_f(G) = \lceil n/4 \rceil$.

- If *G* is a path or cycle, then $a_f(G) = \lceil n/4 \rceil$.
- Otherwise, $\Delta(G) \geq 3$.

- If *G* is a path or cycle, then $a_f(G) = \lceil n/4 \rceil$.
- Otherwise, $\Delta(G) \geq 3$.

Thm. (Wenger) $\Delta(G) \geq 3$ and connected

- If *G* is a path or cycle, then $a_f(G) = \lceil n/4 \rceil$.
- Otherwise, $\Delta(G) \geq 3$.

Thm. (Wenger) $\Delta(G) \ge 3$ and connected $\Rightarrow \alpha_f(G) = 1$.

- If G is a path or cycle, then $a_f(G) = \lceil n/4 \rceil$.
- Otherwise, $\Delta(G) \geq 3$.

Thm. (Wenger) $\Delta(G) \ge 3$ and connected $\Rightarrow a_f(G) = 1$.

Main Steps:

1) New model: make all initial weights 0, require integer moves, and allow negative weights.

- If G is a path or cycle, then $a_f(G) = \lceil n/4 \rceil$.
- Otherwise, $\Delta(G) \geq 3$.

Thm. (Wenger) $\Delta(G) \ge 3$ and connected $\Rightarrow a_f(G) = 1$.

Main Steps:

1) New model: make all initial weights 0, require integer moves, and allow negative weights.

- If G is a path or cycle, then $a_f(G) = \lceil n/4 \rceil$.
- Otherwise, $\Delta(G) \geq 3$.

Thm. (Wenger) $\Delta(G) \ge 3$ and connected $\Rightarrow a_f(G) = 1$.

Main Steps:

1) New model: make all initial weights 0, require integer moves, and allow negative weights.

2) An ascending tree can be normalized: divide by the largest magnitude of weight ever used in the process and add 1. The corresponding fractional moves in the original problem produce an ascending tree.

- If G is a path or cycle, then $a_f(G) = \lceil n/4 \rceil$.
- Otherwise, $\Delta(G) \geq 3$.

Thm. (Wenger) $\Delta(G) \geq 3$ and connected $\Rightarrow a_f(G) = 1$.

Main Steps:

1) New model: make all initial weights 0, require integer moves, and allow negative weights.

- 2) An ascending tree can be normalized: divide by the largest magnitude of weight ever used in the process and add 1. The corresponding fractional moves in the original problem produce an ascending tree.
- 3) Inductively produce an ascending tree in this model.

Def. (Slater–Wang [2004]) Min and Max alternate total acquisition moves, aiming to minimize or maximize the final set. The game acquisition number $a_g(G)$ is the result when Min starts ($\hat{a}_g(G)$) when Max starts).

Def. (Slater–Wang [2004]) Min and Max alternate total acquisition moves, aiming to minimize or maximize the final set. The game acquisition number $a_g(G)$ is the result when Min starts ($\hat{a}_g(G)$) when Max starts).

Thm. (Slater–Wang [2004] $a_g(P_n) = 2n/5$.

Def. (Slater–Wang [2004]) Min and Max alternate total acquisition moves, aiming to minimize or maximize the final set. The game acquisition number $a_g(G)$ is the result when Min starts ($\hat{a}_g(G)$ when Max starts).

Thm. (Slater–Wang [2004] $a_g(P_n) = 2n/5$.

Ex. Who moves first?: $a_g(K_{1,q}) = 1$, but $\hat{a}_g(K_{1,q}) = q$.

Def. (Slater–Wang [2004]) Min and Max alternate total acquisition moves, aiming to minimize or maximize the final set. The game acquisition number $a_g(G)$ is the result when Min starts ($\hat{a}_g(G)$ when Max starts).

Thm. (Slater–Wang [2004] $a_g(P_n) = 2n/5$.

Ex. Who moves first?: $a_g(K_{1,q}) = 1$, but $\hat{a}_g(K_{1,q}) = q$.

Ex. For the tree T below, $a_g(T) \approx 2n/3$. Max first kills one end of the spine and combines the two remaining spine vertices in the second round.

Def. (Slater–Wang [2004]) Min and Max alternate total acquisition moves, aiming to minimize or maximize the final set. The game acquisition number $a_g(G)$ is the result when Min starts ($\hat{a}_g(G)$ when Max starts).

Thm. (Slater–Wang [2004] $a_g(P_n) = 2n/5$.

Ex. Who moves first?: $a_g(K_{1,q}) = 1$, but $\hat{a}_g(K_{1,q}) = q$.

Ex. For the tree T below, $a_g(T) \approx 2n/3$.

Max first kills one end of the spine and combines the two remaining spine vertices in the second round.

Ques. What is $\max \alpha_q(T)$ among *n*-vertex trees?

Fix $1 \le m \le n$, partite sets X, Y with |X| = m, |Y| = n.

Fix $1 \le m \le n$, partite sets X, Y with |X| = m, |Y| = n. Upper bd = Min strategy; Lower bd = Max strategy.

Thm. $\hat{a}_q(K_{m,n}) = n - m + 1$. (Max-start)

Thm.
$$\hat{a}_q(K_{m,n}) = n - m + 1$$
. (Max-start)

Thm.
$$a_g(K_{m,n}) \le \left| \frac{n-m}{3} \right| + 2$$
. (Min strategy)

Fix $1 \le m \le n$, partite sets X, Y with |X| = m, |Y| = n. Upper bd = Min strategy; Lower bd = Max strategy.

Thm.
$$\hat{a}_g(K_{m,n}) = n - m + 1.$$
 (Max-start)

Thm.
$$a_g(K_{m,n}) \le \left\lfloor \frac{n-m}{3} \right\rfloor + 2$$
. (Min strategy)

(Equality for n-m small; in particular, $\alpha_g(K_{n,n})=2$.)

Thm.
$$\hat{a}_q(K_{m,n}) = n - m + 1.$$
 (Max-start)

Thm.
$$a_g(K_{m,n}) \le \left\lfloor \frac{n-m}{3} \right\rfloor + 2$$
. (Min strategy) (Equality for $n-m$ small; in particular, $a_g(K_{n,n}) = 2$.)

Thm.
$$a_g(K_{m,n}) \le 2 \log_{3/2} m + 18$$
. (Min strategy)

Thm.
$$\hat{a}_q(K_{m,n}) = n - m + 1.$$
 (Max-start)

Thm.
$$a_g(K_{m,n}) \le \left\lfloor \frac{n-m}{3} \right\rfloor + 2$$
. (Min strategy) (Equality for $n-m$ small; in particular, $a_g(K_{n,n}) = 2$.)

Thm.
$$a_g(K_{m,n}) \le 2 \log_{3/2} m + 18$$
. (Min strategy)
(Max ensures at least $\log_2 m - c$ for $n - m$ large.)

Thm.
$$\hat{a}_g(K_{m,n}) = n - m + 1.$$
 (Max-start)

Thm.
$$a_g(K_{m,n}) \le \left\lfloor \frac{n-m}{3} \right\rfloor + 2$$
. (Min strategy) (Equality for $n-m$ small; in particular, $a_g(K_{n,n}) = 2$.)

Thm.
$$a_g(K_{m,n}) \le 2 \log_{3/2} m + 18$$
. (Min strategy) (Max ensures at least $\log_2 m - c$ for $n - m$ large.)

Ques. Note that
$$a_g(K_{n,n}) = 2$$
 but $\hat{a}_g(K_{n,n}) = 1$.

Fix $1 \le m \le n$, partite sets X, Y with |X| = m, |Y| = n. Upper bd = Min strategy; Lower bd = Max strategy.

Thm.
$$\hat{a}_q(K_{m,n}) = n - m + 1$$
. (Max-start)

Thm.
$$a_g(K_{m,n}) \le \left\lfloor \frac{n-m}{3} \right\rfloor + 2$$
. (Min strategy) (Equality for $n-m$ small; in particular, $a_g(K_{n,n}) = 2$.)

Thm.
$$a_g(K_{m,n}) \le 2 \log_{3/2} m + 18$$
. (Min strategy) (Max ensures at least $\log_2 m - c$ for $n - m$ large.)

Ques. Note that
$$a_g(K_{n,n}) = 2$$
 but $\hat{a}_g(K_{n,n}) = 1$.

When is $a_g(G) - \hat{a}_g(G)$ positive? How big can it be?

Live vertices are pawns (wt = 1) or kings (wt > 1).

Live vertices are pawns (wt = 1) or kings (wt > 1).

Lem. Suppose X has p pawns (only) and Y has s pawns and t kings, with $t \ge 1$ and $s \ge p$. If Min moves next, then Max can ensure $\ge s+t-p$ live vertices at the end.

Live vertices are pawns (wt = 1) or kings (wt > 1).

Lem. Suppose X has p pawns (only) and Y has s pawns and t kings, with $t \ge 1$ and $s \ge p$. If Min moves next, then Max can ensure $\ge s+t-p$ live vertices at the end.

Pf. Induction on p. If p = 0, the game is over.

Live vertices are pawns (wt = 1) or kings (wt > 1).

Lem. Suppose X has p pawns (only) and Y has s pawns and t kings, with $t \ge 1$ and $s \ge p$. If Min moves next, then Max can ensure $\ge s+t-p$ live vertices at the end.

Pf. Induction on p. If p = 0, the game is over. For p > 0, note that X has no king.

Live vertices are pawns (wt = 1) or kings (wt > 1).

Lem. Suppose X has p pawns (only) and Y has s pawns and t kings, with $t \ge 1$ and $s \ge p$. If Min moves next, then Max can ensure $\ge s+t-p$ live vertices at the end.

Pf. Induction on p. If p = 0, the game is over. For p > 0, note that X has no king.

- (1) If Min makes a king in X, then Max absorbs it into Y.
- (2) If Min absorbs a pawn into Y, then Max does also.

Live vertices are pawns (wt = 1) or kings (wt > 1).

Lem. Suppose X has p pawns (only) and Y has s pawns and t kings, with $t \ge 1$ and $s \ge p$. If Min moves next, then Max can ensure $\ge s+t-p$ live vertices at the end.

Pf. Induction on p. If p = 0, the game is over. For p > 0, note that X has no king.

- (1) If Min makes a king in X, then Max absorbs it into Y.
- (2) If Min absorbs a pawn into Y, then Max does also.

A round leaves no king in X, reduces p, and does not reduce t or s-p. The induction hypothesis applies.

Live vertices are pawns (wt = 1) or kings (wt > 1).

Lem. Suppose X has p pawns (only) and Y has s pawns and t kings, with $t \ge 1$ and $s \ge p$. If Min moves next, then Max can ensure $\ge s+t-p$ live vertices at the end.

Pf. Induction on p. If p = 0, the game is over. For p > 0, note that X has no king.

- (1) If Min makes a king in X, then Max absorbs it into Y.
- (2) If Min absorbs a pawn into Y, then Max does also.

A round leaves no king in X, reduces p, and does not reduce t or s-p. The induction hypothesis applies.

Thm.
$$\hat{a}_q(K_{m,n}) \ge n - m + 1$$
.

Live vertices are pawns (wt = 1) or kings (wt > 1).

Lem. Suppose X has p pawns (only) and Y has s pawns and t kings, with $t \ge 1$ and $s \ge p$. If Min moves next, then Max can ensure $\ge s+t-p$ live vertices at the end.

Pf. Induction on p. If p = 0, the game is over. For p > 0, note that X has no king.

- (1) If \underline{Min} makes a king in X, then \underline{Max} absorbs it into Y.
- (2) If Min absorbs a pawn into Y, then Max does also.

A round leaves no king in X, reduces p, and does not reduce t or s-p. The induction hypothesis applies.

Thm. $\hat{a}_g(K_{m,n}) \ge n - m + 1$.

Pf. Max makes a king in *Y*: t = 1, p = m - 1, s = n - 1.

Lem. Given: p pawns and q kings in X, s pawns and t kings in Y, q, $t \ge 1$ and $s \ge p$. Let $r = \max\{0, s - p - q + 1\}$. If Max moves next, then Min ensures ending with $\le \max\{q, t + r\}$ live vertices.

Lem. Given: p pawns and q kings in X, s pawns and t kings in Y, q, $t \ge 1$ and $s \ge p$. Let $r = \max\{0, s - p - q + 1\}$. If Max moves next, then Min ensures ending with $\le \max\{q, t + r\}$ live vertices.

Pf. Induction on p. For p = 0, Min absorbs pawns from Y into kings in X. Game ends in X with $\leq q$ kings or in Y with $\leq t$ kings and $\leq r$ pawns.

Lem. Given: p pawns and q kings in X, s pawns and t kings in Y, q, $t \ge 1$ and $s \ge p$. Let $r = \max\{0, s - p - q + 1\}$. If Max moves next, then Min ensures ending with $\le \max\{q, t + r\}$ live vertices.

Pf. Induction on p. For p = 0, Min absorbs pawns from Y into kings in X. Game ends in X with $\leq q$ kings or in Y with $\leq t$ kings and $\leq r$ pawns. For p > 0, Min plays:

Lem. Given: p pawns and q kings in X, s pawns and t kings in Y, q, $t \ge 1$ and $s \ge p$. Let $r = \max\{0, s - p - q + 1\}$. If Max moves next, then Min ensures ending with $\le \max\{q, t + r\}$ live vertices.

Pf. Induction on p. For p=0, Min absorbs pawns from Y into kings in X. Game ends in X with $\leq q$ kings or in Y with $\leq t$ kings and $\leq r$ pawns. For p>0, Min plays:

- (1) If Max creates a king, then Min absorbs it.
- (2) If Max absorbs a king, then Min replaces it.
- (3) If Max absorbs a pawn by a king, then Min does also.

Lem. Given: p pawns and q kings in X, s pawns and t kings in Y, q, $t \ge 1$ and $s \ge p$. Let $r = \max\{0, s - p - q + 1\}$. If Max moves next, then Min ensures ending with $\le \max\{q, t + r\}$ live vertices.

Pf. Induction on p. For p = 0, Min absorbs pawns from Y into kings in X. Game ends in X with $\leq q$ kings or in Y with $\leq t$ kings and $\leq r$ pawns. For p > 0, Min plays:

- (1) If Max creates a king, then Min absorbs it.
- (2) If Max absorbs a king, then Min replaces it.
- (3) If Max absorbs a pawn by a king, then Min does also.

A round reduces p, s by 1 and does not change q, t.

Lem. Given: p pawns and q kings in X, s pawns and t kings in Y, q, $t \ge 1$ and $s \ge p$. Let $r = \max\{0, s - p - q + 1\}$. If Max moves next, then Min ensures ending with $\le \max\{q, t + r\}$ live vertices.

Pf. Induction on p. For p=0, Min absorbs pawns from Y into kings in X. Game ends in X with $\leq q$ kings or in Y with $\leq t$ kings and $\leq r$ pawns. For p>0, Min plays:

- (1) If Max creates a king, then Min absorbs it.
- (2) If Max absorbs a king, then Min replaces it.
- (3) If Max absorbs a pawn by a king, then Min does also.

A round reduces p, s by 1 and does not change q, t.

Thm. $\hat{a}_q(K_{m,n}) \le n - m + 1$.

Lem. Given: p pawns and q kings in X, s pawns and t kings in Y, q, $t \ge 1$ and $s \ge p$. Let $r = \max\{0, s - p - q + 1\}$. If Max moves next, then Min ensures ending with $\le \max\{q, t + r\}$ live vertices.

Pf. Induction on p. For p=0, Min absorbs pawns from Y into kings in X. Game ends in X with $\leq q$ kings or in Y with $\leq t$ kings and $\leq r$ pawns. For p>0, Min plays:

- (1) If Max creates a king, then Min absorbs it.
- (2) If Max absorbs a king, then Min replaces it.
- (3) If Max absorbs a pawn by a king, then Min does also.

A round reduces p, s by 1 and does not change q, t.

Thm.
$$\hat{a}_{q}(K_{m,n}) \leq n - m + 1$$
.

Pf. Max initially makes a king; Min makes a king on the other side. Now q = t = 1, p = m - 2, s = n - 2.

Thm. $a_q(K_{n,n}) = 2$.

Thm. $a_q(K_{n,n}) = 2$.

Pf. Min initially makes a king.

Thm.
$$a_g(K_{n,n}) = 2$$
.

Pf. Min initially makes a king.

Lower Bound: Max makes a king on the same side.

The Max-strategy Lemma applies:

$$s+t-p = (n-2)+2-(n-2).$$

Thm.
$$a_g(K_{n,n}) = 2$$
.

Pf. Min initially makes a king.

Lower Bound: Max makes a king on the same side.

The Max-strategy Lemma applies:

$$s+t-p = (n-2)+2-(n-2).$$

Upper Bound: Max makes another king or absorbs a pawn. Min ensures that each side has a king. Applying the Min-strategy Lemma, $\max\{q, t+(s-p-q+1)\}$ is $\max\{2, 1+(-2+1)\}$ or $\max\{1, 1+(1-1+1)\}$.

Thm.
$$a_g(K_{n,n}) = 2$$
.

Pf. Min initially makes a king.

Lower Bound: Max makes a king on the same side.

The Max-strategy Lemma applies:

$$s+t-p = (n-2)+2-(n-2).$$

Upper Bound: Max makes another king or absorbs a pawn. Min ensures that each side has a king. Applying the Min-strategy Lemma, $\max\{q, t+(s-p-q+1)\}$ is $\max\{2, 1+(-2+1)\}$ or $\max\{1, 1+(1-1+1)\}$.

Idea of general upper bound:

After first making a king in X, Min can absorb any kings made by Max in Y to achieve $a_g(K_{m,n}) \leq m$.

Thm.
$$a_g(K_{n,n}) = 2$$
.

Pf. Min initially makes a king.

Lower Bound: Max makes a king on the same side.

The Max-strategy Lemma applies:

$$s+t-p = (n-2)+2-(n-2).$$

Upper Bound: Max makes another king or absorbs a pawn. Min ensures that each side has a king. Applying the Min-strategy Lemma, $\max\{q, t+(s-p-q+1)\}$ is $\max\{2, 1+(-2+1)\}$ or $\max\{1, 1+(1-1+1)\}$.

Idea of general upper bound:

After first making a king in X, Min can absorb any kings made by Max in Y to achieve $a_q(K_{m,n}) \leq m$.

Better: Min creates q kings in X to employ the bound $\max\{q, t+(s-p-q+1)\}$ in the Min-strategy Lemma.

Thm. $a_g(K_{m,n}) \leq \left\lfloor \frac{n-m}{3} \right\rfloor + 2.$

Thm.
$$a_g(K_{m,n}) \le \left| \frac{n-m}{3} \right| + 2.$$

Pf. Min first makes a king in X. While X has at most $\left\lceil \frac{n-m}{3} \right\rceil$ kings, Min plays this, never leaving a king in Y:

Thm.
$$a_g(K_{m,n}) \leq \left\lfloor \frac{n-m}{3} \right\rfloor + 2.$$

- **Pf.** Min first makes a king in X. While X has at most $\left\lceil \frac{n-m}{3} \right\rceil$ kings, Min plays this, never leaving a king in Y:
- (1) If Max makes a king in Y, then Min absorbs it to X.
- (2) If Max makes a king in X, then Min adds a pawn to it.
- (3) If Max adds a pawn from Y to a king in X, then Min makes another king in X.

Thm.
$$a_g(K_{m,n}) \leq \left\lfloor \frac{n-m}{3} \right\rfloor + 2$$
.

- **Pf.** Min first makes a king in X. While X has at most $\left\lceil \frac{n-m}{3} \right\rceil$ kings, Min plays this, never leaving a king in Y:
- (1) If Max makes a king in Y, then Min absorbs it to X.
- (2) If Max makes a king in X, then Min adds a pawn to it.
- (3) If Max adds a pawn from Y to a king in X, then Min makes another king in X.

Each round takes one pawn from each side, plus an extra pawn from Y for each king made in X.

Thm.
$$a_g(K_{m,n}) \leq \left\lfloor \frac{n-m}{3} \right\rfloor + 2$$
.

- **Pf.** Min first makes a king in X. While X has at most $\left\lceil \frac{n-m}{3} \right\rceil$ kings, Min plays this, never leaving a king in Y:
- (1) If Max makes a king in Y, then Min absorbs it to X.
- (2) If Max makes a king in X, then Min adds a pawn to it.
- (3) If Max adds a pawn from Y to a king in X, then Min makes another king in X.

Each round takes one pawn from each side, plus an extra pawn from Y for each king made in X.

When X has $\left\lceil \frac{n-m}{3} \right\rceil + 1$ kings, Min makes a king in Y. With Max to move, the Min-strategy Lemma applies with $q = \left\lceil \frac{n-m}{3} \right\rceil + 1$, t = 1, and $s - p \le (n-m) - (q-2)$.

Thm.
$$a_g(K_{m,n}) \leq \left\lfloor \frac{n-m}{3} \right\rfloor + 2$$
.

- **Pf.** Min first makes a king in X. While X has at most $\left\lceil \frac{n-m}{3} \right\rceil$ kings, Min plays this, never leaving a king in Y:
- (1) If Max makes a king in Y, then Min absorbs it to X.
- (2) If Max makes a king in X, then Min adds a pawn to it.
- (3) If Max adds a pawn from Y to a king in X, then Min makes another king in X.

Each round takes one pawn from each side, plus an extra pawn from Y for each king made in X.

When X has $\left\lceil \frac{n-m}{3} \right\rceil + 1$ kings, Min makes a king in Y. With Max to move, the Min-strategy Lemma applies with $q = \left\lceil \frac{n-m}{3} \right\rceil + 1$, t = 1, and $s - p \le (n-m) - (q-2)$.

Thus Min ensures at most $\max\{q, t + (n-m) - 2q + 3\}$ live vertices, i.e., at most $\left|\frac{n-m}{3}\right| + 2$.

Idea: Min introduces a temporary king into Y to absorb some kings from X, making sure it does not get heavy.

Idea: Min introduces a temporary king into Y to absorb some kings from X, making sure it does not get heavy.

Def. \hat{x} and \hat{y} are currently heaviest vertices in X and Y. w(v) is the current weight of v.

Idea: Min introduces a temporary king into Y to absorb some kings from X, making sure it does not get heavy.

Def. \hat{x} and \hat{y} are currently heaviest vertices in X and Y. w(v) is the current weight of v.

A Min move is safe if it leaves $w(\hat{x}) \ge 2w(\hat{y})$ and at most one king in Y. (The initial Min move is safe.)

Idea: Min introduces a temporary king into Y to absorb some kings from X, making sure it does not get heavy.

Def. \hat{x} and \hat{y} are currently heaviest vertices in X and Y. w(v) is the current weight of v.

A Min move is safe if it leaves $w(\hat{x}) \ge 2w(\hat{y})$ and at most one king in Y. (The initial Min move is safe.)

- **Algorithm:** (until Y has no king and X has no pawn) (1) If Max makes a king in Y or $w(\hat{x}) < 2(w(\hat{y}) + 2)$, then Min absorbs \hat{y} into \hat{x} .
- (2) If Max doesn't make king in Y and $w(\hat{x}) \ge 2(w(\hat{y})+2)$, then Min absorbs into \hat{y} a king of weight 2 or a pawn.

Idea: Min introduces a temporary king into Y to absorb some kings from X, making sure it does not get heavy.

Def. \hat{x} and \hat{y} are currently heaviest vertices in X and Y. w(v) is the current weight of v.

A Min move is safe if it leaves $w(\hat{x}) \ge 2w(\hat{y})$ and at most one king in Y. (The initial Min move is safe.)

Algorithm: (until Y has no king and X has no pawn) (1) If Max makes a king in Y or $w(\hat{x}) < 2(w(\hat{y}) + 2)$, then Min absorbs \hat{y} into \hat{x} .

(2) If Max doesn't make king in Y and $w(\hat{x}) \ge 2(w(\hat{y})+2)$, then Min absorbs into \hat{y} a king of weight 2 or a pawn.

Thm. $a_g(K_{m,n}) \le 2 \log_{3/2} m + 18$.

Def. \hat{x} and \hat{y} are currently heaviest vertices in X and Y. w(v) is the current weight of v.

A Min move is safe if it leaves $w(\hat{x}) \ge 2w(\hat{y})$ and at most one king in Y. (The initial Min move is safe.)

Algorithm: (until Y has no king and X has no pawn)

- (1) If Max makes a king in Y or $w(\hat{x}) < 2(w(\hat{y}) + 2)$, then Min absorbs \hat{y} into \hat{x} .
- (2) If Max doesn't make king in Y and $w(\hat{x}) \ge 2(w(\hat{y})+2)$, then Min absorbs into \hat{y} a king of weight 2 or a pawn.

Thm. $a_g(K_{m,n}) \le 2 \log_{3/2} m + 18$.

Step 1: Min moves are safe, and the game ends in X.

Def. \hat{x} and \hat{y} are currently heaviest vertices in X and Y. w(v) is the current weight of v.

A Min move is safe if it leaves $w(\hat{x}) \ge 2w(\hat{y})$ and at most one king in Y. (The initial Min move is safe.)

Algorithm: (until Y has no king and X has no pawn)

- (1) If Max makes a king in Y or $w(\hat{x}) < 2(w(\hat{y}) + 2)$, then Min absorbs \hat{y} into \hat{x} .
- (2) If Max doesn't make king in Y and $w(\hat{x}) \ge 2(w(\hat{y})+2)$, then Min absorbs into \hat{y} a king of weight 2 or a pawn.

Thm. $a_q(K_{m,n}) \le 2 \log_{3/2} m + 18$.

Step 1: Min moves are safe, and the game ends in X.

Step 2: $q + \max\{0, p - s\}$ starts at 1, increases by at most 2 for each Type 1 move, and ends at |X|.

Def. \hat{x} and \hat{y} are currently heaviest vertices in X and Y. w(v) is the current weight of v.

A Min move is safe if it leaves $w(\hat{x}) \ge 2w(\hat{y})$ and at most one king in Y. (The initial Min move is safe.)

Algorithm: (until Y has no king and X has no pawn) (1) If Max makes a king in Y or $w(\hat{x}) < 2(w(\hat{y}) + 2)$,

then Min absorbs \hat{y} into \hat{x} .

(2) If Max doesn't make king in Y and $w(\hat{x}) \ge 2(w(\hat{y})+2)$, then Min absorbs into \hat{y} a king of weight 2 or a pawn.

Thm. $a_g(K_{m,n}) \le 2 \log_{3/2} m + 18$.

Step 1: Min moves are safe, and the game ends in X.

Step 2: $q + \max\{0, p - s\}$ starts at 1, increases by at most 2 for each Type 1 move, and ends at |X|.

Step 3: Each Type 1 move increases $w(\hat{x})$ by a factor of at least 3/2, and $w(\hat{x})$ cannot exceed 6m.

Idea: Max makes medium-weight kings in X.

Idea: Max makes medium-weight kings in X.

This keeps Min from absorbing them into Y and then X.

Idea: Max makes medium-weight kings in X.

This keeps Min from absorbing them into Y and then X. It also threatens to make \hat{y} heavier than \hat{x} , which would end the game in Y.

Idea: Max makes medium-weight kings in X.

This keeps Min from absorbing them into Y and then X. It also threatens to make \hat{y} heavier than \hat{x} , which would end the game in Y.

Def. At a given time, let $X^- = \{x \in X : 0 < w(x) \le \frac{1}{2}w(\hat{x})\},$ x' = a heaviest in X with $w(x') \le w(\hat{y}),$ y' = a heaviest in Y with $w(y') \le w(x)$ for some $x \in X^-$, $x^* = a$ lightest in X with $w(x^*) \ge w(y')$.

Idea: Max makes medium-weight kings in X.

This keeps Min from absorbing them into Y and then X. It also threatens to make \hat{y} heavier than \hat{x} , which would end the game in Y.

Def. At a given time, let $X^- = \{x \in X : 0 < w(x) \le \frac{1}{2}w(\hat{x})\},\ x' = \text{a heaviest in } X \text{ with } w(x') \le w(\hat{y}),\ y' = \text{a heaviest in } Y \text{ with } w(y') \le w(x) \text{ for some } x \in X^-,\ x^* = \text{a lightest in } X \text{ with } w(x^*) \ge w(y').$

While the vertices x', y', x^* exist, Max plays as follows:

Idea: Max makes medium-weight kings in X.

This keeps Min from absorbing them into Y and then X. It also threatens to make \hat{y} heavier than \hat{x} , which would end the game in Y.

```
Def. At a given time, let X^- = \{x \in X : 0 < w(x) \le \frac{1}{2}w(\hat{x})\}, x' = a heaviest in X with w(x') \le w(\hat{y}), y' = a heaviest in Y with w(y') \le w(x) for some x \in X^-, x^* = a lightest in X with w(x^*) \ge w(y').
```

While the vertices x', y', x^* exist, Max plays as follows:

- (1) If $w(x') + w(\hat{y}) \le w(\hat{x})$, then Max absorbs y' into x^* .
- (2) If $w(x') + w(\hat{y}) > w(\hat{x})$, then Max absorbs x' into \hat{y} .

Idea: Max makes medium-weight kings in X.

This keeps Min from absorbing them into Y and then X. It also threatens to make \hat{y} heavier than \hat{x} , which would end the game in Y.

```
Def. At a given time, let X^- = \{x \in X : 0 < w(x) \le \frac{1}{2}w(\hat{x})\}, x' = a heaviest in X with w(x') \le w(\hat{y}), y' = a heaviest in Y with w(y') \le w(x) for some x \in X^-, x^* = a lightest in X with w(x^*) \ge w(y').
```

While the vertices x', y', x^* exist, Max plays as follows:

- (1) If $w(x') + w(\hat{y}) \le w(\hat{x})$, then Max absorbs y' into x^* .
- (2) If $w(x') + w(\hat{y}) > w(\hat{x})$, then Max absorbs x' into \hat{y} .

The analysis is difficult!

References

- D.E. Lampert and P.J. Slater, The acquisition number of a graph, *Congr. Numer.* 109 (1995), 203–210.
- T.D. LeSaulnier and D.B. West, Acquisition-extremal graphs, *Discrete Applied Mathematics* 161 (2013), 1521–1529.
- T.D. LeSaulnier, N. Prince, P.S. Wenger, D.B. West, and P. Worah, Total acquisition in graphs, *SIAM J. Discrete Math.* 27 (2013), 1800–1819.
- D.C. McDonald, K.G. Milans, C.J. Stocker, D.B. West, and L. Wiglesworth, Game acquisition in graphs, preprint.
- N. Prince, P.S. Wenger, and D.B. West, Unit acquisition number, preprint (see Wenger thesis).
- P.J. Slater and Y. Wang, The competitive-acquisition numbers of paths, *Congr. Numer.* 167 (2004), 33–43.
- P.J. Slater and Y. Wang, Some results on acquisition numbers, *J. Combin. Math. Combin. Comput.* 64 (2008), 65–78.
- P.S. Wenger, Fractional acquisition in graphs, submitted.