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Model: People start with one vote. Some are friends.

A person can give his or her votes to a friend

if the friend has at least as many votes.

Can one person acquire all the votes?

Model: (Wenger) Each city starts with one regiment.

The troops in one city can withdraw to a neighboring

city if that city already has at least as many troops.

Can the troops be gathered in a single city?

Def. total aquisition move = transfer all weight from 

to a neighbor ; allowed if currently () ≤().

• End when { : () > 0} is an independent set.

Def. total aquisition number t(G) = min size of the

final indep. set when each vertex starts with weight 1.
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Alternative Models — Start with weight 1 on all.

Moving weight from  to  requires ()≥().
total acquisition: move all weight from  — t(G)

unit acquisition: move any integer amount — (G)

fractional acquisition: move any positive amt — ƒ (G)

game acquisition: move all weight, but two players Min

and Max alternate moves — g(G)
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nontrivial, then t(G) ≤ n+1
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Pf. Since H ⊆ G ⇒ t(H) ≥ t(G),
it suffices to prove the bound for trees.
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• View each initial unit of weight as a token or chip.

Lem. For total or unit acquisition, at most one chip can

pass through a vertex  of degree 2, and it must be the

chip from a neighbor.

• • • • • •


→


1 1 1 0 2 ?

Cor. If the , y-path in a tree has a vertex of degree 2

adjacent to neither  nor y, then the chips starting at 

and y cannot combine.

• The lower bounds on t that use these observation

apply also to .
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Construct T,m with  copies of P3,

path R of length 2m,

and m+ 1 pendant edges.

#vertices = 3+ 3m+ 2, #leaves = +m+ 1

diameter = 2m+ 4, maxdegree = + 2.

Prop. (LPWWW [2013]) t(T,m) = +m+ 1 =
n+1

3
.

Pf. Chips from marked vertices cannot combine.

Thm. For d ≥ 3 and k ≥ 6, there is a tree T with

Δ(T) = d, diamT ≥ k, and (T) = t(T) = |V(T)|+13
.
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• The graphs G such that (G) =
n+1

3
are precisely

those such that t(G) =
n+1
3
.
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What about diameter 4 and diameter 5?

Thm. For diameter 4 or 5, mxt(T) = Θ(
p

n lgn).

• When diam(T) = 5, delete the central edge and use

the result for trees of diameter 4.
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Complexity and t = 1

Trees with t(T) = 1 are recognizable in quadratic time

(Cai [1993]).

Thm. On trees, t(T) ≤ k is testable in time O(nk+1).

Pf. Try all sets of k − 1 edges to delete and form k

components. Test each for being a union tree.

Thm. (Lampert–Slater [1995]) Testing t(G) = 1 on

general graphs is NP-complete.

Sufficient Conditions for t(G) = 1:

• ∃ with d() ≥ n

2
such that N() is a dominating set.

• G is (n− 1)/2-regular.

Thm. If G 6= C5, then t(G) = 1 or t(G) = 1.

Thm. If G 6= C5 and d() + d() ≥ n− 1 whenever

 /∈ E(G), then t(G) = 1.
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Edge-deletion

Thm. If e ∈ E(G), then t(G− e) < t(G) + 7
p
n.

Thm. There exists a tree T with an edge e such that

t(T) = 1 and t(T − e) >
p
n/2.

Diameter 2

Thm. diamG = 2 ⇒ t(G) ≤ 250 lgn lg lgn.

Thm. diamG = 2 & C4 6⊆ G & Δ(G) ≥ 8 ⇒ t(G) = 1.

Conj. ∃ c such that diamG = 2 ⇒ t(G) ≤ c.

Perhaps c = 2. This suffices for Moore graphs, polarity

graphs, and graphs without 4-cycles.
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Conj. For random graphs,

∃ c such that pn ≥
Æ

c lnn
n
⇒ almost always t(G) = 1.

∃ c such that pn ≤ c/n ⇒ almost always t(G) = Θ(n).

Conj. For almost all trees, t(T) = Θ(n).

Ques. What is the maximum of t(G) when G is a

connected n-vertex graph with minimum degree k?

Always t(G) ≤ 1+ln(k+1)

k+1
n, since t(G) ≤ γ(G).

For k = 2, we know t(Cn) = ⌈n/4⌉, but another
construction has a larger value.

For a binary tree with triangles appended at the leaves,

δ(G) = 2 but t(G) > (
1

4
+

1

1024
)n.
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Def. An ascending tree is a rooted tree such that each

leaf has weight at most that of its neighbor, and other

weights strictly increase along paths to the root.

Lem. All weight in an ascending tree can be acquired

to the root by unit acquisition moves.

Pf. One unit can be moved from any leaf to the root.

•

•

•

•

•

•

•

•

1

1

2

0

1

3

1

1

→

•

•

•

•

•

•

•

•

0

1

2

0

1

4

1

1

Thm. (T)=1 ⇔ an ascending tree can be produced.
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Pf. Upper Bd: If d() ≤
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Lower Bound: Make tree with d() =m and d() =m

for  ∈ N(), so n =m2 + 1. The first move involving 

makes at least m components with positive weight.
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Degree Bounds

• If δ(G) = k, then t(G) ≤ γ(G) ≤ 1+ln(k+1)

k+1
n.

Thm. If δ(G) = k, then (G) ≤ 1

k
n.

Pf. Idea: Partition V(G) into trees of diameter 4;

acquire to 1/k of the vertices in each tree.

• (Lampert–Slater [1995]) t(G) ≥ n/2Δ(G),
since the weight of vertex  can never exceed 2d().

• Max vertex weight reachable under unit acquisition:

Δ(G)→ 1 2 3 4 5

mx wt→ 1 4 10 239 ???

Thm. (Wenger) There is an infinite family of trees with

maximum degree 5 and unit acquisition number 1.
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Diameter 2

• Conj: t(G) ≤ 2 when G has diameter 2.

Thm. (Wenger) If diamG = 2 and G is not C5 or the

Petersen graph, then (G) = 1.

Pf. (Idea) In each of several cases depending on

neighborhoods within a largest clique, a few moves

create an ascending tree on the remaining vertices.

Open Problems:

• Find mx((G)) when |V(G)| = n and δ(G) = k.

• Characterize the trees with (T) = 1.

(We think we know which caterpillars work.)

• What is the complexity of recognizing (G) = 1?
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• Always ƒ (G) ≤ (G) ≤ t(G), but
ƒ (Pn) = (Pn) = t(Pn) = ⌈n/4⌉. (Same values for Cn.)
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ƒ (Pn) = (Pn) = t(Pn) = ⌈n/4⌉. (Same values for Cn.)

Ex. Fractional moves may help: In the graph below,
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Fractional moves create an ascending tree: ƒ (G) = 1.
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Surprise!

• If G is a path or cycle, then ƒ (G) = ⌈n/4⌉.
• Otherwise, Δ(G) ≥ 3.

Thm. (Wenger) Δ(G) ≥3 and connected ⇒ ƒ (G) = 1.

Main Steps:

1) New model: make all initial weights 0, require

integer moves, and allow negative weights.

• • • • • • •
• ••−2

0 0 1 2 1 0 0

−1 −1

2) An ascending tree can be normalized: divide by the

largest magnitude of weight ever used in the process

and add 1. The corresponding fractional moves in the

original problem produce an ascending tree.

3) Inductively produce an ascending tree in this model.
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Game Acquisition

Def. (Slater–Wang [2004]) Min and Max alternate total

acquisition moves, aiming to minimize or maximize the

final set. The game acquisition number g(G) is the

result when Min starts (̂g(G) when Max starts).

Thm. (Slater–Wang [2004] g(Pn) = 2n/5.

Ex. Who moves first?: g(K1,q) = 1, but ̂g(K1,q) = q.

Ex. For the tree T below, g(T) ≈ 2n/3.
Max first kills one end of the spine and combines the

two remaining spine vertices in the second round.

• • •

k k k

Ques. What is mxg(T) among n-vertex trees?
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Results for Km,n (MMSWW)

Fix 1 ≤m ≤ n, partite sets X, Y with |X| =m, |Y| = n.
Upper bd = Min strategy; Lower bd = Max strategy.

Thm. ̂g(Km,n) = n−m+ 1. (Max-start)

Thm. g(Km,n) ≤
�

n−m
3

�

+ 2. (Min strategy)

(Equality for n−m small; in particular, g(Kn,n) = 2.)

Thm. g(Km,n) ≤ 2 log3/2m+ 18. (Min strategy)

(Max ensures at least log2m− c for n−m large.)

Ques. Note that g(Kn,n) = 2 but ̂g(Kn,n) = 1.

When is g(G)− ̂g(G) positive? How big can it be?
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A Strategy for Max

Live vertices are pawns (wt = 1) or kings (wt > 1).

Lem. Suppose X has p pawns (only) and Y has s pawns

and t kings, with t ≥ 1 and s ≥ p. If Min moves next,

then Max can ensure ≥ s+t−p live vertices at the end.

Pf. Induction on p. If p = 0, the game is over.

For p > 0, note that X has no king.

(1) If Min makes a king in X, then Max absorbs it into Y.

(2) If Min absorbs a pawn into Y, then Max does also.

A round leaves no king in X, reduces p, and does not

reduce t or s− p. The induction hypothesis applies.

Thm. ̂g(Km,n) ≥ n−m+ 1.

Pf. Max makes a king in Y: t = 1, p =m− 1, s = n− 1.
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s pawns and t kings in Y, q, t ≥ 1 and s ≥ p.
Let r =mx{0, s− p− q+ 1}. If Max moves next, then
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into kings in X. Game ends in X with ≤ q kings or in Y

with ≤ t kings and ≤ r pawns. For p > 0, Min plays:

(1) If Max creates a king, then Min absorbs it.
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(3) If Max absorbs a pawn by a king, then Min does also.
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other side. Now q = t = 1, p =m− 2, s = n− 2.
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Min-Start: The Balanced Case

Thm. g(Kn,n) = 2.

Pf. Min initially makes a king.

Lower Bound: Max makes a king on the same side.

The Max-strategy Lemma applies:

s+t−p = (n−2)+2− (n−2).
Upper Bound: Max makes another king or absorbs a

pawn. Min ensures that each side has a king. Applying

the Min-strategy Lemma, mx{q, t+(s−p−q+1)} is

mx{2,1+(−2+1)} or mx{1,1+(1−1+1)}.

Idea of general upper bound:

After first making a king in X, Min can absorb any kings

made by Max in Y to achieve g(Km,n) ≤m.

Better: Min creates q kings in X to employ the bound

mx{q, t+(s−p−q+1)} in the Min-strategy Lemma.
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makes another king in X.

Each round takes one pawn from each side, plus an

extra pawn from Y for each king made in X.

When X has
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3
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+1 kings, Min makes a king in Y.

With Max to move, the Min-strategy Lemma applies

with q =
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3

£

+1, t = 1, and s− p ≤ (n−m)− (q−2).
Thus Min ensures at most mx{q, t + (n−m)− 2q+ 3}
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3
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Min-Start: Upper Bound for Large n−m
Def. ̂ and ŷ are currently heaviest vertices in X and Y.

() is the current weight of .

A Min move is safe if it leaves (̂) ≥ 2(ŷ) and at

most one king in Y. (The initial Min move is safe.)

Algorithm: (until Y has no king and X has no pawn)

(1) If Max makes a king in Y or (̂) < 2((ŷ) + 2),
then Min absorbs ŷ into ̂.

(2) If Max doesn’t make king in Y and (̂) ≥ 2((ŷ)+2),
then Min absorbs into ŷ a king of weight 2 or a pawn.

Thm. g(Km,n) ≤ 2 log3/2m+ 18.

Step 1: Min moves are safe, and the game ends in X.

Step 2: q+mx{0, p− s} starts at 1, increases by at

most 2 for each Type 1 move, and ends at |X|.
Step 3: Each Type 1 move increases (̂) by a factor

of at least 3/2, and (̂) cannot exceed 6m.
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(1) If (′) +(ŷ) ≤(̂), then Max absorbs y′ into ∗.
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Min-Start: Lower Bound

Idea: Max makes medium-weight kings in X.

This keeps Min from absorbing them into Y and then X.

It also threatens to make ŷ heavier than ̂,

which would end the game in Y.

Def. At a given time, let

X− = { ∈ X : 0 < () ≤ 1

2
(̂)},

′ = a heaviest in X with (′) ≤(ŷ),
y′ = a heaviest in Y with (y′) ≤() for some  ∈ X−,
∗ = a lightest in X with (∗) ≥(y′).

While the vertices ′, y′, ∗ exist, Max plays as follows:

(1) If (′) +(ŷ) ≤(̂), then Max absorbs y′ into ∗.

(2) If (′) +(ŷ) > (̂), then Max absorbs ′ into ŷ.

The analysis is difficult!
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