A,
MA.A Taylor & Francis

ATHERATICAL RSE0CATIIN OF SR v
HHIERATILAL SR R Taylor & Francis Group

E3187

Author(s): Stephen J. Lipscomb, Allen J. Schwenk and Douglas B. West

Source: The American Mathematical Monthly, Vol. 96, No. 1 (Jan., 1989), pp. 60-62
Published by: Taylor & Francis, Ltd. on behalf of the Mathematical Association of America
Stable URL: http://www.jstor.org/stable/2323264

Accessed: 20-07-2018 23:03 UTC

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide
range of content in a trusted digital archive. We use information technology and tools to increase productivity and

facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

http://about.jstor.org/terms

Mathematical Association of America, Taylor & Francis, Ltd. are collaborating with
JSTOR to digitize, preserve and extend access to The American Mathematical Monthly

JSTOR

This content downloaded from 130.126.108.125 on Fri, 20 Jul 2018 23:03:11 UTC
All use subject to http://about.jstor.org/terms



60 PROBLEMS AND SOLUTIONS [January

Clearly F,(0) =1 for n > 1, and F (k) =0 for k > 1. We show that F,(k) =
(=)(";) forn>1, k> 0.

Now suppose n > 2. The set of permutations in G,(k) for which #(n — 1) # n
and «(n) # n is mapped onto itself if its elements are preceded by the transposition
(n — 1, n), which interchanges even and odd permutations, so these permutations
contribute 0 to F, (k). The permutations in G,(k) with w(n) = n correspond to the
permutations in G,_,(k) by restriction, without changing parity, so these contribute
F,_,(k) to F,(k). Finally, any permutation in G,(k) with #(n — 1) = n can be
obtained by following the transposition (n — 1, n) with a permutation in G,_;(k
— 1) extended to leave n fixed. In view of the change of parity, the permutations in
G,(k) with w(n — 1) = n contribute —F,_,(k — 1) to F,(k).

This yields the recurrence F,(k)=F,_ (k) — F,_(k—1) for n>2, k>1,
with boundary conditions F,(k) = §,, and F,(0) = 1. It follows by induction that
E(k) = (=D¥" ;).

The proposer gave a solution using generating functions. No other solutions were received.

Highly Asymetric Graphs

E 3187 [1987, 72]. Proposed by Stephen J. Lipscomb, Mary Washington College,
Fredericksburg, VA, and Allen J. Schwenk, Western Michigan University, Kalama-
zoo0.

A vertex-deleted subgraph G — v of a graph G is formed by removing one vertex
v and every edge incident with it. A graph is called asymmetric if it has no
nontrivial automorphisms (symmetries).

(a) Find a smallest possible asymmetric graph all of whose vertex-deleted sub-
graphs are also asymmetric.

(b) Same as (a) but also require that no pair of vertex-deleted subgraphs be
isomorphic.

Solution by Douglas B. West, University of Illinois, Urbana. We interpret “smal-
lest” to mean “fewest vertices”. We show that the 8-vertex graph F below has the
properties of both (a) and (b) and no smaller graph satisfies either. Note that the
subgraph H = F — u — z is an asymmetric graph with 6 vertices and 6 edges.
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1989] PROBLEMS AND SOLUTIONS 61

Call a graph highly asymmetric if it is asymmetric and all its vertex-deleted
subgraphs are asymmetric. We first prove F is highly asymmetric. If a graph G has
a unique vertex v of some degree, any symmetry must fix v, so asymmetry of G — v
is a sufficient (but not necessary) condition for asymmetry of G. Hence asymmetry
of F — u and F — z follows from asymmetry of H. For any other F — v, z is the
unique vertex of F — v with maximum degree and is adjacent to all but u, so it
suffices to show that no non-trivial symmetry of F — v — z fixes u. This can be
done quickly by examination. To see that F satisfies (b), note that the degree
sequences of the vertex-deleted subgraphs are all distinct, except that F — a and
F — b have a degree sequence 5444322, and F — ¢ and F — e have degree sequence
5433221. In F — b, the vertices of degree 4 induce a triangle, while in F — a they
do not. Similarly, in F — e the vertices of degree 1 and 5 are adjacent, while in
F — a they are not.

To show that no smaller graph than F is highly asymmetric, we need the
following facts:

Let G be an asymmetric graph of smallest order. Then

(1) G and G are connected.

(2) G has six vertices.

(3) If G has at most 6 edges, then G = H above.

(4) G has a vertex of degree at least 3. _

(1) follows from minimality and the fact that G and G have the same symme-
tries; any non-trivial component of a disconnected G would have a non-trivial
symmetry. Of G and G, we may consider the one with fewer edges. Thus on four
vertices we need only consider trees; on five vertices we need only consider trees or
connected unicyclic graphs (5 edges); every one of these graphs has a symmetry of
order 2. With the existence of H, this proves (2). On six vertices there are six
(unlabeled) trees; each has a symmetry of order 2. Among the connected unicyclic
6-vertex graphs (six edges), there are 1,1, 4,7, respectively, having a cycle of length
6,5,4,3. Every one of these has a symmetry of order 2 except the graph H above,
which is asymmetric, proving (3). For (4), note that A(H) = 3, where A(G) denotes
the maximum vertex degree. The average degree of any 6-vertex graph with at least
7 edges is at least 2 - 7/6 > 2, so A(G) > 3 even if G # H. (Note: there are also
three asymmetric 6-vertex graphs with 7 edges, their complements with 8 edges, and
H with 9 edges, but we need not determine the rest of the set to solve this problem.)

We now show that no highly asymmetric graph G has 7 vertices. Suppose G is
such a graph. We first claim each vertex of G has degree 2, 3, or 4. If v is a vertex
of degree 1, delete its neighbor. If d(v) = 5, delete its non-neighbor. If d(v) = 0 or
d(v) = 6, delete any vertex other than v. In each case, we obtain a graph G — v with
a vertex of degree 0 or 5. This implies G — v or its complement is asymmetric and
disconnected, contradicting (1).

Let w be a vertex of maximum degree in G. By (4), we have A(G — v) > 3 for
each v, so d(w) > 3. Since G — w has at least 6 edges, G therefore has at least 9
edges. If exactly 9, then d(w) = 3 and G — w = H, since H is the only asymmetric
6-vertex graph with 6 edges. Morever, w must be adjacent to a, b and one of
{c, d}. In either case, G — a has a symmetry. Thus we may assume G has at least
10 edges.

As before, we may assume by complementation that G has no more edges than

G. Since (;) = 21, we may now assume G has exactly 10 edges. If A(G) = 3, then G
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62 PROBLEMS AND SOLUTIONS [January

has degree sequence 3333332, and deleting the vertex of minimum degree yields the
sequence 333322. The complement of this graph, with degree sequence 332222, must
be asymmetric. If the two 3-valent vertices u, v are not adjacent, then u, v have two
common neighbors, and the remaining edge joins their remaining neighbors. If u, v
are adjacent, then this degree sequence yields 2,1,0 graphs when u, v have 0,1,2
common neighbors, respectively. All four graphs with this degree sequence have
symmetries of order 2.

Hence we may assume A(G) =4, so G —w = H. Since G has no vertex of
degree 1, w must be joined to a, b, and two of {c, d, e, x}. We find a symmetry in
G — ¢ unless the last two neighbors of w are x and one of {d, e}, But then G has a
symmetry if w is adjacent to e, and G + x has a symmetry if w is adjacent to d.
This exhausts all possibilities for G.

No other solutions were received. The proposers supplied a 9-vertex highly asymmetric graph and a
10-vertex highly asymmetric graph with non-isomorphic vertex-deleted subgraphs.

Locating Corners from an Arbitrary Point in a Rectangle

E 3208 [1987, 456]. Proposed by I. D. Berg R. L. Bishop, and H. G. Diamond,
University of Illinois at Urbana-Champaign-

Suppose that in the Euclidean plane, line segments of lengths a, b, ¢, d emanate
from a given point P in clockwise order, where a, b, ¢, d are given positive numbers
with

a’+ c?=b*+d>

(i) Show that the four segments can be so placed that the endpoints determine a

rectangle containing P, and show that this rectangle may have any specified area

between 0 and some maximum value M(a, b, ¢, d).
(i) Find M(a, b, ¢, d).

Solution by Carl Schoen, University of Wisconsin at Eau Claire. Without loss of
generality, assume a is the smallest of a, b, ¢, d. Contrary to the assertion of the
problem as printed, the minimum area is (a + d)Vb* —a® if b<d and
(a + b)Vd? — a? if d < b. The area can equal zero only if @ = min{b, d }. The
maximum area is ac + bd.

We may orient any rectangle to have horizontal and vertical sides, P at the
origin, and a in the first quadrant. Let a be the angle between a and the positive
x-axis. For any choice of a with 0 < @ < m/2, we construct such a rectangle.
Having chosen a as the smallest of a, b, ¢, d, there is a unique placement for
segment b so that the endpoints of a and b lie on a vertical line. Similarly, there is a
unique placement for d so that the endpoints of a and d lie on a horizontal line.
This determines a rectangle with fourth vertex C. If the rectangle meets the axes at
(—1,0), (#,0), (0, w), and (0,— v), then b> + d? = u? + v2 + t2 + w? = a? + PC?,
which implies PC = c¢. Hence, the postulated rectangle can be constructed for
arbitrary a.

If A(a) is the area of the resulting rectangle, than 4 = (¢ + u)(v + w), where

w = asina, u=acosa, t=yd* - a*sin*a, v = b* — a’cos’ a.
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