Acyclic graphs with at least $2\ell + 1$ vertices are ℓ-recognizable

Douglas B. West

Departments of Mathematics
Zhejiang Normal University and
University of Illinois at Urbana-Champaign
dwest@illinois.edu
slides and papers on preprint page
https://faculty.math.illinois.edu/~west/pubs/publink.html

Joint work with
Alexandr V. Kostochka, Mina Nahvi, Dara Zirlin
The Classical Problem

Def. A card of a graph G is an induced subgraph $G - \nu$. The deck of a graph is the multiset of its cards.

Equality for $K_{n/2,n/2}$ and $2K_{n/2}$.
The Classical Problem

Def. A card of a graph G is an induced subgraph $G - v$. The deck of a graph is the multiset of its cards.

Equality for $K_{n/2,n/2}$ and $2K_{n/2}$.
The Classical Problem

Def. A card of a graph G is an induced subgraph $G - v$. The deck of a graph is the multiset of its cards.

Reconstruction Conj: Kelly [1957], Ulam [1960]

Any graph with ≥ 3 vertices is determined by its deck.

Equality for $K_{n/2,n/2}$ and $2K_{n/2}$.
The Classical Problem

Def. A card of a graph G is an induced subgraph $G - v$. The deck of a graph is the multiset of its cards.

Reconstruction Conj: Kelly [1957], Ulam [1960]
Any graph with ≥ 3 vertices is determined by its deck. Posed earlier in Kelly’s thesis, 1942.

Equality for $K_{n/2,n/2}$ and $2K_{n/2}$.
The Classical Problem

Def. A **card** of a graph \(G \) is an induced subgraph \(G - v \). The **deck** of a graph is the multiset of its cards.

Reconstruction Conj: Kelly [1957], Ulam [1960]
Any graph with \(\geq 3 \) vertices is determined by its deck.

- **Surveys:** Bondy-Hemminger ['77], Lauri ['87], Ellingham ['88], Manvel ['88], Bondy ['91], Lauri ['97], Nýdl ['01], Maccari-Rueda-Viazzi ['02], Asciak-Francalanza-Lauri-Myrvold ['10]

Equality for \(K_{n/2,n/2} \) and \(2K_{n/2} \).
The Classical Problem

Def. A card of a graph G is an induced subgraph $G - v$. The deck of a graph is the multiset of its cards.

![Diagram of a graph and its cards]

Reconstruction Conj: Kelly [1957], Ulam [1960]
Any graph with ≥ 3 vertices is determined by its deck.

- **Surveys:** Bondy-Hemminger ['77], Lauri ['87], Ellingham ['88], Manvel ['88], Bondy ['91], Lauri ['97], Nýdl ['01], Maccari-Rueda-Viazzi ['02], Asciak-Francalanza-Lauri-Myrvold['10]

Ex. K_4^- is determined by three of its cards.

Equality for $K_{n/2,n/2}$ and $2K_{n/2}$.
The Classical Problem

Def. A **card** of a graph G is an induced subgraph $G - v$. The **deck** of a graph is the multiset of its cards.

![Diagram of cards]

Reconstruction Conj: Kelly [1957], Ulam [1960]
Any graph with ≥ 3 vertices is determined by its deck.

- **Surveys:** Bondy-Hemminger ['77], Lauri ['87], Ellingham ['88], Manvel ['88], Bondy ['91], Lauri ['97], Nýdl ['01], Maccari-Rueda-Viazzi ['02], Asciak-Francalanza-Lauri-Myrvold ['10]

Ex. K_4^- is determined by three cards. Which three?

Equality for $K_{n/2,n/2}$ and $2K_{n/2}$.
The Classical Problem

Def. A *card* of a graph G is an induced subgraph $G - v$. The *deck* of a graph is the multiset of its cards.

Reconstruction Conj: Kelly [1957], Ulam [1960]
Any graph with ≥ 3 vertices is determined by its deck.

- **Surveys:** Bondy-Hemminger ['77], Lauri ['87], Ellingham ['88], Manvel ['88], Bondy ['91], Lauri ['97], Nýdl ['01], Maccari-Rueda-Viazzi ['02], Asciak-Francalanza-Lauri-Myrvold ['10]

Ex. K_4^- is determined by three cards. Which three?

Def. Harary-Plantholt [1985]: The *reconstruction number* $rn(G)$ is the least number of cards that determine G.

Equality for $K_{n/2,n/2}$ and $2K_{n/2}$.
The Classical Problem

Def. A card of a graph G is an induced subgraph $G - v$. The deck of a graph is the multiset of its cards.

Reconstruction Conj: Kelly [1957], Ulam [1960]
Any graph with ≥ 3 vertices is determined by its deck.

- Surveys: Bondy-Hemminger ['77], Lauri ['87], Ellingham ['88], Manvel ['88], Bondy ['91], Lauri ['97], Nýdl ['01], Maccari-Rueda-Viazzi ['02], Asciak-Francalanza-Lauri-Myrvold['10]

Ex. K_4^- is determined by three cards. Which three?

Def. Harary-Plantholt [1985]: The reconstruction number $\text{rn}(G)$ is the least number of cards that determine G.

$\text{rn}(G)$ measures the difficulty of reconstructing G. Equality for $K_{n/2,n/2}$ and $2K_{n/2}$.
Another Direction

Conj. Kelly [1957]: For \(\ell \in \mathbb{N} \), \(\exists M_{\ell} \in \mathbb{N} \) such that \(|V(G)| \geq M_{\ell} \implies G \) is reconstructible from the graphs obtained by deleting \(\ell \) vertices.
Another Direction

Conj. Kelly [1957]: For \(l \in \mathbb{N} \), \(\exists M_l \in \mathbb{N} \) such that
\[|V(G)| \geq M_l \implies G \text{ is reconstructible from the graphs obtained by deleting } l \text{ vertices}. \] “\(l \)-reconstructible”
Another Direction

Conj. Kelly [1957]: For $\ell \in \mathbb{N}$, $\exists \ M_\ell \in \mathbb{N}$ such that $|V(G)| \geq M_\ell \Rightarrow G$ is reconstructible from the graphs obtained by deleting ℓ vertices. “ℓ-reconstructible”

RC: $M_1 = 3$.
Another Direction

Conj. Kelly [1957]: For $\ell \in \mathbb{N}$, $\exists M_\ell \in \mathbb{N}$ such that $|V(G)| \geq M_\ell \Rightarrow G$ is reconstructible from the graphs obtained by deleting ℓ vertices. “ℓ-reconstructible”

RC: $M_1 = 3$. $M_2 = 6$? McMullen–Radziszowski [2007]
Another Direction

Conj. Kelly [1957]: For $\ell \in \mathbb{N}$, $\exists M_\ell \in \mathbb{N}$ such that $|V(G)| \geq M_\ell \Rightarrow G$ is reconstructible from the graphs obtained by deleting ℓ vertices. “ℓ-reconstructible”

RC: $M_1 = 3$. $M_2 = 6$? McMullen–Radziszowski [2007] (Sharp: C_4+K_1 and the tree $K'_{1,3}$ are not 2-reconstructible.)
Another Direction

Conj. Kelly [1957]: For $l \in \mathbb{N}$, $\exists M_l \in \mathbb{N}$ such that $|V(G)| \geq M_l \Rightarrow G$ is reconstructible from the graphs obtained by deleting l vertices. “l-reconstructible”

RC: $M_1 = 3$. $M_2 = 6$? McMullen–Radziszowski [2007] (Sharp: $C_4 + K_1$ and the tree $K'_{1,3}$ are not 2-reconstructible.)

Def. k-deck $\mathcal{D}_k(G) =$ set of k-vertex induced subgrs.
Another Direction

Conj. Kelly [1957]: For $\ell \in \mathbb{N}$, $\exists M_\ell \in \mathbb{N}$ such that $|V(G)| \geq M_\ell \Rightarrow G$ is reconstructible from the graphs obtained by deleting ℓ vertices. "ℓ-reconstructible"

RC: $M_1 = 3$. $M_2 = 6$? McMullen–Radziszowski [2007]
(Sharp: $C_4 + K_1$ and the tree $K_{1,3}'$ are not 2-reconstructible.)

Def. k-deck $\mathcal{D}_k(G)$ = set of k-vertex induced subgraphs.

Obs. $\mathcal{D}_k(G)$ determines $\mathcal{D}_{k-1}(G)$.
Another Direction

Conj. Kelly [1957]: For $\ell \in \mathbb{N}$, $\exists M_{\ell} \in \mathbb{N}$ such that $|V(G)| \geq M_{\ell} \implies G$ is reconstructible from the graphs obtained by deleting ℓ vertices. “ℓ-reconstructible”

RC: $M_1 = 3$. $M_2 = 6$? McMullen–Radziszowski [2007] (Sharp: $C_4 + K_1$ and the tree $K'_{1,3}$ are not 2-reconstructible.)

Def. k-deck $D_k(G) =$ set of k-vertex induced subgrs.

Obs. $D_k(G)$ determines $D_{k-1}(G)$.

Pf. Each graph in D_{k-1} arises $n - k + 1$ times by deleting one vertex from a graph in $D_k(G)$. \(\blacksquare\)
Another Direction

Conj. Kelly [1957]: For \(l \in \mathbb{N} \), \(\exists M_l \in \mathbb{N} \) such that \(|V(G)| \geq M_l \implies G \) is reconstructible from the graphs obtained by deleting \(l \) vertices. “\(l \)-reconstructible”

RC: \(M_1 = 3 \). \(M_2 = 6 \)? McMullen–Radziszowski [2007]
(Sharp: \(C_4 + K_1 \) and the tree \(K'_{1,3} \) are not \(2 \)-reconstructible.)

Def. \(k \)-deck \(D_k(G) \) = set of \(k \)-vertex induced subgraphs.

Obs. \(D_k(G) \) determines \(D_{k-1}(G) \).

Pf. Each graph in \(D_{k-1} \) arises \(n - k + 1 \) times by deleting one vertex from a graph in \(D_k(G) \).

Aim: Find the least \(k \) s.t. \(G \) is reconstructible from \(D_k(G) \).
Another Direction

Conj. Kelly [1957]: For \(l \in \mathbb{N} \), \(\exists M_l \in \mathbb{N} \) such that \(|V(G)| \geq M_l \implies G \) is reconstructible from the graphs obtained by deleting \(l \) vertices. “\(l \)-reconstructible”

RC: \(M_1 = 3. \quad M_2 = 6? \) McMullen–Radziszowski [2007] (Sharp: \(C_4+K_1 \) and the tree \(K'_{1,3} \) are not 2-reconstructible.)

Def. \(k \)-deck \(D_k(G) = \) set of \(k \)-vertex induced subgrs.

Obs. \(D_k(G) \) determines \(D_{k-1}(G) \).

Pf. Each graph in \(D_{k-1} \) arises \(n - k + 1 \) times by deleting one vertex from a graph in \(D_k(G) \).

Aim: Find the least \(k \) s.t. \(G \) is reconstructible from \(D_k(G) \).

(Similarly, \(\ell \)-reconstructible \(\implies (\ell-1) \)-reconstructible.)
Another Direction

Conj. Kelly [1957]: For \(l \in \mathbb{N} \), \(\exists M_l \in \mathbb{N} \) such that
\[|V(G)| \geq M_l \implies G \text{ is reconstructible from the graphs obtained by deleting } l \text{ vertices.} \] “\(l \)-reconstructible”

RC: \(M_1 = 3 \). \(M_2 = 6 \)? McMullen–Radziszowski [2007]
(Sharp: \(C_4+K_1 \) and the tree \(K'_{1,3} \) are not 2-reconstructible.)

\[\begin{array}{c}
\begin{array}{c}
\text{•} \\
\text{•} \\
\text{•} \\
\text{•} \\
\end{array}
\end{array} \quad \begin{array}{c}
\begin{array}{c}
\text{•} \\
\text{•} \\
\text{•} \\
\text{•} \\
\end{array}
\end{array} \]

Def. \(k \)-deck \(D_k(G) = \) set of \(k \)-vertex induced subgraphs.

Obs. \(D_k(G) \) determines \(D_{k-1}(G) \).

Pf. Each graph in \(D_{k-1} \) arises \(n-k+1 \) times by deleting one vertex from a graph in \(D_k(G) \).

Aim: Find the least \(k \) s.t. \(G \) is reconstructible from \(D_k(G) \).
(Similarly, \(l \)-reconstructible \(\Rightarrow (l-1) \)-reconstructible.)

- Another way to ask how hard it is to reconstruct \(G \).
What is known?

Spinoza–West [2019]: $D_{\ell}(P_{2\ell}) = D_{\ell}(C_{\ell+1} + P_{\ell-1})$, so $M_{\ell} > 2\ell$.
What is known?

Spinoza–West [2019]: $D_\ell(P_{2\ell}) = D_\ell(C_{\ell+1} + P_{\ell-1})$, so $M_\ell > 2\ell$.

Thm. Graphs w. same #verts and #edges have same D_k if components are cycle w. $\geq k+1$ vts or path with $\geq k-1$ vts.
What is known?

Spinoza–West [2019]: \(D_\ell(P_{2\ell}) = D_\ell(C_{\ell+1}+P_{\ell-1}) \), so \(M_\ell > 2\ell \).

Thm. Graphs w. same #verts and #edges have same \(D_k \) if components are cycle w. \(\geq k+1 \) vts or path with \(\geq k-1 \) vts.

Thm. Spinoza–West’19: For all \(G \) with max degree 2, we know \(\max\{\ell : G \text{ is } \ell\text{-reconstructible}\} \).
What is known?

Spinoza–West [2019]: $D_l(P_{2l}) = D_l(C_{l+1}+P_{l-1})$, so $M_l > 2l$.

Thm. Graphs w. same #verts and #edges have same D_k if components are cycle w. $\geq k+1$ vts or path with $\geq k-1$ vts.

Thm. Spinoza–West’19: For all G with max degree 2, we know $\max\{l : G \text{ is } l\text{-reconstructible}\}$.

Cor. For $n \geq 2l + 1$, all n-vertex graphs with maximum degree 2 are l-reconstructible (except $(n,l)=(5,2)$).
What is known?

Spinoza–West [2019]: $D_l(P_{2l}) = D_l(C_{l+1} + P_{l-1})$, so $M_l > 2l$.

Thm. Graphs w. same # verts and # edges have same D_k if components are cycle w. $\geq k+1$ vts or path with $\geq k-1$ vts.

Thm. Spinoza–West’19: For all G with max degree 2, we know $\max\{l : G \text{ is } l\text{-reconstructible}\}$.

Cor. For $n \geq 2l + 1$, all n-vertex graphs with maximum degree 2 are l-reconstructible (except $(n,l) = (5,2)$).

Thm. Nýdl [1992]: For $\epsilon > 0$, \exists arb. large graphs that are not ϵn-reconstructible.
What is known?

Spinoza–West [2019]: \(D_\ell(P_{2\ell}) = D_\ell(C_{\ell+1}+P_{\ell-1}) \), so \(M_\ell > 2\ell \).

Thm. Graphs w. same \# verts and \# edges have same \(D_k \) if components are cycle w. \(\geq k+1 \) vts or path with \(\geq k-1 \) vts.

Thm. Spinoza–West’19: For all \(G \) with max degree 2, we know \(\max\{\ell: G \text{ is } \ell\text{-reconstructible}\} \).

Cor. For \(n \geq 2\ell + 1 \), all \(n \)-vertex graphs with maximum degree 2 are \(\ell \)-reconstructible (except \((n,\ell)=(5,2))\).

Thm. Nýdl [1992]: For \(\epsilon > 0 \), \(\exists \) arb. large graphs that are not \(\epsilon n \)-reconstructible. \(\therefore M_\ell \) grows superlinearly.
What is known?

Spinoza–West [2019]: $D_\ell(P_{2\ell}) = D_\ell(C_{\ell+1} + P_{\ell-1})$, so $M_\ell > 2\ell$.

Thm. Graphs w. same #verts and #edges have same D_k if components are cycle w. $\geq k+1$ vts or path with $\geq k-1$ vts.

Thm. Spinoza–West’19: For all G with max degree 2, we know $\max\{\ell: G \text{ is } \ell\text{-reconstructible}\}$.

Cor. For $n \geq 2\ell + 1$, all n-vertex graphs with maximum degree 2 are ℓ-reconstructible (except $(n,\ell) = (5,2)$).

Thm. Nýdl [1992]: For $\epsilon > 0$, \exists arb. large graphs that are not ϵn-reconstructible. $\therefore M_\ell$ grows superlinearly.

Thm. Müller [1976], S-W [2019]: For $\ell \leq (1 - o(1))n/2$, almost every graph is ℓ-reconstructible.
What is known?

Spinoza–West [2019]: \(D_\ell(P_{2\ell}) = D_\ell(C_{\ell+1}+P_{\ell-1}) \), so \(M_\ell > 2\ell \).

Thm. Graphs w. same \#verts and \#edges have same \(D_k \) if components are cycle w. \(\geq k+1 \) vts or path with \(\geq k-1 \) vts.

Thm. Spinoza–West’19: For all \(G \) with max degree 2, we know \(\max\{l: G \text{ is } l\text{-reconstructible}\} \).

Cor. For \(n \geq 2\ell + 1 \), all \(n \)-vertex graphs with maximum degree 2 are \(\ell \)-reconstructible (except \((n,\ell) = (5,2)\)).

Thm. Nýdl [1992]: For \(\epsilon > 0 \), \(\exists \) arb. large graphs that are not \(\epsilon n \)-reconstructible. \(\therefore \) \(M_\ell \) grows superlinearly.

Thm. Müller [1976], S-W [2019]: For \(\ell \leq (1 - o(1))n/2 \), almost every graph is \(\ell \)-reconstr’bl. (From \(\binom{\ell+2}{2} \) cards.)
What is known?

Spinoza–West [2019]: $D_l(P_{2l}) = D_l(C_{l+1} + P_{l-1})$, so $M_l > 2l$.

Thm. Graphs w. same #verts and #edges have same D_k if components are cycle w. $\geq k+1$ vts or path with $\geq k-1$ vts.

Thm. Spinoza–West’19: For all G with max degree 2, we know $\max\{l : G \text{ is } l\text{-reconstructible}\}$.

Cor. For $n \geq 2l + 1$, all n-vertex graphs with maximum degree 2 are l-reconstructible (except $(n,l) = (5,2)$).

Thm. Nýdl [1992]: For $\epsilon > 0$, \exists arb. large graphs that are not ϵn-reconstructible. $\therefore M_l$ grows superlinearly.

Thm. Müller [1976], S-W [2019]: For $l \leq (1 - o(1))n/2$, almost every graph is l-reconstructible. (From $\binom{l+2}{2}$ cards.) Generalizes Chinn ’71, Müller ’76, Bollobás ’90 for $l = 1$.
Degree Lists and Connectedness

Thm. Connectedness (Manvel [1974]) and the degree list (Chernyak [1982]) are 2-reconstructible for $n \geq 6$.
Degree Lists and Connectedness

Thm. Connectedness (Manvel [1974]) and the degree list (Chernyak [1982]) are 2-reconstructible for $n \geq 6$. (Sharp by $C_4 + K_1$ and $K_{1,3}'$ having same 3-deck.)
Degree Lists and Connectedness

Thm. Connectedness (Manvel [1974]) and the degree list (Chernyak [1982]) are 2-reconstructible for $n \geq 6$. (Sharp by $C_4 + K_1$ and $K_{1,3}'$ having same 3-deck.)

Thm. Kostochka-Nahvi-West-Zirlin [2020]: Connectedness & the degree list are 3-reconstructible for $n \geq 7$.
Degree Lists and Connectedness

Thm. Connectedness (Manvel [1974]) and the degree list (Chernyak [1982]) are 2-reconstructible for $n \geq 6$. (Sharp by $C_4 + K_1$ and $K'_{1,3}$ having same 3-deck.)

Thm. Kostochka-Nahvi-West-Zirlin [2020]: Connectedness & the degree list are 3-reconstructible for $n \geq 7$. (Sharp by $C_5 + K_1$ and $K''_{1,3}$ having same 3-deck.)
Degree Lists and Connectedness

Thm. Connectedness (Manvel [1974]) and the degree list (Chernyak [1982]) are 2-reconstructible for $n \geq 6$. (Sharp by $C_4 + K_1$ and $K'_{1,3}$ having same 3-deck.)

Thm. Kostochka-Nahvi-West-Zirlin [2020]: Connectedness & the degree list are 3-reconstructible for $n \geq 7$. (Sharp by $C_5 + K_1$ and $K''_{1,3}$ having same 3-deck.)

Thm. Taylor [1990]: The degree list is ℓ-reconstructible for $n \geq e\ell(1 + o(1))$.
Degree Lists and Connectedness

Thm. Connectedness (Manvel [1974]) and the degree list (Chernyak [1982]) are 2-reconstructible for \(n \geq 6 \).
(Sharp by \(C_4 + K_1 \) and \(K_{1,3}' \) having same 3-deck.)

Thm. Kostochka-Nahvi-West-Zirlin [2020]: Connectedness & the degree list are 3-reconstructible for \(n \geq 7 \).
(Sharp by \(C_5 + K_1 \) and \(K_{1,3}'' \) having same 3-deck.)

Thm. Taylor [1990]: The degree list is \(\ell \)-reconstructible for \(n \geq e\ell(1 + o(1)) \).

Thm. Groenland–Johnston–Scott–Tan [2021+]: The degree list is reconstructible from \(D_k(G) \) when \(k \geq \sqrt{2n \log 2n} \).
Degree Lists and Connectedness

Thm. Connectedness (Manvel [1974]) and the degree list (Chernyak [1982]) are 2-reconstructible for $n \geq 6$.
(Sharp by $C_4 + K_1$ and $K'_1,3$ having same 3-deck.)

Thm. Kostochka-Nahvi-West-Zirlin [2020]: Connectedness & the degree list are 3-reconstructible for $n \geq 7$.
(Sharp by $C_5 + K_1$ and $K''_1,3$ having same 3-deck.)

Thm. Taylor [1990]: The degree list is ℓ-reconstructible for $n \geq \ell \log(1 + o(1))$.

Thm. Groenland–Johnston–Scott–Tan [2021+]: The degree list is reconstructible from $\mathcal{D}_k(G)$ when $k \geq \sqrt{2n \log 2n}$.

Cor. The degree list ℓ-reconstruct’ble when $n \geq \ell + O \sqrt{\ell}$.
Degree Lists and Connectedness

Thm. Connectedness (Manvel [1974]) and the degree list (Chernyak [1982]) are 2-reconstructible for $n \geq 6$. (Sharp by $C_4 + K_1$ and $K'_{1,3}$ having same 3-deck.)

Thm. Kostochka-Nahvi-West-Zirlin [2020]: Connectedness & the degree list are 3-reconstructible for $n \geq 7$. (Sharp by $C_5 + K_1$ and $K''_{1,3}$ having same 3-deck.)

Thm. Taylor [1990]: The degree list is l-reconstructible for $n \geq e\ell(1 + o(1))$.

Thm. Groenland–Johnston–Scott–Tan [2021+]: The degree list is reconstructible from $D_k(G)$ when $k \geq \sqrt{2n \log 2n}$.

Cor. The degree list l-reconstr’ble when $n \geq l + O\sqrt{l}$.

Thm. SW’19: Connectedness is l-reconstr. for $n > \ell(\ell + 1)^2$.
Degree Lists and Connectedness

Thm. Connectedness (Manvel [1974]) and the degree list (Chernyak [1982]) are 2-reconstructible for \(n \geq 6 \).
(Sharp by \(C_4 + K_1 \) and \(K'_{1,3} \) having same 3-deck.)

Thm. Kostochka-Nahvi-West-Zirlin [2020]: Connectedness & the degree list are 3-reconstructible for \(n \geq 7 \).
(Sharp by \(C_5 + K_1 \) and \(K''_{1,3} \) having same 3-deck.)

Thm. Taylor [1990]: The degree list is \(\ell \)-reconstructible for \(n \geq \ell(1 + o(1)) \).

Thm. Groenland–Johnston–Scott–Tan [2021+]: The degree list is reconstructible from \(D_k(G) \) when \(k \geq \sqrt{2n \log 2n} \).

Cor. The degree list \(\ell \)-reconstr’ble when \(n \geq \ell + O\sqrt{\ell} \).

Thm. SW’19: Connectedness is \(\ell \)-reconstr. for \(n > \ell^{(\ell+1)^2} \).

Thm. GJST’21: Connectedness is \(\ell \)-reconstr. for \(n \geq 10\ell \).
Regular Graphs and Components

Thm. Kostochka–West 2021: r-regular graphs that are not 2-connected are $(r+1)$-reconstr’ble.
Regular Graphs and Components

Thm. Kostochka–West 2021: r-regular graphs that are not 2-connected are $(r+1)$-reconstructible.

Thm. S-W’19 For 2-regular graphs we know all ℓ such that the graph is ℓ-reconstructible.
Regular Graphs and Components

Thm. Kostochka–West 2021: r-regular graphs that are not 2-connected are $(r+1)$-reconstr’ble.

Thm. S-W’19 For 2-regular graphs we know all ℓ such that the graph is ℓ-reconstructible.

Thm. KNWZ’21: 3-regular graphs are 2-reconstr’ble.
Regular Graphs and Components

Thm. Kostochka–West 2021: r-regular graphs that are not 2-connected are $(r+1)$-reconstr’ble.

Thm. S-W’19 For 2-regular graphs we know all ℓ such that the graph is ℓ-reconstructible.

Thm. KNWZ’21: 3-regular graphs are 2-reconstr’ble.

Thm. Kelly’57:Disconnected graphs are 1-reconstr’bl.
Regular Graphs and Components

Thm. Kostochka–West 2021: r-regular graphs that are not 2-connected are $(r+1)$-reconstr’ble.

Thm. S-W’19 For 2-regular graphs we know all ℓ such that the graph is ℓ-reconstructible.

Thm. KNWZ’21: 3-regular graphs are 2-reconstr’ble.

Thm. Kelly’57: Disconnected graphs are 1-reconstr’bl.

Thm. KW’21: If $n \geq 2\ell + 1$ and every component of G has at most $n - \ell$ vertices, then G is ℓ-reconstructible.
Regular Graphs and Components

Thm. Kostochka–West 2021: r-regular graphs that are not 2-connected are $(r+1)$-reconstr’ble.

Thm. S-W’19 For 2-regular graphs we know all l such that the graph is l-reconstructible.

Thm. KNWZ’21: 3-regular graphs are 2-reconstr’ble.

Thm. Kelly’57: Disconnected graphs are 1-reconstr’bl.

Thm. KW’21: If $n \geq 2l + 1$ and every component of G has at most $n - l$ vertices, then G is l-reconstructible.

Thm. KW’21: If graphs with at least $l + 2$ vertices having $l–1$ isolated vertices and one large component $(n–l+1)$ are l-reconstructible, then the original RC holds.
Thm. Kelly’57: Trees with at least 3 vertices are 1-reconstructible.
Trees - I

Thm. Kelly’57: Trees with at least 3 vertices are 1-reconstructible.

Thm. Giles’76: Trees with at least 6 vertices are 2-reconstructible.
Thm. Kelly’57: Trees with at least 3 vertices are 1-reconstructible.

Thm. Giles’76: Trees with at least 6 vertices are 2-reconstructible.

Thm. Nýdl’81: \(\exists \) trees with \(n = 2\ell \) and same \(\ell \)-deck.
Trees - I

Thm. Kelly’57: Trees with at least 3 vertices are 1-reconstructible.

Thm. Giles’76: Trees with at least 6 vertices are 2-reconstructible.

Thm. Nýdl’81: ∃ trees with \(n = 2\ell \) and same \(\ell \)-deck.

Two steps to reconstruction of graphs in a family \(\mathcal{F} \).
(1) **Recognition**: Every graph with deck \(\mathcal{D} \) lies in \(\mathcal{F} \).
(2) **Weak reconstruction**: Given that \(\mathcal{D} \) is the deck of a graph in \(\mathcal{F} \), the deck determines which \(F \in \mathcal{F} \).
Trees - I

Thm. Kelly’57: Trees with at least 3 vertices are 1-reconstructible.

Thm. Giles’76: Trees with at least 6 vertices are 2-reconstructible.

Thm. Nýdl’81: ∃ trees with $n = 2\ell$ and same ℓ-deck.

![Diagram showing two trees with at least 6 vertices]

Two steps to reconstruction of graphs in a family \mathcal{F}.

1. **Recognition**: Every graph with deck \mathcal{D} lies in \mathcal{F}.
2. **Weak reconstruction**: Given that \mathcal{D} is the deck of a graph in \mathcal{F}, the deck determines which $F \in \mathcal{F}$.

Conj. Nýdl’81: Trees with $n \geq 2\ell + 1$ are weakly ℓ-reconstructible.
Trees - II

Thm. Kostochka-Nahvi-West-Zirlin [2021+]: For \(n \geq 2\ell + 1 \), \(n \)-vertex acyclic graphs are \(\ell \)-recognizable.
Thm. Kostochka-Nahvi-West-Zirlin [2021+]: For \(n \geq 2\ell + 1 \), \(n \)-vertex acyclic graphs are \(\ell \)-recognizable. (not \((5,2)\))
Trees - II

Thm. Kostochka-Nahvi-West-Zirlin [2021+] : For $n \geq 2\ell + 1$, n-vertex acyclic graphs are ℓ-recognizable. (not (5,2))

Conj. Trees with $n \geq 2\ell + 1$ are ℓ-reconstr’ble.
Thm. Kostochka-Nahvi-West-Zirlin [2021+]: For \(n \geq 2\ell + 1 \), \(n \)-vertex acyclic graphs are \(\ell \)-recognizable. (not (5,2))

Conj. Trees with \(n \geq 2\ell + 1 \) are \(\ell \)-reconstr’ble. But

GJST: 13 vertices, same 7-deck
Thm. Kostochka-Nahvi-West-Zirlin [2021+]: For $n \geq 2\ell + 1$, n-vertex acyclic graphs are ℓ-recognizable. (not $(5,2)$)

Conj. Trees with $n \geq 2\ell + 1$ are ℓ-reconstr’ble. But

GJST: 13 vertices, same 7-deck

Thm. GJST’21: n-vertex trees are reconstructible from their k-decks when $k \geq \frac{8}{9}n + \frac{4}{9}\sqrt{8n + 5} + 1$.
Trees - II

Thm. Kostochka-Nahvi-West-Zirlin [2021+] : For \(n \geq 2\ell + 1 \), \(n \)-vertex acyclic graphs are \(\ell \)-recognizable. (not \((5, 2)\))

Conj. Trees with \(n \geq 2\ell + 1 \) are \(\ell \)-reconstr'ble. But

![Diagram of trees with 13 vertices and same 7-deck](image)

Thm. GJST'21: \(n \)-vertex trees are reconstructible from their \(k \)-decks when \(k \geq \frac{8}{9}n + \frac{4}{9}\sqrt{8n + 5} + 1 \).

Cor. Trees \(\ell \)-reconstr’ble for \(n \geq 9\ell + 24\sqrt{2\ell} + o(\sqrt{\ell}) \).
Trees - II

Thm. Kostochka-Nahvi-West-Zirlin [2021+]: For $n \geq 2\ell + 1$, n-vertex acyclic graphs are ℓ-recognizable. (not (5,2))

** Conj.** Trees with $n \geq 2\ell + 1$ are ℓ-reconstr’ble. But

<table>
<thead>
<tr>
<th>GJST: 13 vertices, same 7-deck</th>
</tr>
</thead>
</table>

Thm. GJST’21: n-vertex trees are reconstructible from their k-decks when $k \geq \frac{8}{9}n + \frac{4}{9}\sqrt{8n + 5} + 1$.

Cor. Trees ℓ-reconstr’ble for $n \geq 9\ell + 24\sqrt{2\ell} + o(\sqrt{\ell})$.

Thm. KNWZ: Trees are 3-reconstr’ble for $n \geq 20$.
Thm. Kostochka-Nahvi-West-Zirlin [2021+]: For \(n \geq 2\ell + 1 \), \(n \)-vertex acyclic graphs are \(\ell \)-recognizable. (not (5,2))

Conj. Trees with \(n \geq 2\ell + 1 \) are \(\ell \)-reconstr’ble. But

![Diagram showing two different trees with the same 7-deck.](image)

Thm. GJST’21: \(n \)-vertex trees are reconstructible from their \(k \)-decks when \(k \geq \frac{8}{9}n + \frac{4}{9}\sqrt{8n + 5} + 1 \).

Cor. Trees \(\ell \)-reconstr’ble for \(n \geq 9\ell + 24\sqrt{2\ell} + o(\sqrt{\ell}) \).

Thm. KNWZ: Trees are 3-reconstr’ble for \(n \geq 20 \). The case \(\ell = 3 \) of GJST covers \(n \geq 194 \).
Thm. Kostochka-Nahvi-West-Zirlin [2021+]: For $n \geq 2\ell + 1$, n-vertex acyclic graphs are ℓ-recognizable. (not $(5,2)$)

Conj. Trees with $n \geq 2\ell + 1$ are ℓ-reconstr’ble. But

![GJST: 13 vertices, same 7-deck](image)

Thm. GJST’21: n-vertex trees are reconstructible from their k-decks when $k \geq \frac{8}{9}n + \frac{4}{9}\sqrt{8n + 5} + 1$.

Cor. Trees ℓ-reconstr’ble for $n \geq 9\ell + 24\sqrt{2\ell} + o(\sqrt{\ell})$.

Thm. KNWZ: Trees are 3-reconstr’ble for $n \geq 20$.

The case $\ell = 3$ of GJST covers $n \geq 194$.

Ours, only for $\ell = 3$, takes 48 pages (uses rooted trees).
Main Idea to Recognize Acyclic Graphs

Thm. For \(n \geq 2\ell + 2 \), the \((n - \ell)\)-deck \(D \) of an \(n \)-vertex graph \(G \) determines whether \(G \) has a cycle.
Main Idea to Recognize Acyclic Graphs

Thm. For \(n \geq 2l + 2 \), the \((n - l)\)-deck \(D \) of an \(n \)-vertex graph \(G \) determines whether \(G \) has a cycle.

Def. \(k \)-vine = a tree with diameter \(2k \).

\(k \)-center = the center of a \(k \)-vine.
Main Idea to Recognize Acyclic Graphs

Thm. For $n \geq 2l + 2$, the $(n - l)$-deck D of an n-vertex graph G determines whether G has a cycle.

Def. k-vine = a tree with diameter $2k$.
k-center = the center of a k-vine.

Idea: for suitable k, D determines the # of k-centers in any reconstruction, but a reconstr’tn having a cycle has more k-centers than an acyclic reconstruction.
Main Idea to Recognize Acyclic Graphs

Thm. For \(n \geq 2l + 2 \), the \((n - l)\)-deck \(D \) of an \(n \)-vertex graph \(G \) determines whether \(G \) has a cycle.

Def.
- **k-vine** = a tree with diameter \(2k \).
- **k-center** = the center of a **k**-vine.

Idea: for suitable \(k \), \(D \) determines the \# of \(k \)-centers in any reconstruction, but a reconstr’tn having a cycle has more \(k \)-centers than an acyclic reconstruction.

Lem. In a graph \(G \) with girth at least \(2k + 2 \), every \(k \)-vine is contained in a unique maximal \(k \)-vine.
Main Idea to Recognize Acyclic Graphs

Thm. For \(n \geq 2\ell + 2 \), the \((n - \ell)\)-deck \(\mathcal{D} \) of an \(n \)-vertex graph \(G \) determines whether \(G \) has a cycle.

Def. \(k \)-vine = a tree with diameter \(2k \).
\(k \)-center = the center of a \(k \)-vine.

Idea: for suitable \(k \), \(\mathcal{D} \) determines the \# of \(k \)-centers in any reconstruction, but a reconstr’tn having a cycle has more \(k \)-centers than an acyclic reconstruction.

Lem. In a graph \(G \) with girth at least \(2k + 2 \), every \(k \)-vine is contained in a unique maximal \(k \)-vine.

Pf. Girth \(\geq 2k+2 \) \(\Rightarrow \) a \(k \)-vine \(B \) is an induced subgraph.
Main Idea to Recognize Acyclic Graphs

Thm. For \(n \geq 2\ell + 2 \), the \((n - \ell)\)-deck \(\mathcal{D} \) of an \(n \)-vertex graph \(G \) determines whether \(G \) has a cycle.

Def. \(k \)-vine = a tree with diameter \(2k \).
\(k \)-center = the center of a \(k \)-vine.

Idea: for suitable \(k \), \(\mathcal{D} \) determines the \# of \(k \)-centers in any reconstruction, but a reconstr’n having a cycle has more \(k \)-centers than an acyclic reconstruction.

Lem. In a graph \(G \) with girth at least \(2k + 2 \), every \(k \)-vine is contained in a unique maximal \(k \)-vine.

Pf. Girth \(\geq 2k+2 \) \(\Rightarrow \) a \(k \)-vine \(B \) is an induced subgraph.
Diameter \(2k \) \(\Rightarrow \) \(B \) has unique center \(v \).
Main Idea to Recognize Acyclic Graphs

Thm. For \(n \geq 2l + 2 \), the \((n - l)\)-deck \(D \) of an \(n \)-vertex graph \(G \) determines whether \(G \) has a cycle.

Def. \(k \)-vine = a tree with diameter \(2k \).
\(k \)-center = the center of a \(k \)-vine.

Idea: for suitable \(k \), \(D \) determines the \# of \(k \)-centers in any reconstruction, but a reconstr’tn having a cycle has more \(k \)-centers than an acyclic reconstruction.

Lem. In a graph \(G \) with girth at least \(2k + 2 \), every \(k \)-vine is contained in a unique maximal \(k \)-vine.

Pf. Girth \(\geq 2k + 2 \) \(\Rightarrow \) a \(k \)-vine \(B \) is an induced subgraph. Diameter \(2k \) \(\Rightarrow \) \(B \) has unique center \(v \).
No \(k \)-vine with other center contains \(B \).
Main Idea to Recognize Acyclic Graphs

Thm. For \(n \geq 2\ell + 2 \), the \((n - \ell)\)-deck \(D \) of an \(n \)-vertex graph \(G \) determines whether \(G \) has a cycle.

Def. \(k \)-vine = a tree with diameter \(2k \).
\(k \)-center = the center of a \(k \)-vine.

Idea: for suitable \(k \), \(D \) determines the # of \(k \)-centers in any reconstruction, but a reconstr’tn having a cycle has more \(k \)-centers than an acyclic reconstruction.

Lem. In a graph \(G \) with girth at least \(2k + 2 \), every \(k \)-vine is contained in a unique maximal \(k \)-vine.

Pf. Girth \(\geq 2k+2 \) \(\Rightarrow \) a \(k \)-vine \(B \) is an induced subgraph. Diameter \(2k \) \(\Rightarrow \) \(B \) has unique center \(v \).
No \(k \)-vine with other center contains \(B \).
\(\therefore \) unique maximal \(k \)-vine having \(B \) is the \(k \)-ball at \(v \).
Main Idea to Recognize Acyclic Graphs

Thm. For \(n \geq 2l + 2 \), the \((n - l)\)-deck \(D \) of an \(n \)-vertex graph \(G \) determines whether \(G \) has a cycle.

Def.
- **\(k \)-vine** = a tree with diameter \(2k \).
- **\(k \)-center** = the center of a \(k \)-vine.

Idea: for suitable \(k \), \(D \) determines the \# of \(k \)-centers in any reconstruction, but a reconstr’tn having a cycle has more \(k \)-centers than an acyclic reconstruction.

Lem. In a graph \(G \) with girth at least \(2k + 2 \), every \(k \)-vine is contained in a unique maximal \(k \)-vine.

Pf. Girth \(\geq 2k+2 \) \(\Rightarrow \) a \(k \)-vine \(B \) is an induced subgraph. Diameter \(2k \) \(\Rightarrow \) \(B \) has unique center \(v \). No \(k \)-vine with other center contains \(B \).
\(\therefore \) unique maximal \(k \)-vine having \(B \) is the \(k \)-ball at \(v \).

Cor. To count \(k \)-centers, count maximal \(k \)-vines.
The Counting Lemma

The Counting Lemma

Def. \mathcal{F}-subgraph = induced subgraph of G in family \mathcal{F}.

$s(F, G) = \#$induced copies of F in G.

$m(F, G) = \#$copies of F as a maximal \mathcal{F}-subgraph of G.

The Counting Lemma

Def. \(\mathcal{F} \)-subgraph = induced subgraph of \(G \) in family \(\mathcal{F} \).

\[
s(F, G) = \# \text{induced copies of } F \text{ in } G.
\]

\[
m(F, G) = \# \text{copies of } F \text{ as a maximal } \mathcal{F}\text{-subgraph of } G.
\]

absorbing family \(\mathcal{F} = \) every induced \(\mathcal{F}\)-subgraph of \(G \) lies in a unique maximal \(\mathcal{F}\)-subgraph of \(G \).
The Counting Lemma

Def. \mathcal{F}-subgraph = induced subgraph of G in family \mathcal{F}.
$s(F, G) = \#$ induced copies of F in G.
$m(F, G) = \#$ copies of F as a maximal \mathcal{F}-subgraph of G.

absorbing family $\mathcal{F} = \text{every induced } \mathcal{F}\text{-subgraph of } G$ lies in a unique maximal \mathcal{F}-subgraph of G.

Lem. If \mathcal{F} is absorbing for n-vertex G with $(n - \ell)$-deck \mathcal{D}, and $m(F, G)$ is known for each $F \in \mathcal{F}$ with at least $n - \ell$ vertices, then $m(F, G)$ is determined for all $F \in \mathcal{F}$.
The Counting Lemma

Def. \mathcal{F}-subgraph = induced subgraph of G in family \mathcal{F}.
$s(F, G) = \#$ induced copies of F in G.
$m(F, G) = \#$ copies of F as a maximal \mathcal{F}-subgraph of G.

absorbing family $\mathcal{F} = \text{every induced } \mathcal{F}\text{-subgraph of } G \text{ lies in a unique maximal } \mathcal{F}\text{-subgraph of } G$.

Lem. If \mathcal{F} is absorbing for n-vertex G with $(n - \ell)$-deck \mathcal{D}, and $m(F, G)$ is known for each $F \in \mathcal{F}$ with at least $n - \ell$ vertices, then $m(F, G)$ is determined for all $F \in \mathcal{F}$.

Pf. For each $F_0 \in \mathcal{F}$, use induction on max length of induced subgraph chain F_0, \ldots, F_r in G. r is known.
The Counting Lemma

Def. \mathcal{F}-subgraph = induced subgraph of G in family \mathcal{F}. $s(F, G) = \# \text{induced copies of } F \text{ in } G$. $m(F, G) = \# \text{copies of } F \text{ as a maximal } \mathcal{F}\text{-subgraph of } G$.

absorbing family $\mathcal{F} = \text{every induced } \mathcal{F}\text{-subgraph of } G \text{ lies in a unique maximal } \mathcal{F}\text{-subgraph of } G$.

Lem. If \mathcal{F} is absorbing for n-vertex G with $(n - \ell)$-deck \mathcal{D}, and $m(F, G)$ is known for each $F \in \mathcal{F}$ with at least $n - \ell$ vertices, then $m(F, G)$ is determined for all $F \in \mathcal{F}$.

Pf. For each $F_0 \in \mathcal{F}$, use induction on max length of induced subgraph chain F_0, \ldots, F_r in G. r is known. If $r = 0$, then $m(F, G) = s(F, G)$.
The Counting Lemma

Def. \mathcal{F}-subgraph $= \text{induced subgraph of } G \text{ in family } \mathcal{F}$. $s(F, G) = \#\text{induced copies of } F \text{ in } G$. $m(F, G) = \#\text{copies of } F \text{ as a maximal } \mathcal{F}\text{-subgraph of } G$.

absorbing family $\mathcal{F} = \text{every induced } \mathcal{F}\text{-subgraph of } G \text{ lies in a unique maximal } \mathcal{F}\text{-subgraph of } G$.

Lem. If \mathcal{F} is absorbing for n-vertex G with $(n − \ell)$-deck \mathcal{D}, and $m(F, G)$ is known for each $F \in \mathcal{F}$ with at least $n − \ell$ vertices, then $m(F, G)$ is determined for all $F \in \mathcal{F}$.

Pf. For each $F_0 \in \mathcal{F}$, use induction on max length of induced subgraph chain F_0, \ldots, F_r in G. r is known. If $r = 0$, then $m(F, G) = s(F, G)$. For $r > 0$, gather copies of F by unique maximal H.
The Counting Lemma

Def. \mathcal{F}-subgraph $=$ induced subgraph of G in family \mathcal{F}.
$s(F, G) =$ #induced copies of F in G.
$m(F, G) =$ #copies of F as a maximal \mathcal{F}-subgraph of G.

absorbing family $\mathcal{F} =$ every induced \mathcal{F}-subgraph of G lies in a unique maximal \mathcal{F}-subgraph of G.

Lem. If \mathcal{F} is absorbing for n-vertex G with $(n - l)$-deck D, and $m(F, G)$ is known for each $F \in \mathcal{F}$ with at least $n - l$ vertices, then $m(F, G)$ is determined for all $F \in \mathcal{F}$.

Pf. For each $F_0 \in \mathcal{F}$, use induction on max length of induced subgraph chain F_0, \ldots, F_r in G. r is known.
If $r = 0$, then $m(F, G) = s(F, G)$.
For $r > 0$, gather copies of F by unique maximal H.
Now $s(F, G) = \sum_{H \in \mathcal{F}} s(F, H)m(H, G)$, solve for $m(F, G)$.
\[\blacksquare\]
Applications

Cor. For $n > 2\ell$, every n-vertex graph having no component with more than $n - \ell$ vertices is ℓ-reconstr’bl.
Applications

Cor. For $n > 2l$, every n-vertex graph having no component with more than $n - l$ vertices is l-reconstructible.

Pf. $\{\text{connected graphs}\}$ is absorbing family for any G.
Applications

Cor. For $n > 2l$, every n-vertex graph having no component w. more than $n - l$ vertices is l-reconstr’bl.

Pf. \{connected graphs\} is absorbing family for any G.

Recognition: components have $\leq n - l$ verts $\iff G$ has ≤ 1 connected card.
Applications

Cor. For $n > 2l$, every n-vertex graph having no component w. more than $n - l$ vertices is l-reconstructible.

Pf. \{connected graphs\} is absorbing family for any G. Recognition: components have $\leq n - l$ verts $\iff G$ has ≤ 1 connected card. Then apply the Counting Lemma.
Applications

Cor. For $n > 2\ell$, every n-vertex graph having no component with more than $n - \ell$ vertices is ℓ-reconstructible.

Pf. \{connected graphs\} is an absorbing family for any G. Recognition: components have $\leq n - \ell$ vertices \iff G has ≤ 1 connected component. Then apply the Counting Lemma.

Sharpness by $P_\ell + P_\ell$ vs. $P_{\ell+1} + P_{\ell-1}$ when $n = 2\ell$.

\blacksquare
Applications

Cor. For $n > 2\ell$, every n-vertex graph having no component w. more than $n - \ell$ vertices is ℓ-reconstr’bl.

Pf. \{connected graphs\} is absorbing family for any G. Recognition: components have $\leq n - \ell$ verts $\iff G$ has ≤ 1 connected card. Then apply the Counting Lemma. Sharpness by $P_\ell + P_\ell$ vs. $P_{\ell+1} + P_{\ell-1}$ when $n = 2\ell$.

Cor. If \mathcal{D} is an $(n - \ell)$-deck where every card is acyclic and has radius greater than k, then all n-vertex reconstructions have the same number of k-centers.
Cor. For \(n > 2l \), every \(n \)-vertex graph having no component w. more than \(n - l \) vertices is \(l \)-reconstr’bl.

Pf. \(\{ \text{connected graphs} \} \) is absorbing family for any \(G \).

Recognition: components have \(\leq n - l \) verts \(\iff \) \(G \) has \(\leq 1 \) connected card. Then apply the Counting Lemma.

Sharpness by \(P_l + P_l \) vs. \(P_{l+1} + P_{l-1} \) when \(n = 2l \).

Cor. If \(\mathcal{D} \) is an \((n - l) \)-deck where every card is acyclic and has radius greater than \(k \), then all \(n \)-vertex reconstructions have the same number of \(k \)-centers.

Pf. radius \(> k \) \(\Rightarrow \) \(n - l \geq 2k + 2 \) \(\Rightarrow \) girth \(\geq 2k+3 \).
Applications

Cor. For \(n > 2\ell \), every \(n \)-vertex graph having no component w. more than \(n - \ell \) vertices is \(\ell \)-reconstr’bl.

Pf. \{connected graphs\} is absorbing family for any \(G \). Recognition: components have \(\leq n - \ell \) verts \(\iff G \) has \(\leq 1 \) connected card. Then apply the Counting Lemma. Sharpness by \(P_{\ell} + P_{\ell} \) vs. \(P_{\ell+1} + P_{\ell-1} \) when \(n = 2\ell \).

Cor. If \(\mathcal{D} \) is an \((n - \ell)\)-deck where every card is acyclic and has radius greater than \(k \), then all \(n \)-vertex reconstructions have the same number of \(k \)-centers.

Pf. radius \(> k \) \(\Rightarrow n - \ell \geq 2k + 2 \) \(\Rightarrow \) girth \(\geq 2k + 3 \).
\[\therefore \text{Family of } k \text{-vines is absorbing.} \]
Applications

Cor. For \(n > 2\ell \), every \(n \)-vertex graph having no component w. more than \(n - \ell \) vertices is \(\ell \)-reconstr’bl.

Pf. \{connected graphs\} is absorbing family for any \(G \).

Recognition: components have \(\leq n - \ell \) verts \(\iff \) \(G \) has \(\leq 1 \) connected card. Then apply the Counting Lemma.

Sharpness by \(P_\ell + P_\ell \) vs. \(P_{\ell+1} + P_{\ell-1} \) when \(n = 2\ell \).

Cor. If \(\mathcal{D} \) is an \((n - \ell)\)-deck where every card is acyclic and has radius greater than \(k \), then all \(n \)-vertex reconstructions have the same number of \(k \)-centers.

Pf. radius \(> k \) \(\implies \) \(n - \ell \geq 2k + 2 \) \(\implies \) girth \(\geq 2k + 3 \).

\[\therefore \] Family of \(k \)-vines is absorbing.

No \(\#k \)-vines have \(\geq n - \ell \) vertices (too small radius).
Applications

Cor. For $n > 2l$, every n-vertex graph having no component w. more than $n - l$ vertices is l-reconstr’bl.

Pf. \{connected graphs\} is absorbing family for any G.

Recognition: components have $\leq n - l$ verts \iff G has ≤ 1 connected card. Then apply the Counting Lemma.

Sharpness by $P_l + P_l$ vs. $P_{l+1} + P_{l-1}$ when $n = 2l$.

Cor. If \mathcal{D} is an $(n - l)$-deck where every card is acyclic and has radius greater than k, then all n-vertex reconstructions have the same number of k-centers.

Pf. radius $> k \Rightarrow n - l \geq 2k + 2 \Rightarrow$ girth $\geq 2k + 3$.

\therefore Family of k-vines is absorbing.

No $\#k$-vines have $\geq n - l$ vertices (too small radius).

\therefore Counting Lemma yields $\#\text{maximal } k$-vines.

These correspond bijectively to k-centers.
The Marking Argument

Def. \(\hat{k} = \text{min radius connected card}: \text{short card} = \text{rad} \hat{k} \).

\(d = \#\text{disj. length-} \hat{k} \text{ paths from center.} \) Let \(k = \hat{k} - 1 \).

Def. **Marking argument:** For short card \(C \) from forest \(F \), each \(k \)-center \(x \) other than the center \(z \) marks a vertex \(x' \) at distance \(k \) from \(x \) (direction away from \(z \)).

\[\begin{align*}
\hat{k} &= 3 \\
k &= 2 \\
d &= 3 \Rightarrow \#\text{paths}
\end{align*} \]
The Marking Argument

Def. $\hat{k} = \text{min radius connected card}: \text{short card} = \text{rad} \hat{k}$.
$d = \#\text{disj. length-}\hat{k} \text{ paths from center}$.
Let $k = \hat{k} - 1$.

Def. Marking argument: For short card C from forest F, each k-center x other than the center z marks a vertex x' at distance k from x (direction away from z).

Lem. If C is a short card of F, then $\#k$-centers in F is at most $1 + d + \ell$. Equality only if every vertex outside C is marked and F is a tree.
The Marking Argument

Def. \(\hat{k} = \min \text{ radius connected card: short card} = \text{rad} \hat{k} \).
\[d = \# \text{disj. length-} \hat{k} \text{ paths from center.} \]
Let \(k = \hat{k} - 1 \).

Def. Marking argument: For short card \(C \) from forest \(F \), each \(k \)-center \(x \) other than the center \(z \) marks a vertex \(x' \) at distance \(k \) from \(x \) (direction away from \(z \)).

\[\hat{k} = 3 \quad k = 2 \quad d = 3 = \# \text{paths} \]

Lem. If \(C \) is a short card of \(F \), then \#\(k \)-centers in \(F \) is at most \(1 + d + \ell \). Equality only if every vertex outside \(C \) is marked and \(F \) is a tree.

Pf. \(k \)-centers not adj. to \(z \) must mark verts. outside \(C \).
Ambiguous Decks

Def. ambiguous deck $\mathcal{D} = \text{the (}n - \ell\text{)-deck of both an acyclic } F \text{ and non-acyclic } H \text{ with } n \text{ vertices.}$
Ambiguous Decks

Def. ambiguous deck \(D \) = the \((n - \ell)\)-deck of both an acyclic \(F \) and non-acyclic \(H \) with \(n \) vertices.

• all cards acyclic \(\Rightarrow \) girth\((H) \geq n - \ell + 1 \geq 2\hat{k} = 2k + 2 \)
 \(\Rightarrow \) \(F \) and \(H \) have the same number of \(k \)-centers.
Ambiguous Decks

Def. ambiguous deck $\mathcal{D} = \text{the } (n - \ell)\text{-deck of both an acyclic } F \text{ and non-acyclic } H \text{ with } n \text{ vertices.}

- all cards acyclic \Rightarrow girth(H) $\geq n - \ell + 1 \geq 2\hat{k} = 2k + 2$
 $\Rightarrow F \text{ and } H \text{ have the same number of } k\text{-centers.}$

Lem. ambiguous \mathcal{D} and $n \geq 2\ell + 2 \Rightarrow \hat{k} > 1.$
Ambiguous Decks

Def. ambiguous deck $\mathcal{D} = \text{the } (n - \ell)\text{-deck of both an acyclic } F \text{ and non-acyclic } H \text{ with } n \text{ vertices.}

- all cards acyclic $\Rightarrow \text{girth}(H) \geq n - \ell + 1 \geq 2\hat{k} = 2k + 2 \\
 \Rightarrow F \text{ and } H \text{ have the same number of } k\text{-centers.}$

Lem. ambiguous \mathcal{D} and $n \geq 2\ell + 2 \Rightarrow \hat{k} > 1.$

Pf. If $\hat{k} = 1,$ then short card is a star with $n - \ell$ vertices.
Ambiguous Decks

Def. ambiguous deck $\mathcal{D} = \text{the } (n - ℓ)\text{-deck of both an acyclic } F \text{ and non-acyclic } H \text{ with } n \text{ vertices.}

- all cards acyclic $\Rightarrow \text{girth}(H) \geq n - ℓ + 1 \geq 2\hat{k} = 2k + 2$
 $\Rightarrow F \text{ and } H \text{ have the same number of } k\text{-centers.}$

Lem. ambiguous \mathcal{D} and $n \geq 2ℓ + 2 \Rightarrow \hat{k} > 1.$

Pf. If $\hat{k} = 1,$ then short card is a star with $n - ℓ$ vertices. $2n - 2ℓ + 1 \geq n + 2 \Rightarrow \text{cycle+star in same compon. of } H.$
Ambiguous Decks

Def. ambiguous deck $\mathcal{D} = $ the $(n - \ell)$-deck of both an acyclic F and non-acyclic H with n vertices.

- all cards acyclic \Rightarrow girth$(H) \geq n - \ell + 1 \geq 2\hat{k} = 2k + 2$
 \Rightarrow F and H have the same number of k-centers.

Lem. ambiguous \mathcal{D} and $n \geq 2\ell + 2 \Rightarrow \hat{k} > 1$.

Pf. If $\hat{k} = 1$, then short card is a star with $n - \ell$ vertices.
$2n - 2\ell + 1 \geq n + 2 \Rightarrow$ cycle+star in same compon. of H.
2-deck $\Rightarrow \leq n - 1$ edges $\Rightarrow H$ is disconnected.
Ambiguous Decks

Def. ambiguous deck $\mathcal{D} = \text{the } (n - \ell)\text{-deck of both an acyclic } F \text{ and non-acyclic } H \text{ with } n \text{ vertices.}$

- all cards acyclic \Rightarrow girth$(H) \geq n - \ell + 1 \geq 2\hat{k} = 2k + 2$
 \Rightarrow F and H have the same number of k-centers.

Lem. ambiguous \mathcal{D} and $n \geq 2\ell + 2 \Rightarrow \hat{k} > 1$.

Pf. If $\hat{k} = 1$, then short card is a star with $n - \ell$ vertices.

$2n - 2\ell + 1 \geq n + 2 \Rightarrow$ cycle+star in same compon. of H.

2-deck $\Rightarrow \leq n - 1$ edges $\Rightarrow H$ is disconnected.

Girth $\geq 4 \Rightarrow$ star & cycle share ≤ 3 verts.
Ambiguous Decks

Def. ambiguous deck $\mathcal{D} = \text{the } (n - \ell)\text{-deck of both an acyclic } F \text{ and non-acyclic } H \text{ with } n \text{ vertices.}

- all cards acyclic \implies girth$(H) \geq n - \ell + 1 \geq 2\hat{k} = 2k + 2$ $\implies F$ and H have the same number of k-centers.

Lem. ambiguous \mathcal{D} and $n \geq 2\ell + 2 \implies \hat{k} > 1$.

Pf. If $\hat{k} = 1$, then short card is a star with $n - \ell$ vertices. $2n - 2\ell + 1 \geq n + 2 \implies$ cycle+star in same compon. of H. 2-deck $\implies \leq n - 1$ edges $\implies H$ is disconnected. Girth $\geq 4 \implies$ star & cycle share ≤ 3 verts. Now $(n - \ell + 1) + (n - \ell) - 3 \leq n - 1 \implies n \leq 2\ell + 1$. \blacksquare
Ambiguous Decks

Def. ambiguous deck $\mathcal{D} =$ the $(n - l)$-deck of both an acyclic F and non-acyclic H with n vertices.

- all cards acyclic \Rightarrow girth$(H) \geq n - l + 1 \geq 2\hat{k} = 2k + 2$ \Rightarrow F and H have the same number of k-centers.

Lem. ambiguous \mathcal{D} and $n \geq 2l + 2$ \Rightarrow $\hat{k} > 1$.

Pf. If $\hat{k} = 1$, then short card is a star with $n - l$ vertices.

$2n - 2l + 1 \geq n + 2$ \Rightarrow cycle + star in same compon. of H.

2-deck \Rightarrow $\leq n - 1$ edges \Rightarrow H is disconnected.

Girth ≥ 4 \Rightarrow star & cycle share ≤ 3 verts.

Now $(n - l + 1) + (n - l) - 3 \leq n - 1$ \Rightarrow $n \leq 2l + 1$.

Lem. ambig. \mathcal{D} & $n \geq 2l + 2$ \Rightarrow no card of diam $2k + 1$.

Def. ambiguous deck $D = \text{the } (n - l)\text{-deck of both an acyclic } F \text{ and non-acyclic } H \text{ with } n \text{ vertices.}$

- all cards acyclic \Rightarrow girth$(H) \geq n - l + 1 \geq 2\hat{k} = 2k + 2$
 \Rightarrow F and H have the same number of k-centers.

Lem. ambiguous D and $n \geq 2l + 2 \Rightarrow \hat{k} > 1.$

Pf. If $\hat{k} = 1,$ then short card is a star with $n - l$ vertices.
$2n - 2l + 1 \geq n + 2 \Rightarrow$ cycle+star in same compon. of $H.$
2-deck $\Rightarrow \leq n - 1$ edges $\Rightarrow H$ is disconnected.
Girth $\geq 4 \Rightarrow$ star & cycle share ≤ 3 verts.
Now $(n - l + 1) + (n - l) - 3 \leq n - 1 \Rightarrow n \leq 2l + 1.$

Lem. ambigu. D & $n \geq 2l + 2 \Rightarrow$ no card of diam $2k+1.$

Pf. F and H have same number of k-centers.
Def. ambiguous deck \mathcal{D} = the $(n - \ell)$-deck of both an acyclic F and non-acyclic H with n vertices.

- all cards acyclic \Rightarrow girth$(H) \geq n - \ell + 1 \geq 2\hat{k} = 2k + 2$
 \Rightarrow F and H have the same number of k-centers.

Lem. ambiguous \mathcal{D} and $n \geq 2\ell + 2$ \Rightarrow $\hat{k} > 1$.

Pf. If $\hat{k} = 1$, then short card is a star with $n - \ell$ vertices.
$2n - 2\ell + 1 \geq n + 2$ \Rightarrow cycle + star in same compon. of H.
2-deck \Rightarrow $\leq n - 1$ edges \Rightarrow H is disconnected.
Girth ≥ 4 \Rightarrow star & cycle share ≤ 3 verts.
Now $(n - \ell + 1) + (n - \ell) - 3 \leq n - 1$ \Rightarrow $n \leq 2\ell + 1$.

Lem. ambig. \mathcal{D} & $n \geq 2\ell + 2$ \Rightarrow no card of diam $2k + 1$.

Pf. F and H have same number of k-centers.
Diameter $2k + 1$ \Rightarrow $d_C = 1$, $\therefore F$ has $\leq 2 + \ell k$-ctrs.
Ambiguous Decks

Def. ambiguous deck $\mathcal{D} = \text{the } (n - \ell)\text{-deck of both an acyclic } F \text{ and non-acyclic } H \text{ with } n \text{ vertices.}

- all cards acyclic \implies girth(H) $\geq n - \ell + 1 \geq 2\hat{k} = 2k + 2$
 \implies F and H have the same number of k-centers.

Lem. ambiguous \mathcal{D} and $n \geq 2\ell + 2 \implies \hat{k} > 1$.

Pf. If $\hat{k} = 1$, then short card is a star with $n - \ell$ vertices.
2n−2ℓ+1 \geq n+2 \implies cycle+star in same compon. of H.
2-deck \implies \leq n−1 edges \implies H is disconnected.
Girth $\geq 4 \implies$ star & cycle share \leq 3 verts.
Now $(n - \ell + 1) + (n - \ell) - 3 \leq n - 1 \implies n \leq 2\ell + 1$. ■

Lem. ambig. \mathcal{D} & $n \geq 2\ell+2 \implies$ no card of diam $2k+1$.

Pf. F and H have same number of k-centers.
Diameter $2k + 1 \implies d_C = 1, \quad \therefore F \text{ has } \leq 2 + \ell \text{ } k\text{-ctrs.}$
All verts. on cycle are k-ctrs, $\therefore H \text{ has } \geq n - \ell + 1 \text{ } k\text{-ctrs.}$
Ambiguous Decks

Def. ambiguous deck $\mathcal{D} =$ the $(n - l)$-deck of both an acyclic F and non-acyclic H with n vertices.

- all cards acyclic \Rightarrow girth$(H) \geq n - l + 1 \geq 2\hat{k} = 2k + 2$
 \Rightarrow F and H have the same number of k-centers.

Lem. ambiguous \mathcal{D} and $n \geq 2l + 2 \Rightarrow \hat{k} > 1$.

Pf. If $\hat{k} = 1$, then short card is a star with $n - l$ vertices.
$2n - 2l + 1 \geq n + 2 \Rightarrow$ cycle + star in same compon. of H.
2-deck $\Rightarrow \leq n - 1$ edges \Rightarrow H is disconnected.
Girth $\geq 4 \Rightarrow$ star & cycle share ≤ 3 verts.
Now $(n - l + 1) + (n - l) - 3 \leq n - 1 \Rightarrow n \leq 2l + 1$.

Lem. ambig. \mathcal{D} & $n \geq 2l + 2 \Rightarrow$ no card of diam $2k + 1$.

Pf. F and H have same number of k-centers.
Diameter $2k + 1 \Rightarrow d_C = 1$, $\therefore F$ has $\leq 2 + l$ k-ctrs.
All verts. on cycle are k-ctrs, $\therefore H$ has $\geq n - l + 1$ k-ctrs.
Now $n - l + 1 \leq 2 + l \Rightarrow n \leq 2l + 1$. ■
Def. k-evine = a tree with diameter $2k + 1$.

k-central edge = the central edge of a k-evine.
k-Central Edges and End of Proof

Def. k-evine = a tree with diameter $2k + 1$.

k-central edge = the central edge of a k-evine.

Lem. All cards acyclic w. radius $> k$, none w. diam $2k + 1$, and $2k + 2 \leq n - \ell \Rightarrow \mathcal{D}$ fixes $\#k$-central edges.
k-Central Edges and End of Proof

Def.
k-evine = a tree with diameter $2k + 1$.
k-central edge = the central edge of a k-evine.

Lem.
All cards acyclic w. radius $> k$, none w. diam $2k+1$, and $2k + 2 \leq n - \ell \Rightarrow \mathcal{D}$ fixes $\#k$-central edges.

Pf.
No card w. diam $2k+1 \Rightarrow$ no k-evine has $> n - \ell$ vrts.
k-Central Edges and End of Proof

Def.
k-evine = a tree with diameter $2k+1$.
k-central edge = the central edge of a k-evine.

Lem.
All cards acyclic w. radius $> k$, none w. diam $2k+1$, and $2k + 2 \leq n – l \Rightarrow \mathcal{D}$ fixes $\#k$-central edges.

Pf.
No card w. diam $2k+1 \Rightarrow$ no k-evine has $>n–l$ vrts.
$2k+2 \leq n–l \Rightarrow$ any reconstruction has girth $\geq 2k+3$.

k-Central Edges and End of Proof

Def. *k-evine* = a tree with diameter $2k + 1$.

k-central edge = the central edge of a *k-evine*.

Lem. All cards acyclic w. radius $> k$, none w. diam $2k+1$, and $2k + 2 \leq n - \ell \Rightarrow \mathcal{D}$ fixes #*k*-central edges.

Pf. No card w. diam $2k+1 \Rightarrow$ no *k*-evine has $> n - \ell$ vrts.

$2k+2 \leq n - \ell \Rightarrow$ any reconstruction has girth $\geq 2k+3$.

∴ {*k*-evines} is absorbing; Counting Lemma applies. ■
k-Central Edges and End of Proof

Def. *k-evine* = a tree with diameter $2k + 1$.

k-central edge = the central edge of a *k-evine*.

Lem. All cards acyclic w. radius > k, none w. diam $2k + 1$, and $2k + 2 \leq n - l$ ⇒ D fixes #*k*-central edges.

Pf. No card w. diam $2k + 1$ ⇒ no *k-evine* has $>n-l$ vrts.

$2k + 2 \leq n - l$ ⇒ any reconstruction has girth $\geq 2k + 3$.

∴ \{*k-evines*\} is absorbing; Counting Lemma applies. □

Thm. For $n \geq 2l + 2$, acyclicity is l-recognizable.
k-Central Edges and End of Proof

Def. k-evine = a tree with diameter $2k+1$.
k-central edge = the central edge of a k-evine.

Lem. All cards acyclic w. radius > k, none w. diam $2k+1$, and $2k+2 \leq n - \ell \Rightarrow \mathcal{D}$ fixes $\#k$-central edges.

Pf. No card w. diam $2k+1 \Rightarrow$ no k-evine has $>n-\ell$ vrtxs.
$2k+2 \leq n - \ell \Rightarrow$ any reconstruction has girth $\geq 2k+3$.
$\therefore \{k$-evines$\}$ is absorbing; Counting Lemma applies. ■

Thm. For $n \geq 2\ell + 2$, acyclicity is ℓ-recognizable.

Pf. No cards of diam $2k+1 \Rightarrow \#k$-central edges fixed.
Def. k-evine = a tree with diameter $2k+1$.

k-central edge = the central edge of a k-evine.

Lem. All cards acyclic w. radius $> k$, none w. diam $2k+1$, and $2k+2 \leq n - \ell \Rightarrow \mathcal{D}$ fixes #k-central edges.

Pf. No card w. diam $2k+1 \Rightarrow$ no k-evine has $> n - \ell$ vrts.

$2k+2 \leq n - \ell \Rightarrow$ any reconstruction has girth $\geq 2k+3$.

∴ \{k-evines} is absorbing; Counting Lemma applies. ■

Thm. For $n \geq 2\ell + 2$, acyclicity is ℓ-recognizable.

Pf. No cards of diam $2k+1 \Rightarrow$ #k-central edges fixed.

Card C: edge is k-central \iff end away from z is k-cntr.
k-Central Edges and End of Proof

Def.
k-evine = a tree with diameter $2k + 1$.
k-central edge = the central edge of a k-evine.

Lem. All cards acyclic w. radius $> k$, none w. diam $2k+1$, and $2k + 2 \leq n - l \Rightarrow \mathcal{D}$ fixes $\#k$-central edges.

Pf. No card w. diam $2k+1 \Rightarrow$ no k-evine has $>n-l$ vrts.
$2k+2 \leq n-l \Rightarrow$ any reconstruction has girth $\geq 2k+3$.
∴ $\{k$-evines$\}$ is absorbing; Counting Lemma applies.

Thm. For $n \geq 2l + 2$, acyclicity is l-recognizable.

Pf. No cards of diam $2k + 1 \Rightarrow \#k$-central edges fixed.
Card C: edge is k-central \iff end away from z is k-cntr.
∴ $\#k$-centers $\leq 1 + d + l \Rightarrow \#k$-central edges $\leq d + l$.

k-Central Edges and End of Proof

Def. k-evine = a tree with diameter $2k + 1$.

k-central edge = the central edge of a k-evine.

Lem. All cards acyclic w. radius $> k$, none w. diam $2k + 1$, and $2k + 2 \leq n - l \Rightarrow D$ fixes $\#k$-central edges.

Pf. No card w. diam $2k + 1 \Rightarrow$ no k-evine has $> n - l$ vrts.

$2k + 2 \leq n - l \Rightarrow$ any reconstruction has girth $\geq 2k + 3$.

$\therefore \{k$-evines\} is absorbing; Counting Lemma applies. □

Thm. For $n \geq 2l + 2$, acyclicity is l-recognizable.

Pf. No cards of diam $2k + 1 \Rightarrow \#k$-central edges fixed.

Card C: edge is k-central \iff end away from z is k-cntr.

$\therefore \#k$-centers $\leq 1 + d + l \Rightarrow \#k$-central edges $\leq d + l$.

$C \Rightarrow H$ has d k-central edges w. common endpoint.
Def. k-evine $=$ a tree with diameter $2k+1$. k-central edge $=$ the central edge of a k-evine.

Lem. All cards acyclic w. radius $> k$, none w. diam $2k+1$, and $2k+2 \leq n - \ell \Rightarrow \mathcal{D}$ fixes $\#k$-central edges.

Pf. No card w. diam $2k+1 \Rightarrow$ no k-evine has $> n - \ell$ vrts. $2k+2 \leq n - \ell \Rightarrow$ any reconstruction has girth $\geq 2k+3$. \[\therefore \{k$-evines$\}$ is absorbing; Counting Lemma applies. \[\blacksquare\]

Thm. For $n \geq 2\ell + 2$, acyclicity is ℓ-recognizable.

Pf. No cards of diam $2k+1 \Rightarrow$ $\#k$-central edges fixed. Card C: edge is k-central \iff end away from z is k-cntr. \[\therefore \#k$-centers $\leq 1 + d + \ell \Rightarrow \#k$-central edges $\leq d + \ell$. $C \Rightarrow H$ has d k-central edges w. common endpoint. Only two can be on a cycle.
k-Central Edges and End of Proof

Def.
A **k-evine** is a tree with diameter $2k + 1$.
A **k-central edge** is the central edge of a k-evine.

Lem.
All cards acyclic w. radius $> k$, none w. diam $2k + 1$, and $2k + 2 \leq n - l \implies \mathcal{D}$ fixes $\#k$-central edges.

Pf.
No card w. diam $2k + 1 \implies$ no k-evine has $> n - l$ vrts.
$2k + 2 \leq n - l \implies$ any reconstruction has girth $\geq 2k + 3$.
$\therefore \{k$-evines$\}$ is absorbing; Counting Lemma applies.

Thm.
For $n \geq 2l + 2$, acyclicity is l-recognizable.

Pf.
No cards of diam $2k + 1 \implies \#k$-central edges fixed.
Card C: edge is k-central \iff end away from z is k-cntr.
$\therefore \#k$-centers $\leq 1 + d + l \implies \#k$-central edges $\leq d + l$.
$C \implies H$ has d k-central edges w. common endpoint.
Only two can be on a cycle.
Girth $\geq 2k + 3 \implies$ every edge on a cycle is k-central.
k-Central Edges and End of Proof

Def. \(k\)-evine = a tree with diameter \(2k + 1\).

\(k\)-central edge = the central edge of a \(k\)-evine.

Lem. All cards acyclic w. radius > \(k\), none w. diam \(2k + 1\), and \(2k + 2 \leq n - l \Rightarrow \mathcal{D}\) fixes \#\(k\)-central edges.

Pf. No card w. diam \(2k + 1 \Rightarrow \) no \(k\)-evine has > \(n - l\) vrts.

\(2k + 2 \leq n - l \Rightarrow \) any reconstruction has girth \(\geq 2k + 3\).

\(\therefore\) \(\{k\text{-evines}\}\) is absorbing; Counting Lemma applies.

Thm. For \(n \geq 2l + 2\), acyclicity is \(l\)-recognizable.

Pf. No cards of diam \(2k + 1 \Rightarrow \) \#\(k\)-central edges fixed.

Card \(C\): edge is \(k\)-central \(\iff\) end away from \(z\) is \(k\)-cntr.

\(\therefore\) \#\(k\)-centers \(\leq 1 + d + l \Rightarrow \) \#\(k\)-central edges \(\leq d + l\).

\(C \Rightarrow \) \(H\) has \(d\) \(k\)-central edges w. common endpoint.

Only two can be on a cycle.

Girth \(\geq 2k + 3 \Rightarrow\) every edge on a cycle is \(k\)-central.

\(\therefore\) \(n - l + 1 + d - 2 \leq d + l\). Hence \(n \leq 2l + 1\).
Ideas for $n = 2\ell + 1$

Lemmas again show (1) $\hat{k} > 1$, (2) $2\hat{k} \leq \ell = n - \ell - 1$, (3) Same $#k$-centers and same $#k$-central edges.
Ideas for $n = 2\ell + 1$

Lemmas again show (1) $\hat{k} > 1$, (2) $2\hat{k} \leq \ell = n - \ell - 1$, (3) Same $\#k$-centers and same $\#k$-central edges.

Def. spider = a tree with at most one branch vertex.
Ideas for $n = 2\ell + 1$

Lemmas again show (1) $\hat{k} > 1$, (2) $2\hat{k} \leq \ell = n - \ell - 1$, (3) Same $\#k$-centers and same $\#k$-central edges.

Def. spider = a tree with at most one branch vertex.

Lem. When $n \geq 2\ell + 1$ (except $(5, 2)$), an n-vertex spider has at most $\ell + 3$ paths w. exactly $n - \ell$ vertices (cards).
Ideas for $n = 2\ell + 1$

Lemmas again show (1) $\hat{k} > 1$, (2) $2\hat{k} \leq \ell = n - \ell - 1$, (3) Same $\#k$-centers and same $\#k$-central edges.

Def. spider = a tree with at most one branch vertex.

Lem. When $n \geq 2\ell + 1$ (except $(5, 2)$), an n-vertex spider has at most $\ell + 3$ paths w. exactly $n - \ell$ vertices (cards).

Lem. Ambiguous $D \Rightarrow$ no card with diameter $2k + 1$.
Ideas for $n = 2\ell + 1$

Lemmas again show (1) $\hat{k} > 1$, (2) $2\hat{k} \leq \ell = n - \ell - 1$, (3) Same $\#k$-centers and same $\#k$-central edges.

Def. spider = a tree with at most one branch vertex.

Lem. When $n \geq 2\ell + 1$ (except (5, 2)), an n-vertex spider has at most $\ell + 3$ paths w. exactly $n - \ell$ vertices (cards).

Lem. Ambiguous $D \Rightarrow$ no card with diameter $2k + 1$.

Two pages, using reduction to F being spider and then H having at least $\ell + 4$ paths with exactly $n - \ell$ vertices.
Ideas for $n = 2\ell + 1$

Lemmas again show (1) $\hat{k} > 1$, (2) $2\hat{k} \leq \ell = n - \ell - 1$, (3) Same $\#k$-centers and same $\#k$-central edges.

Def. spider = a tree with at most one branch vertex.

Lem. When $n \geq 2\ell + 1$ (except $(5, 2)$), an n-vertex spider has at most $\ell + 3$ paths w. exactly $n - \ell$ vertices (cards).

Lem. Ambiguous $D \Rightarrow$ no card with diameter $2k + 1$.

Two pages, using reduction to F being spider and then H having at least $\ell + 4$ paths with exactly $n - \ell$ vertices.

Using diameter $2k + 2$ for short cards, in both F and H no \hat{k}-vine has more than $n - \ell$ vertices, so Counting Lemma applies to get $\#\hat{k}$-centers (determined by D).
Ideas for \(n = 2\ell + 1 \)

Lemmas again show (1) \(\hat{k} > 1 \), (2) \(2\hat{k} \leq \ell = n - \ell - 1 \), (3) Same \#k-centers and same \#k-central edges.

Def. spider = a tree with at most one branch vertex.

Lem. When \(n \geq 2\ell+1 \) (except \((5, 2)\)), an \(n \)-vertex spider has at most \(\ell + 3 \) paths w. exactly \(n - \ell \) vertices (cards).

Lem. Ambiguous \(D \Rightarrow \) no card with diameter \(2k+1 \).

Two pages, using reduction to \(F \) being spider and then \(H \) having at least \(\ell + 4 \) paths with exactly \(n - \ell \) vertices.

Using diameter \(2k+2 \) for short cards, in both \(F \) and \(H \) no \(\hat{k} \)-vine has more than \(n - \ell \) vertices, so Counting Lemma applies to get \#\(\hat{k} \)-centers (determined by \(D \)).

By marking argument, \(F \) has at most \(\ell + 1 \) \(\hat{k} \)-centers.
Ideas for $n = 2\ell + 1$

Lemmas again show (1) $\hat{k} > 1$, (2) $2\hat{k} \leq \ell = n - \ell - 1$, (3) Same $\#k$-centers and same $\#k$-central edges.

Def. spider = a tree with at most one branch vertex.

Lem. When $n \geq 2\ell+1$ (except $(5, 2)$), an n-vertex spider has at most $\ell+3$ paths w. exactly $n-\ell$ vertices (cards).

Lem. Ambiguous $\mathcal{D} \Rightarrow$ no card with diameter $2k+1$.

Two pages, using reduction to F being spider and then H having at least $\ell+4$ paths with exactly $n-\ell$ vertices.

Using diameter $2k+2$ for short cards, in both F and H no \hat{k}-vine has more than $n-\ell$ vertices, so Counting Lemma applies to get $\#\hat{k}$-centers (determined by \mathcal{D}).

By marking argument, F has at most $\ell+1 \hat{k}$-centers. Use of the cycle in H yields at least $\ell+2 \hat{k}$-centers.
Open Questions

Conj. Trees with \(n \geq 2\ell + 1 \) are \(\ell \)-reconstructible.
(Not for \((5, 2)\) or \((13, 6)\); known for \(n \geq 9\ell + O(\sqrt{\ell}) \).)
Open Questions

Conj. Trees with $n \geq 2\ell + 1$ are ℓ-reconstructible.
(Not for (5, 2) or (13, 6); known for $n \geq 9\ell + O(\sqrt{\ell})$.)

Conj. Connectedness is ℓ-recognizable for $n \geq 2\ell + 1$.
(True for $\ell = 3$; known threshold is $n \geq 10\ell$.)
Open Questions

Conj. Trees with \(n \geq 2\ell + 1 \) are \(\ell \)-reconstructible.
(Not for \((5, 2)\) or \((13, 6)\); known for \(n \geq 9\ell + O(\sqrt{\ell}) \).)

Conj. Connectedness is \(\ell \)-recognizable for \(n \geq 2\ell + 1 \).
(True for \(\ell = 3 \); known threshold is \(n \geq 10\ell \).)

Ques. Are \(d \)-regular graphs \(\ell \)-reconstructible?
(Known: 3-regular graphs are 2-reconstructible.)
Open Questions

Conj. Trees with $n \geq 2\ell + 1$ are ℓ-reconstructible.
(Not for (5, 2) or (13, 6); known for $n \geq 9\ell + O(\sqrt{\ell})$.)

Conj. Connectedness is ℓ-recognizable for $n \geq 2\ell + 1$.
(True for $\ell = 3$; known threshold is $n \geq 10\ell$.)

Ques. Are d-regular graphs ℓ-reconstructible?
(Known: 3-regular graphs are 2-reconstructible.)

Ques. Are bipartite graphs 2-reconstructible ($n \geq 6$)?
Open Questions

Conj. Trees with \(n \geq 2\ell + 1 \) are \(\ell\)-reconstructible. (Not for \((5, 2)\) or \((13, 6)\); known for \(n \geq 9\ell + O(\sqrt{\ell}) \).)

Conj. Connectedness is \(\ell\)-recognizable for \(n \geq 2\ell + 1 \). (True for \(\ell = 3\); known threshold is \(n \geq 10\ell \).)

Ques. Are \(d\)-regular graphs \(\ell\)-reconstructible? (Known: 3-regular graphs are 2-reconstructible.)

Ques. Are bipartite graphs 2-reconstructible \((n \geq 6)\)?

Ques. S-W’19 Any complete \(r\)-partite \(G\) is determined by \(D_{r+1}(G)\). Is this sharp? \((D_3(K_{7,4,3}) = D_3(K_{6,6,1,1})\).)
Open Questions

Conj. Trees with \(n \geq 2\ell + 1 \) are \(\ell \)-reconstructible. (Not for (5, 2) or (13, 6); known for \(n \geq 9\ell + O(\sqrt{\ell}) \).)

Conj. Connectedness is \(\ell \)-recognizable for \(n \geq 2\ell + 1 \). (True for \(\ell = 3 \); known threshold is \(n \geq 10\ell \).)

Ques. Are \(d \)-regular graphs \(\ell \)-reconstructible? (Known: \(3 \)-regular graphs are \(2 \)-reconstructible.)

Ques. Are bipartite graphs \(2 \)-reconstructible (\(n \geq 6 \))?

Ques. S-W’19 Any complete \(r \)-partite \(G \) is determined by \(D_{r+1}(G) \). Is this sharp? (\(D_3(K_{7,4,3}) = D_3(K_{6,6,1,1}) \).)

Ques. What is the max \(n \) such that every \(n \)-vertex complete multipartite \(G \) is determined by its \(k \)-deck? (Nýdl [1985]: it is between \(k \ln(k/2) \) and \((k + 1)2^{k-1} \).)
Open Questions

Conj. Trees with \(n \geq 2\ell + 1 \) are \(\ell \)-reconstructible. (Not for \((5, 2)\) or \((13, 6)\); known for \(n \geq 9\ell + O(\sqrt{\ell}) \).)

Conj. Connectedness is \(\ell \)-recognizable for \(n \geq 2\ell + 1 \). (True for \(\ell = 3 \); known threshold is \(n \geq 10\ell \).)

Ques. Are \(d \)-regular graphs \(\ell \)-reconstructible? (Known: 3-regular graphs are 2-reconstructible.)

Ques. Are bipartite graphs 2-reconstructible (\(n \geq 6 \))?

Ques. S-W’19 Any complete \(r \)-partite \(G \) is determined by \(\mathcal{D}_{r+1}(G) \). Is this sharp? \((\mathcal{D}_3(K_{7,4,3}) = \mathcal{D}_3(K_{6,6,1,1})) \).

Ques. What is the max \(n \) such that every \(n \)-vertex complete multipartite \(G \) is determined by its \(k \)-deck? (Nýdl [1985]: it is between \(k \ln(k/2) \) and \((k + 1)2^{k-1}\).

Prob. Find thresholds on \(n \) for \(\ell \)-reconstructibility of connectivity, matching number, \(\chi(G) \), planarity, etc.