Acyclic graphs with at least $2\ell + 1$ vertices are ℓ-recognizable

Douglas B. West

Departments of Mathematics
Zhejiang Normal University and
University of Illinois at Urbana-Champaign
dwest@illinois.edu
slides and papers on preprint page
https://faculty.math.illinois.edu/~west/pubs/publink.html

Joint work with
Alexandr V. Kostochka, Mina Nahvi, Dara Zirlin
The Classical Problem

Def. A card of a graph G is an induced subgraph $G - v$. The deck of a graph is the multiset of its cards.
The Classical Problem

Def. A card of a graph G is an induced subgraph $G - v$. The deck of a graph is the multiset of its cards.
The Classical Problem

Def. A *card* of a graph G is an induced subgraph $G - \nu$. The *deck* of a graph is the multiset of its cards.

![Diagram of cards and their deck](image)

Reconstruction Conj: Kelly [1957], Ulam [1960]
Any graph with ≥ 3 vertices is determined by its deck.
The Classical Problem

Def. A card of a graph G is an induced subgraph $G - v$. The deck of a graph is the multiset of its cards.

Reconstruction Conj: Kelly [1957], Ulam [1960]
Any graph with ≥ 3 vertices is determined by its deck. Posed earlier in Kelly’s thesis, 1942.
The Classical Problem

Def. A card of a graph G is an induced subgraph $G - v$. The deck of a graph is the multiset of its cards.

Reconstruction Conj: Kelly [1957], Ulam [1960]
Any graph with ≥ 3 vertices is determined by its deck.

• Surveys: Bondy-Hemminger [’77], Lauri [’87], Ellingham [’88], Manvel [’88], Bondy [’91], Lauri [’97], Nýdl [’01], Maccari-Rueda-Viazzi [’02], Asciak-Francalanza-Lauri-Myrvold[’10]
The Classical Problem

Def. A card of a graph G is an induced subgraph $G - v$. The deck of a graph is the multiset of its cards.

Reconstruction Conj: Kelly [1957], Ulam [1960]
Any graph with ≥ 3 vertices is determined by its deck.

- **Surveys:** Bondy-Hemminger ['77], Lauri ['87], Ellingham ['88], Manvel ['88], Bondy ['91], Lauri ['97], Nýdl ['01], Maccari-Rueda-Viazzi ['02], Asciak-Francalanza-Lauri-Myrvold['10]

Ex. K_4^- is determined by three of its cards.
The Classical Problem

Def. A card of a graph G is an induced subgraph $G - v$. The deck of a graph is the multiset of its cards.

Reconstruction Conj: Kelly [1957], Ulam [1960]

Any graph with ≥ 3 vertices is determined by its deck.

Surveys: Bondy-Hemminger [’77], Lauri [’87], Ellingham [’88], Manvel [’88], Bondy [’91], Lauri [’97], Nýdl [’01], Maccari-Rueda-Viazzi [’02], Asciak-Francalanza-Lauri-Myrvold [’10]

Ex. K_4^- is determined by three cards. Which three?
The Classical Problem

Def. A card of a graph G is an induced subgraph $G - \nu$. The deck of a graph is the multiset of its cards.

\[\begin{array}{c}
\bullet \quad \bullet \\
\bullet \quad \bullet \\
\end{array} \quad \not\equiv \quad \begin{array}{c}
\bullet \\
\bullet \\
\bullet \\
\end{array} \]

Reconstruction Conj: Kelly [1957], Ulam [1960]
Any graph with ≥ 3 vertices is determined by its deck.

- **Surveys:** Bondy-Hemminger ['77], Lauri ['87], Ellingham ['88], Manvel ['88], Bondy ['91], Lauri ['97], Nýdl ['01], Maccari-Rueda-Viazi [’02], Asciak-Francalanza-Lauri-Myrvold[’10]

Ex. K_{4}^{-} is determined by three cards. Which three?

Def. Harary-Plantholt [1985]: The reconstruction number $\text{rn}(G)$ is the least number of cards that determine G.
Another Direction

Conj. Kelly [1957], Manvel [1969]: For $\ell \in \mathbb{N}$, $\exists M_{\ell} \in \mathbb{N}$ s.t. $|V(G)| \geq M_{\ell} \implies G$ is reconstructible from the deck obtained by deleting ℓ vertices.
Another Direction

Conj. Kelly [1957], Manvel [1969]: For \(\ell \in \mathbb{N} \), \(\exists M_\ell \in \mathbb{N} \) s.t. \(|V(G)| \geq M_\ell \Rightarrow G \) is reconstructible from the deck obtained by deleting \(\ell \) vertices. “\(\ell \)-reconstructible”
Another Direction

Conj. Kelly [1957], Manvel [1969]: For $\ell \in \mathbb{N}$, $\exists \ M_\ell \in \mathbb{N}$ s.t. $|V(G)| \geq M_\ell \ \Rightarrow \ G$ is reconstructible from the deck obtained by deleting ℓ vertices. “ℓ-reconstructible”

RC: $M_1 = 3$.
Another Direction

Conj. Kelly [1957], Manvel [1969]: For \(l \in \mathbb{N} \), \(\exists M_l \in \mathbb{N} \) s.t. \(|V(G)| \geq M_l \Rightarrow G \) is reconstructible from the deck obtained by deleting \(l \) vertices. \(\quad \) \(\ell \)-reconstructible

RC: \(M_1 = 3 \). \(M_2 = 6 \)\? McMullen–Radziszowski [2007]
Another Direction

Conj. Kelly [1957], Manvel [1969]: For $\ell \in \mathbb{N}$, $\exists M_\ell \in \mathbb{N}$ s.t. $|V(G)| \geq M_\ell \implies G$ is reconstructible from the deck obtained by deleting ℓ vertices. “ℓ-reconstructible”

RC: $M_1 = 3$. $M_2 = 6$? McMullen–Radziszowski [2007] ($C_4 + K_1$ and the tree $K'_{1,3}$ are not 2-reconstructible.)
Another Direction

Conj. Kelly [1957], Manvel [1969]: For $\ell \in \mathbb{N}$, $\exists M_\ell \in \mathbb{N}$ s.t. $|V(G)| \geq M_\ell \Rightarrow G$ is reconstructible from the deck obtained by deleting ℓ vertices. “ℓ-reconstructible”

RC: $M_1 = 3$. $M_2 = 6$? McMullen–Radziszowski [2007] (C_4+K_1 and the tree $K_{1,3}'$ are not 2-reconstructible.)

Def. k-deck $D_k(G) =$ set of k-vertex induced subgrs.
Another Direction

Conj. Kelly [1957], Manvel [1969]: For $\ell \in \mathbb{N}$, $\exists M_\ell \in \mathbb{N}$ s.t. $|V(G)| \geq M_\ell \Rightarrow G$ is reconstructible from the deck obtained by deleting ℓ vertices. “ℓ-reconstructible”

RC: $M_1 = 3$. $M_2 = 6$? McMullen–Radziszowski [2007] ($C_4 + K_1$ and the tree $K'_1, 3$ are not 2-reconstructible.)

![Graphs](image)

Def. k-deck $\mathcal{D}_k(G) =$ set of k-vertex induced subgraphs.

Obs. $\mathcal{D}_k(G)$ determines $\mathcal{D}_{k-1}(G)$.
Another Direction

Conj. Kelly [1957], Manvel [1969]: For \(\ell \in \mathbb{N} \), \(\exists M_\ell \in \mathbb{N} \) s.t. \(|V(G)| \geq M_\ell \Rightarrow G \) is reconstructible from the deck obtained by deleting \(\ell \) vertices. “\(\ell \)-reconstructible”

RC: \(M_1 = 3. \quad M_2 = 6? \) McMullen–Radziszowski [2007] (\(C_4+K_1 \) and the tree \(K'_{1,3} \) are not 2-reconstructible.)

\[
\begin{array}{c}
\bullet \quad \bullet \quad \bullet \\
\bullet \quad \bullet \quad \bullet \\
\end{array}
\quad \quad
\begin{array}{c}
\bullet \quad \bullet \quad \bullet \\
\bullet \quad \bullet \\
\end{array}
\]

Def. \(k \)-deck \(D_k(G) = \) set of \(k \)-vertex induced subgrs.

Obs. \(D_k(G) \) determines \(D_{k-1}(G) \).

Pf. Each graph in \(D_{k-1} \) arises \(n - k + 1 \) times by deleting one vertex from a graph in \(D_k(G) \).
Another Direction

Conj. Kelly [1957], Manvel [1969]: For \(l \in \mathbb{N} \), \(\exists M_l \in \mathbb{N} \) s.t. \(|V(G)| \geq M_l \) \(\Rightarrow \) \(G \) is reconstructible from the deck obtained by deleting \(l \) vertices. “\(l \)-reconstructible”

RC: \(M_1 = 3 \). \(M_2 = 6 \)? McMullen–Radziszowski [2007] (\(C_4+K_1 \) and the tree \(K'_{1,3} \) are not 2-reconstructible.)

Def. \(k \)-deck \(\mathcal{D}_k(G) \) = set of \(k \)-vertex induced subgraphs.

Obs. \(\mathcal{D}_k(G) \) determines \(\mathcal{D}_{k-1}(G) \).

Pf. Each graph in \(\mathcal{D}_{k-1} \) arises \(n - k + 1 \) times by deleting one vertex from a graph in \(\mathcal{D}_k(G) \).

Aim: Find the least \(k \) s.t. \(G \) is reconstructible from \(\mathcal{D}_k(G) \).
Another Direction

Conj. Kelly [1957], Manvel [1969]: For $\ell \in \mathbb{N}$, $\exists M_\ell \in \mathbb{N}$ s.t. $|V(G)| \geq M_\ell \Rightarrow G$ is reconstructible from the deck obtained by deleting ℓ vertices. “ℓ-reconstructible”

RC: $M_1 = 3$. $M_2 = 6$? McMullen–Radziszowski [2007] ($C_4 + K_1$ and the tree $K'_1, 3$ are not 2-reconstructible.)

* Def. k-deck $D_k(G) =$ set of k-vertex induced subgrs.
* Obs. $D_k(G)$ determines $D_{k-1}(G)$.
* Pf. Each graph in D_{k-1} arises $n - k + 1$ times by deleting one vertex from a graph in $D_k(G)$.

Aim: Find the least k s.t. G is reconstructible from $D_k(G)$. (Same as ℓ-reconstructible when $k + \ell = |V(G)|$.)
Another Direction

** Conj. ** Kelly [1957], Manvel [1969]: For \(l \in \mathbb{N} \), \(\exists M_l \in \mathbb{N} \) s.t. \(|V(G)| \geq M_l \implies G \) is reconstructible from the deck obtained by deleting \(l \) vertices. “\(l \)-reconstructible”

** RC: ** \(M_1 = 3 \), \(M_2 = 6 \)? McMullen–Radziszowski [2007] (\(C_4 + K_1 \) and the tree \(K'_{1,3} \) are not 2-reconstructible.)

** Def. ** \(k \)-deck \(\mathcal{D}_k(G) \) = set of \(k \)-vertex induced subgrs.

** Obs. ** \(\mathcal{D}_k(G) \) determines \(\mathcal{D}_{k-1}(G) \).

** Pf. ** Each graph in \(\mathcal{D}_{k-1} \) arises \(n - k + 1 \) times by deleting one vertex from a graph in \(\mathcal{D}_k(G) \).

** Aim: ** Find the least \(k \) s.t. \(G \) is reconstructible from \(\mathcal{D}_k(G) \). (Same as \(l \)-reconstructible when \(k + l = |V(G)| \).

- Another way to ask how hard it is to reconstruct \(G \).
What is known?

Spinoza–West [2019]: $D_\ell(P_{2\ell}) = D_\ell(C_{\ell+1} + P_{\ell-1})$, so $M_\ell > 2\ell$.
What is known?

Spinoza–West [2019]: $\mathcal{D}_\ell(P_{2\ell}) = \mathcal{D}_\ell(C_{\ell+1} + P_{\ell-1})$, so $M_\ell > 2\ell$.

Thm. Nýdl [1992]: For $\epsilon > 0$, \exists arb. large graphs not ϵn-reconstructible. $\therefore M_\ell$ grows superlinearly.
What is known?

Spinoza–West [2019]: $D_{\ell}(P_{2\ell}) = D_{\ell}(C_{\ell+1} + P_{\ell-1})$, so $M_{\ell} > 2\ell$.

Thm. Nýdl [1992]: For $\epsilon > 0$, \exists arb. large graphs not ϵn-reconstructible. $\therefore M_{\ell}$ grows superlinearly.

Cor. Connectedness is not $n/2$-reconstructible.
What is known?

Spinoza–West [2019]: $D_ℓ(P_{2 ℓ}) = D_ℓ(C_{ℓ+1} + P_{ℓ-1})$, so $M_ℓ > 2 ℓ$.

Thm. Nýdl [1992]: For $ε > 0$, $∃$ arb. large graphs not $εn$-reconstructible. $∴ M_ℓ$ grows superlinearly.

Cor. Connectedness is not $n/2$-reconstructible.

Thm. Connectedness (Manvel [1974]) and the degree list (Chernyak [1982]) are 2-reconstructible for $n ≥ 6$.
What is known?

Spinoza–West [2019]: $D_\ell(P_{2\ell}) = D_\ell(C_{\ell+1} + P_{\ell-1})$, so $M_\ell > 2\ell$.

Thm. Nýdl [1992]: For $\epsilon > 0$, \exists arb. large graphs not ϵn-reconstructible. $\therefore M_\ell$ grows superlinearly.

Cor. Connectedness is not $n/2$-reconstructible.

Thm. Connectedness (Manvel [1974]) and the degree list (Chernyak [1982]) are 2-reconstructible for $n \geq 6$. (Sharp by $C_4 + K_1$ and $K'_{1,3}$ having same 3-deck.)
What is known?

Spinoza-West [2019]: $D_{\ell}(P_{2\ell}) = D_{\ell}(C_{\ell+1}+P_{\ell-1})$, so $M_{\ell} > 2\ell$.

Thm. Nýdl [1992]: For $\epsilon > 0$, \exists arb. large graphs not ϵn-reconstructible. $\therefore M_{\ell}$ grows superlinearly.

Cor. Connectedness is not $n/2$-reconstructible.

Thm. Connectedness (Manvel [1974]) and the degree list (Chernyak [1982]) are 2-reconstructible for $n \geq 6$. (Sharp by $C_4 + K_1$ and $K'_{1,3}$ having same 3-deck.)

Thm. Taylor [1990]: The degree list is ℓ-reconstructible for $n \geq e\ell(1 + o(1))$.
What is known?

Spinoza–West [2019]: $D_\ell(P_{2\ell}) = D_\ell(C_{\ell+1} + P_{\ell-1})$, so $M_\ell > 2\ell$.

Thm. Nýdl [1992]: For $\varepsilon > 0$, \exists arb. large graphs not εn-reconstructible. \therefore M_ℓ grows superlinearly.

Cor. Connectedness is not $n/2$-reconstructible.

Thm. Connectedness (Manvel [1974]) and the degree list (Chernyak [1982]) are 2-reconstructible for $n \geq 6$. (Sharp by $C_4 + K_1$ and $K'_{1,3}$ having same 3-deck.)

Thm. Taylor [1990]: The degree list is ℓ-reconstructible for $n \geq \ell(1 + o(1))$.

Thm. SW’19: Connectedness is ℓ-reconstructible for $n > \ell^{(\ell+1)^2}$.
What is known?

Spinoza–West [2019]: \(D_\ell(P_{2\ell}) = D_\ell(C_{\ell+1} + P_{\ell-1}) \), so \(M_\ell > 2\ell \).

Thm. Nýdl [1992]: For \(\epsilon > 0 \), \(\exists \) arb. large graphs not \(\epsilon n \)-reconstructible. \(\therefore M_\ell \) grows superlinearly.

Cor. Connectedness is not \(n/2 \)-reconstructible.

Thm. Connectedness (Manvel [1974]) and the degree list (Chernyak [1982]) are 2-reconstructible for \(n \geq 6 \).
(Sharp by \(C_4 + K_1 \) and \(K_{1,3}' \) having same 3-deck.)

Thm. Taylor [1990]: The degree list is \(\ell \)-reconstructible for \(n \geq e\ell(1 + o(1)) \).

Thm. SW'19: Connectedness is \(\ell \)-reconstr. for \(n > \ell^{(\ell+1)^2} \).

Thm. Kostochka-Nahvi-West-Zirlin [2020]: Connectedness & the degree list are 3-reconstructible for \(n \geq 7 \).
What is known?

Spinoza–West [2019]: $D_l(P_{2l}) = D_l(C_{l+1} + P_{l-1})$, so $M_l > 2l$.

Thm. Nýdl [1992]: For $\varepsilon > 0$, \exists arb. large graphs not εn-reconstructible. $\therefore M_l$ grows superlinearly.

Cor. Connectedness is not $n/2$-reconstructible.

Thm. Connectedness (Manvel [1974]) and the degree list (Chernyak [1982]) are 2-reconstructible for $n \geq 6$. (Sharp by $C_4 + K_1$ and $K'_{1,3}$ having same 3-deck.)

Thm. Taylor [1990]: The degree list is l-reconstructible for $n \geq e\ell(1 + o(1))$.

Thm. SW’19: Connectedness is l-reconstr. for $n > l^{(l+1)^2}$.

Thm. Kostochka-Nahvi-West-Zirlin [2020]: Connectedness & the degree list are 3-reconstructible for $n \geq 7$. (Sharp by $C_5 + K_1$ and $K''_{1,3}$ having same 3-deck.)
More Results

Connectedness is not $n/2$-reconstructible, but . . .
More Results

Connectedness is not \(n/2 \)-reconstructible, but . . .

Thm. Müller [1976], S-W [2019]: For \(l \leq (1 - o(1))n/2 \), almost every graph is \(l \)-reconstr’bl.
More Results

Connectedness is not $n/2$-reconstructible, but . . .

Thm. Müller [1976], S-W [2019]: For $l \leq (1 - o(1))n/2$, almost every graph is l-reconstr’bl. (From $\binom{l+2}{2}$ cards.)
More Results

Connectedness is not \(n/2 \)-reconstructible, but . . .

Thm. Müller [1976], S-W [2019]: For \(\ell \leq (1 - o(1))n/2 \), almost every graph is \(\ell \)-reconstr’bl. (From \(\binom{\ell+2}{2} \) cards.)

Generalizes Chinn ’71, Müller ’76, Bollobás ’90 for \(\ell = 1 \).
More Results

Connectedness is not $n/2$-reconstructible, but . . .

Thm. Müller [1976], S-W [2019]: For $\ell \leq (1 - o(1))n/2$, almost every graph is ℓ-reconstr’bl. (From $\binom{\ell+2}{2}$ cards.)

Generalizes Chinn ’71, Müller ’76, Bollobás ’90 for $\ell = 1$.

Thm. Spinoza-West’19: When $\text{maxdeg}(G) \leq 2$, we know $\max \{\ell : G \text{ is } \ell\text{-reconstructible}\}$.
More Results

Connectedness is not $n/2$-reconstructible, but . . .

Thm. Müller [1976], S-W [2019]: For $\ell \leq (1 - o(1))n/2$, almost every graph is ℓ-reconstr’bl. (From $\binom{\ell + 2}{2}$ cards.)

Generalizes Chinn ’71, Müller ’76, Bollobás ’90 for $\ell = 1$.

Thm. Spinoza-West’19: When $\text{maxdeg}(G) \leq 2$, we know $\max \{\ell : G \text{ is } \ell\text{-reconstructible}\}$. Always $\geq (n - 1)/2$.
More Results

Connectedness is not $n/2$-reconstructible, but . . .

Thm. Müller [1976], S-W [2019]: For $\ell \leq (1 - o(1))n/2$, almost every graph is ℓ-reconstr’bl. (From $\binom{\ell+2}{2}$ cards.)

Generalizes Chinn ’71, Müller ’76, Bollobás ’90 for $\ell = 1$.

Thm. Spinoza-West’19: When $\text{maxdeg}(G) \leq 2$, we know

$\max \{\ell: G \text{ is } \ell\text{-reconstructible}\}$. Always $\geq (n-1)/2$.

Thm. Graphs w. same #verts and #edges have same D_k if each comp. is a cycle w. $\geq k+1$ vts or path with $\geq k-1$ vts.
More Results

Connectedness is not \(n/2 \)-reconstructible, but . . .

Thm. Müller [1976], S-W [2019]: For \(l \leq (1 - o(1))n/2 \), almost every graph is \(l \)-reconstr’bl. (From \(\binom{r+2}{2} \) cards.)

Generalizes Chinn ’71, Müller ’76, Bollobás ’90 for \(l = 1 \).

Thm. Spinoza-West’19: When \(\text{maxdeg}(G) \leq 2 \), we know \(\max \{l : G \text{ is } l\text{-reconstructible}\} \). Always \(\geq (n-1)/2 \).

Thm. Graphs w. same \#verts and \#edges have same \(D_k \) if each comp. is a cycle w. \(\geq k+1 \) vts or path with \(\geq k-1 \) vts.

Thm. Nýdl’81: \(\exists \) trees with \(n = 2l \) and same \(l \)-deck.
More Results

Connectedness is not \(n/2 \)-reconstructible, but . . .

Thm. Müller [1976], S-W [2019]: For \(\ell \leq (1 - o(1))n/2 \), almost every graph is \(\ell \)-reconstr’bl. (From \(\binom{\ell+2}{2} \) cards.)

Generalizes Chinn ’71, Müller ’76, Bollobás ’90 for \(\ell = 1 \).

Thm. Spinoza-West’19: When \(\text{maxdeg}(G) \leq 2 \), we know \(\max\{\ell : G \text{ is } \ell\text{-reconstructible}\} \). Always \(\geq (n - 1)/2 \).

Thm. Graphs w. same #verts and #edges have same \(D_k \) if each comp. is a cycle w. \(\geq k+1 \) vts or path with \(\geq k–1 \) vts.

Thm. Nýdl’81: \(\exists \) trees with \(n = 2\ell \) and same \(\ell \)-deck.

Thm. Kostochka-Nahvi-West-Zirlin [2021+]: For \(n \geq 2\ell+1 \), \(n \)-vertex acyclic graphs are \(\ell \)-recognizable.
More Results

Connectedness is not $n/2$-reconstructible, but . . .

Thm. Müller [1976], S-W [2019]: For $\ell \leq (1 - o(1))n/2$, almost every graph is ℓ-reconstr’bl. (From $\binom{\ell + 2}{2}$ cards.)

Generalizes Chinn ’71, Müller ’76, Bollobás ’90 for $\ell = 1$.

Thm. Spinoza-West’19: When $\text{maxdeg}(G) \leq 2$, we know $\max\{\ell : G \text{ is } \ell\text{-reconstructible}\}$. Always $\geq (n - 1)/2$.

Thm. Graphs w. same #verts and #edges have same D_k if each comp. is a cycle w. $\geq k+1$ vts or path with $\geq k-1$ vts.

Thm. Nýdl’81: \exists trees with $n = 2\ell$ and same ℓ-deck.

Thm. Kostochka-Nahvi-West-Zirlin [2021+]: For $n \geq 2\ell + 1$, n-vertex acyclic graphs are ℓ-recognizable. (not (5,2))
More Results

Connectedness is not $n/2$-reconstructible, but . . .

Thm. Müller [1976], S-W [2019]: For $\ell \leq (1 - o(1))n/2$, almost every graph is ℓ-reconstr’bl. (From $\binom{\ell + 2}{2}$ cards.)

Generalizes Chinn ’71, Müller ’76, Bollobás ’90 for $\ell = 1$.

Thm. Spinoza-West’19: When $\maxdeg(G) \leq 2$, we know $\max\{\ell : G \text{ is } \ell\text{-reconstructible}\}$. Always $\geq (n - 1)/2$.

Thm. Graphs w. same #verts and #edges have same D_k if each comp. is a cycle w. $\geq k+1$ vts or path with $\geq k-1$ vts.

Thm. Nýdl’81: \exists trees with $n = 2\ell$ and same ℓ-deck.

Thm. Kostochka-Nahvi-West-Zirlin [2021+]: For $n \geq 2\ell + 1$, n-vertex acyclic graphs are ℓ-recognizable. (not $(5,2)$)

Conj. Trees with $n \geq 2\ell + 1$ are ℓ-reconstr’ble.
More Results

Connectedness is not $n/2$-reconstructible, but . . .

Thm. Müller [1976], S-W [2019]: For $\ell \leq (1 - o(1))n/2$, almost every graph is ℓ-reconstr’bl. (From $\binom{\ell+2}{2}$ cards.) Generalizes Chinn ’71, Müller ’76, Bollobás ’90 for $\ell = 1$.

Thm. Spinoza-West’19: When $\text{maxdeg}(G) \leq 2$, we know $\max\{\ell : G \text{ is } \ell\text{-reconstructible}\}$. Always $\geq (n - 1)/2$.

Thm. Graphs w. same #verts and #edges have same D_k if each comp. is a cycle w. $\geq k+1$ vts or path with $\geq k-1$ vts.

Thm. Nýdl’81: \exists trees with $n = 2\ell$ and same ℓ-deck.

Thm. Kostochka-Nahvi-West-Zirlin [2021+]: For $n \geq 2\ell+1$, n-vertex acyclic graphs are ℓ-recognizable. (not (5,2))

Conj. Trees with $n \geq 2\ell+1$ are ℓ-reconstr’ble.

Thm. KNWZ’21+: Trees with $n \geq 22$ are 3-reconstr’ble.
More Results

Connectedness is not $n/2$-reconstructible, but . . .

Thm. Müller [1976], S-W [2019]: For $l \leq (1 - o(1))n/2$, almost every graph is l-reconstr’bl. (From $\binom{l+2}{2}$ cards.)

Generalizes Chinn ’71, Müller ’76, Bollobás ’90 for $l = 1$.

Thm. Spinoza-West’19: When $\maxdeg(G) \leq 2$, we know $\max\{l : G \text{ is } l\text{-reconstructible}\}$. Always $\geq (n - 1)/2$.

Thm. Graphs w. same #verts and #edges have same D_k if each comp. is a cycle w. $\geq k+1$ vts or path with $\geq k-1$ vts.

Thm. Nýdl’81: \exists trees with $n = 2l$ and same l-deck.

Thm. Kostochka-Nahvi-West-Zirlin [2021+]: For $n \geq 2l+1$, n-vertex acyclic graphs are l-recognizable. (not $(5,2)$)

Conj. Trees with $n \geq 2l + 1$ are l-reconstr’ble.

Thm. KNWZ’21+: Trees with $n \geq 22$ are 3-reconstr’ble. 64
More Results

Connectedness is not $n/2$-reconstructible, but . . .

Thm. Müller [1976], S-W [2019]: For $\ell \leq (1 - o(1))n/2$, almost every graph is ℓ-reconstr’bl. (From $(\ell+2\choose2)$ cards.)

Generalizes Chinn ’71, Müller ’76, Bollobás ’90 for $\ell = 1$.

Thm. Spinoza-West’19: When $\text{maxdeg}(G) \leq 2$, we know $\max\{\ell : G \text{ is } \ell\text{-reconstructible}\}$. Always $\geq (n - 1)/2$.

Thm. Graphs w. same #verts and #edges have same D_k if each comp. is a cycle w. $\geq k+1$ vts or path with $\geq k-1$ vts.

Thm. Nýdl’81: \exists trees with $n = 2\ell$ and same ℓ-deck.

Thm. Kostochka-Nahvi-West-Zirlin [2021+]: For $n \geq 2\ell + 1$, n-vertex acyclic graphs are ℓ-recognizable. (not $(5,2)$)

Conj. Trees with $n \geq 2\ell + 1$ are ℓ-reconstr’ble.

Thm. KNWZ’21+: Trees with $n \geq 22$ are 3-reconstr’ble. 64

Thm. KNWZ’21: 3-regular graphs are 2-reconstr’ble.
Initial Thoughts

Thm. For $n \geq 2\ell + 2$, the $(n - \ell)$-deck D of an n-vertex graph G determines whether G has a cycle.
Initial Thoughts

Thm. For $n \geq 2\ell + 2$, the $(n - \ell)$-deck \mathcal{D} of an n-vertex graph G determines whether G has a cycle.

Def. k-vine = a tree with diameter $2k$.
k-center = the center of a k-vine.
Initial Thoughts

Thm. For \(n \geq 2\ell + 2 \), the \((n - \ell)\)-deck \(D \) of an \(n \)-vertex graph \(G \) determines whether \(G \) has a cycle.

Def. \(k \)-vine = a tree with diameter \(2k \).
\(k \)-center = the center of a \(k \)-vine.

Idea: for suitable \(k \), \(D \) determines the number of \(k \)-centers in any reconstruction, but one with a cycle has more \(k \)-centers than an acyclic reconstruction.
Initial Thoughts

Thm. For $n \geq 2\ell + 2$, the $(n - \ell)$-deck D of an n-vertex graph G determines whether G has a cycle.

Def. k-vine $= a$ tree with diameter $2k$.

k-center $= the$ center of a k-vine.

Idea: for suitable k, D determines the number of k-centers in any reconstruction, but one with a cycle has more k-centers than an acyclic reconstruction.

Lem. In a graph G with girth at least $2k + 2$, every k-vine is contained in a unique maximal k-vine.
Initial Thoughts

Thm. For $n \geq 2\ell + 2$, the $(n - \ell)$-deck D of an n-vertex graph G determines whether G has a cycle.

Def. k-vine = a tree with diameter $2k$.

k-center = the center of a k-vine.

Idea: for suitable k, D determines the number of k-centers in any reconstruction, but one with a cycle has more k-centers than an acyclic reconstruction.

Lem. In a graph G with girth at least $2k + 2$, every k-vine is contained in a unique maximal k-vine.

Pf. Girth $\geq 2k + 2 \Rightarrow$ any k-vine B is induced subgraph.
Initial Thoughts

Thm. For $n \geq 2l + 2$, the $(n - l)$-deck D of an n-vertex graph G determines whether G has a cycle.

Def. k-vine = a tree with diameter $2k$.

k-center = the center of a k-vine.

Idea: for suitable k, D determines the number of k-centers in any reconstruction, but one with a cycle has more k-centers than an acyclic reconstruction.

Lem. In a graph G with girth at least $2k + 2$, every k-vine is contained in a unique maximal k-vine.

Pf. Girth $\geq 2k + 2 \implies$ any k-vine B is induced subgraph. Diameter $2k \implies B$ has unique center v.
Initial Thoughts

Thm. For $n \geq 2l + 2$, the $(n - l)$-deck \mathcal{D} of an n-vertex graph G determines whether G has a cycle.

Def. k-vine = a tree with diameter $2k$.

k-center = the center of a k-vine.

Idea: for suitable k, \mathcal{D} determines the number of k-centers in any reconstruction, but one with a cycle has more k-centers than an acyclic reconstruction.

Lem. In a graph G with girth at least $2k + 2$, every k-vine is contained in a unique maximal k-vine.

Pf. Girth $\geq 2k + 2 \implies$ any k-vine B is induced subgraph. Diameter $2k \implies B$ has unique center v.

No k-vine with other center contains B.
Thm. For $n \geq 2l + 2$, the $(n - l)$-deck D of an n-vertex graph G determines whether G has a cycle.

Def. k-vine = a tree with diameter $2k$. k-center = the center of a k-vine.

Idea: for suitable k, D determines the number of k-centers in any reconstruction, but one with a cycle has more k-centers than an acyclic reconstruction.

Lem. In a graph G with girth at least $2k + 2$, every k-vine is contained in a unique maximal k-vine.

Pf. Girth $\geq 2k + 2 \Rightarrow$ any k-vine B is induced subgraph. Diameter $2k \Rightarrow B$ has unique center v. No k-vine with other center contains B.
∴ unique maximal k-vine having B is the k-ball at v. ■
Initial Thoughts

Thm. For $n \geq 2\ell + 2$, the $(n - \ell)$-deck D of an n-vertex graph G determines whether G has a cycle.

Def. k-vine = a tree with diameter $2k$.
k-center = the center of a k-vine.

Idea: for suitable k, D determines the number of k-centers in any reconstruction, but one with a cycle has more k-centers than an acyclic reconstruction.

Lem. In a graph G with girth at least $2k + 2$, every k-vine is contained in a unique maximal k-vine.

Pf. Girth $\geq 2k + 2 \Rightarrow$ any k-vine B is induced subgraph.
Diameter $2k \Rightarrow B$ has unique center v.
No k-vine with other center contains B.
∴ unique maximal k-vine having B is the k-ball at v.

Cor. To count k-centers, count maximal k-vines.
The Counting Lemma

The Counting Lemma

Def. \mathcal{F}-subgraph = induced subgraph of G in family \mathcal{F}.

$s(F,G) = \#$ induced copies of F in G.

$m(F,G) = \#$ copies of F as a maximal \mathcal{F}-subgraph of G.
The Counting Lemma

Def. \mathcal{F}-subgraph = induced subgraph of G in family \mathcal{F}.
$s(F, G) = \#$ induced copies of F in G.
$m(F, G) = \#$ copies of F as a maximal \mathcal{F}-subgraph of G.
absorbing family \mathcal{F} = every induced \mathcal{F}-subgraph of G lies in a unique maximal \mathcal{F}-subgraph of G.
The Counting Lemma

Def. \(\mathcal{F} \)-subgraph = induced subgraph of \(G \) in family \(\mathcal{F} \).

\[s(F, G) = \# \text{induced copies of } F \text{ in } G. \]

\[m(F, G) = \# \text{copies of } F \text{ as a maximal } \mathcal{F} \text{-subgraph of } G. \]

absorbing family \(\mathcal{F} \) = every induced \(\mathcal{F} \)-subgraph of \(G \) lies in a unique maximal \(\mathcal{F} \)-subgraph of \(G \).

Lem. If \(\mathcal{F} \) is absorbing for \(n \)-vertex \(G \) with \((n - l) \)-deck \(\mathcal{D} \), and \(m(F, G) \) is known for each \(F \in \mathcal{F} \) with at least \(n - l \) vertices, then \(m(F, G) \) is determined for all \(F \in \mathcal{F} \).
The Counting Lemma

Def. \mathcal{F}-subgraph = induced subgraph of G in family \mathcal{F}.
$s(F,G) =$ #induced copies of F in G.
$m(F,G) =$ #copies of F as a maximal \mathcal{F}-subgraph of G.

absorbing family $\mathcal{F} =$ every induced \mathcal{F}-subgraph of G lies in a unique maximal \mathcal{F}-subgraph of G.

Lem. If \mathcal{F} is absorbing for n-vertex G with $(n − \ell)$-deck \mathcal{D}, and $m(F,G)$ is known for each $F \in \mathcal{F}$ with at least $n − \ell$ vertices, then $m(F,G)$ is determined for all $F \in \mathcal{F}$.

Pf. For each $F_0 \in \mathcal{F}$, use induction on max length of chain of induced \mathcal{F}-subgraphs F_0, \ldots, F_r in G.
The Counting Lemma

Def. \mathcal{F}-subgraph = induced subgraph of G in family \mathcal{F}.
$s(F, G) = \#$ induced copies of F in G.
$m(F, G) = \#$ copies of F as a maximal \mathcal{F}-subgraph of G.

Absorbing family $\mathcal{F} = \{\text{every induced } \mathcal{F}\text{-subgraph of } G \text{ lies in a unique maximal } \mathcal{F}\text{-subgraph of } G\}.$

Lem. If \mathcal{F} is absorbing for n-vertex G with $(n - \ell)$-deck \mathcal{D}, and $m(F, G)$ is known for each $F \in \mathcal{F}$ with at least $n - \ell$ vertices, then $m(F, G)$ is determined for all $F \in \mathcal{F}$.

Pf. For each $F_0 \in \mathcal{F}$, use induction on max length of chain of induced \mathcal{F}-subgraphs F_0, \ldots, F_r in G.
r is computable from the decks of smaller subgraphs.
The Counting Lemma

Def. \(\mathcal{F} \)-subgraph = induced subgraph of \(G \) in family \(\mathcal{F} \).

\[s(F, G) = \# \text{induced copies of } F \text{ in } G. \]

\[m(F, G) = \# \text{copies of } F \text{ as a maximal } \mathcal{F}\text{-subgraph of } G. \]

absorbing family \(\mathcal{F} \) = every induced \(\mathcal{F} \)-subgraph of \(G \) lies in a unique maximal \(\mathcal{F} \)-subgraph of \(G \).

Lem. If \(\mathcal{F} \) is absorbing for \(n \)-vertex \(G \) with \((n - \ell)\)-deck \(D \), and \(m(F, G) \) is known for each \(F \in \mathcal{F} \) with at least \(n - \ell \) vertices, then \(m(F, G) \) is determined for all \(F \in \mathcal{F} \).

Pf. For each \(F_0 \in \mathcal{F} \), use induction on max length of chain of induced \(\mathcal{F} \)-subgraphs \(F_0, \ldots, F_r \) in \(G \).

\(r \) is computable from the decks of smaller subgraphs.

If \(r = 0 \), then \(m(F, G) = s(F, G) \).
The Counting Lemma

Def. \(\mathcal{F} \)-subgraph = induced subgraph of \(G \) in family \(\mathcal{F} \).
\(s(F, G) = \# \)induced copies of \(F \) in \(G \).
\(m(F, G) = \# \)copies of \(F \) as a maximal \(\mathcal{F} \)-subgraph of \(G \).

absorbing family \(\mathcal{F} = \) every induced \(\mathcal{F} \)-subgraph of \(G \) lies in a unique maximal \(\mathcal{F} \)-subgraph of \(G \).

Lem. If \(\mathcal{F} \) is absorbing for \(n \)-vertex \(G \) with \((n - \ell)\)-deck \(D \), and \(m(F, G) \) is known for each \(F \in \mathcal{F} \) with at least \(n - \ell \) vertices, then \(m(F, G) \) is determined for all \(F \in \mathcal{F} \).

Pf. For each \(F_0 \in \mathcal{F} \), use induction on max length of chain of induced \(\mathcal{F} \)-subgraphs \(F_0, \ldots, F_r \) in \(G \).
\(r \) is computable from the decks of smaller subgraphs.
If \(r = 0 \), then \(m(F, G) = s(F, G) \).
For \(r > 0 \), gather copies of \(F \) by unique maximal \(H \).
The Counting Lemma

Def. \(\mathcal{F} \)-subgraph = induced subgraph of \(G \) in family \(\mathcal{F} \).
\[
s(F, G) = \# \text{induced copies of } F \text{ in } G.
\]
\[
m(F, G) = \# \text{copies of } F \text{ as a maximal } \mathcal{F}\text{-subgraph of } G.
\]

absorbing family \(\mathcal{F} \) = every induced \(\mathcal{F} \)-subgraph of \(G \) lies in a unique maximal \(\mathcal{F} \)-subgraph of \(G \).

Lem. If \(\mathcal{F} \) is absorbing for \(n \)-vertex \(G \) with \((n - \ell) \)-deck \(D \), and \(m(F, G) \) is known for each \(F \in \mathcal{F} \) with at least \(n - \ell \) vertices, then \(m(F, G) \) is determined for all \(F \in \mathcal{F} \).

Pf. For each \(F_0 \in \mathcal{F} \), use induction on max length of chain of induced \(\mathcal{F} \)-subgraphs \(F_0, \ldots, F_r \) in \(G \).
\(r \) is computable from the decks of smaller subgraphs.

If \(r = 0 \), then \(m(F, G) = s(F, G) \).
For \(r > 0 \), gather copies of \(F \) by unique maximal \(H \).
Now \(s(F, G) = \sum_{H \in \mathcal{F}} s(F, H)m(H, G) \), solve for \(m(F, G) \). ■
Applications

Cor. For $n > 2\ell$, every n-vertex graph having no component with more than $n - \ell$ vertices is ℓ-reconstr’bl.
Applications

Cor. For $n > 2\ell$, every n-vertex graph having no component w. more than $n - \ell$ vertices is ℓ-reconstr’bl.

Pf. \{connected graphs\} is absorbing family for any G.
Cor. For $n > 2l$, every n-vertex graph having no component w. more than $n - l$ vertices is l-reconstr’bl.

Pf. \{connected graphs\} is absorbing family for any G. Recognition: components have $\leq n - l$ verts $\iff G$ has ≤ 1 connected card.
Applications

Cor. For $n > 2l$, every n-vertex graph having no component w. more than $n - l$ vertices is l-reconstr’bl.

Pf. $\{\text{connected graphs}\}$ is absorbing family for any G. Recognition: components have $\leq n - l$ verts $\iff G$ has ≤ 1 connected card. Then apply the Counting Lemma.
Applications

Cor. For $n > 2\ell$, every n-vertex graph having no component w. more than $n - \ell$ vertices is ℓ-reconstr’bl.

Pf. $\{\text{connected graphs}\}$ is absorbing family for any G. Recognition: components have $\leq n - \ell$ verts $\iff G$ has ≤ 1 connected card. Then apply the Counting Lemma. Sharpness by $P_\ell + P_\ell$ vs. $P_{\ell+1} + P_{\ell-1}$ when $n = 2\ell$.

\[\square\]
Applications

Cor. For $n > 2l$, every n-vertex graph having no component w. more than $n - l$ vertices is l-reconstr’bl.

Pf. \{connected graphs\} is absorbing family for any G. Recognition: components have $\leq n - l$ verts $\iff G$ has ≤ 1 connected card. Then apply the Counting Lemma. Sharpness by $P_l + P_l$ vs. $P_{l+1} + P_{l-1}$ when $n = 2l$.

Cor. If D is an $(n - l)$-deck where every card is acyclic and has radius greater than k, then all n-vertex reconstructions have the same number of k-centers.
Applications

Cor. For \(n > 2\ell \), every \(n \)-vertex graph having no component with more than \(n - \ell \) vertices is \(\ell \)-reconstr’bl.

Pf. \{connected graphs\} is absorbing family for any \(G \).

Recognition: components have \(\leq n - \ell \) verts \(\iff \) \(G \) has \(\leq 1 \) connected card. Then apply the Counting Lemma.

Sharpness by \(P_\ell + P_\ell \) vs. \(P_{\ell+1} + P_{\ell-1} \) when \(n = 2\ell \).

Cor. If \(\mathcal{D} \) is an \((n - \ell)\)-deck where every card is acyclic and has radius greater than \(k \), then all \(n \)-vertex reconstructions have the same number of \(k \)-centers.

Pf. \(n - \ell \geq 2k + 2 \) \(\Rightarrow \) reconstructions have girth \(\geq 2k + 3 \).
Applications

Cor. For $n > 2\ell$, every n-vertex graph having no component w. more than $n - \ell$ vertices is ℓ-reconstr’bl.

Pf. \{connected graphs\} is absorbing family for any G.
Recognition: components have $\leq n - \ell$ verts $\iff G$ has ≤ 1 connected card. Then apply the Counting Lemma.

Sharpness by $P_\ell + P_\ell$ vs. $P_{\ell+1} + P_{\ell-1}$ when $n = 2\ell$.

Cor. If D is an $(n - \ell)$-deck where every card is acyclic and has radius greater than k, then all n-vertex reconstructions have the same number of k-centers.

Pf. $n - \ell \geq 2k + 2 \implies$ reconstructions have girth $\geq 2k + 3$.
\therefore Family of k-vines is absorbing.
Applications

Cor. For $n > 2l$, every n-vertex graph having no component w. more than $n - l$ vertices is l-reconstr’bl.

Pf. $\{\text{connected graphs}\}$ is absorbing family for any G.

Recognition: components have $\leq n - l$ verts $\iff G$ has ≤ 1 connected card. Then apply the Counting Lemma.

Sharpness by $P_l + P_l$ vs. $P_{l+1} + P_{l-1}$ when $n = 2l$.

Cor. If \mathcal{D} is an $(n - l)$-deck where every card is acyclic and has radius greater than k, then all n-vertex reconstructions have the same number of k-centers.

Pf. $n - l \geq 2k + 2 \Rightarrow$ reconstructions have girth $\geq 2k + 3$.

\therefore Family of k-vines is absorbing.

All cards radius $> k \Rightarrow$ each k-vine has $< n - l$ vertices.
Applications

Cor. For \(n > 2\ell \), every \(n \)-vertex graph having no component w. more than \(n - \ell \) vertices is \(\ell \)-reconstr’bl.

Pf. \{connected graphs\} is absorbing family for any \(G \). Recognition: components have \(\leq n - \ell \) verts \(\iff \) \(G \) has \(\leq 1 \) connected card. Then apply the Counting Lemma. Sharpness by \(P_\ell + P_\ell \ vs. \ P_{\ell+1} + P_{\ell-1} \) when \(n = 2\ell \).

Cor. If \(\mathcal{D} \) is an \((n - \ell)\)-deck where every card is acyclic and has radius greater than \(k \), then all \(n \)-vertex reconstructions have the same number of \(k \)-centers.

Pf. \(n - \ell \geq 2k+2 \ \Rightarrow \) reconstructions have girth \(\geq 2k+3 \). \(\therefore \) Family of \(k \)-vines is absorbing. All cards radius \(> k \ \Rightarrow \) each \(k \)-vine has \(< n - \ell \) vertices. \(\therefore \) Counting Lemma yields \(\# \) maximal \(k \)-vines.
Applications

Cor. For \(n > 2l \), every \(n \)-vertex graph having no component w. more than \(n - l \) vertices is \(l \)-reconstr’bl.

Pf. \{connected graphs\} is absorbing family for any \(G \).

Recognition: components have \(\leq n - l \) verts \(\iff \) \(G \) has \(\leq 1 \) connected card. Then apply the Counting Lemma.

Sharpness by \(P_l + P_l \) vs. \(P_{l+1} + P_{l-1} \) when \(n = 2l \).

Cor. If \(D \) is an \((n - l)\)-deck where every card is acyclic and has radius greater than \(k \), then all \(n \)-vertex reconstructions have the same number of \(k \)-centers.

Pf. \(n - l \geq 2k + 2 \) \(\Rightarrow \) reconstructions have girth \(\geq 2k + 3 \).

\(\therefore \) Family of \(k \)-vines is absorbing.

All cards radius \(> k \) \(\Rightarrow \) each \(k \)-vine has \(< n - l \) vertices.

\(\therefore \) Counting Lemma yields \#maximal \(k \)-vines.

These correspond bijectively to \(k \)-centers.
The Marking Argument

Def. $\hat{k} = \min$ radius of cards. short card $= \text{radius } \hat{k}$.

d $= \#\text{disj. length-}\hat{k} \text{ paths from center}$. Let $k = \hat{k} - 1$.
The Marking Argument

Def. $\hat{k} = \text{min radius of cards.}$ short card = radius \hat{k}. $d = \#\text{disj. length-}\hat{k}\text{ paths from center.}$ Let $k = \hat{k} - 1$.

Def. Marking argument: Given short card C with center z from forest F, each k-center x other than z marks a vertex x' at distance k from x away from z.

\[
\hat{k} = 3 \quad k = 2 \quad d = 3 = \#\text{paths}
\]
The Marking Argument

Def. \(\hat{k} = \min \) radius of cards. \(\text{short card} = \text{radius } \hat{k} \).
\(d = \# \text{disj. length-} \hat{k} \text{ paths from center.} \) Let \(k = \hat{k} - 1 \).

Def. Marking argument: Given short card \(C \) with center \(z \) from forest \(F \), each \(k \)-center \(x \) other than \(z \) marks a vertex \(x' \) at distance \(k \) from \(x \) away from \(z \).

\[\hat{k} = 3 \quad k = 2 \quad d = 3 = \# \text{paths} \]

Lem. If \(C \) is a short card of \(F \), then \(\# k \)-centers in \(F \) is at most \(1 + d + l \). Equality only if every vertex outside \(C \) is marked and \(F \) is a tree.
The Marking Argument

Def. $\hat{k} = \min$ radius of cards. short card = radius \hat{k}.
$d = \# \text{disj. length-} \hat{k} \text{ paths from center}$. Let $k = \hat{k} - 1$.

Def. Marking argument: Given short card C with center z from forest F, each k-center x other than z marks a vertex x' at distance k from x away from z.

$\hat{k} = 3 \quad k = 2 \quad d = 3 = \# \text{paths}$

Lem. If C is a short card of F, then $\# k$-centers in F is at most $1 + d + l$. Equality only if every vertex outside C is marked and F is a tree.

Pf. k-centers not adj. to z must mark verts. outside C. ■
Exclusions

Def. ambiguous deck $D = \text{the } (n - \ell)\text{-deck of both an acyclic } F \text{ and non-acyclic } H \text{ with } n \text{ vertices.}
Exclusions

Def. ambiguous deck \mathcal{D} = the $(n - \ell)$-deck of both an acyclic F and non-acyclic H with n vertices.

Lem. ambiguous \mathcal{D} and $n \geq 2\ell + 2 \Rightarrow \hat{k} > 1.$
Exclusions

Def. ambiguous deck $\mathcal{D} = \text{the } (n - \ell)\text{-deck of both an acyclic } F \text{ and non-acyclic } H \text{ with } n \text{ vertices.}$

Lem. ambiguous \mathcal{D} and $n \geq 2\ell + 2 \Rightarrow \hat{k} > 1.$

Pf. If $\hat{k} = 1$, then short card is a star with $n - \ell$ vertices.
Exclusions

Def. ambiguous deck $\mathcal{D} = \text{the } (n - \ell)\text{-deck of both an acyclic } F \text{ and non-acyclic } H \text{ with } n \text{ vertices.}$

Lem. ambiguous \mathcal{D} and $n \geq 2\ell + 2 \Rightarrow \hat{k} > 1.$

Pf. If $\hat{k} = 1,$ then short card is a star with $n - \ell$ vertices. All cards are acyclic $\Rightarrow H$ has girth $\geq n - \ell + 1,$
Def. ambiguous deck $\mathcal{D} = \text{the } (n - \ell)\text{-deck of both an acyclic } F \text{ and non-acyclic } H \text{ with } n \text{ vertices.}

Lem. ambiguous \mathcal{D} and $n \geq 2\ell + 2 \Rightarrow \hat{k} > 1.$

Pf. If $\hat{k} = 1,$ then short card is a star with $n - \ell$ vertices.
All cards are acyclic $\Rightarrow H$ has girth $\geq n - \ell + 1,$ $2n - 2\ell + 1 \geq n + 2 \Rightarrow$ cycle + star in same compon. of $H.$
Def. ambiguous deck $\mathcal{D} = \text{the } (n - l)\text{-deck of both an acyclic } F \text{ and non-acyclic } H \text{ with } n \text{ vertices.}

Lem. ambiguous \mathcal{D} and $n \geq 2l + 2 \Rightarrow \hat{k} > 1.$

Pf. If $\hat{k} = 1,$ then short card is a star with $n - l$ vertices. All cards are acyclic $\Rightarrow H$ has girth $\geq n - l + 1,$ $2n - 2l + 1 \geq n + 2 \Rightarrow \text{cycle+star in same compon. of } H.$ 2-deck $\Rightarrow \leq n - 1 \text{ edges } \Rightarrow H \text{ is disconnected.}
Exclusions

Def. ambiguous deck $\mathcal{D} = \text{the } (n - l)\text{-deck of both an acyclic } F \text{ and non-acyclic } H \text{ with } n \text{ vertices.}

Lem. ambiguous \mathcal{D} and $n \geq 2l + 2 \implies \hat{k} > 1$.

Pf. If $\hat{k} = 1$, then short card is a star with $n - l$ vertices. All cards are acyclic $\implies H$ has girth $\geq n - l + 1$, \[2n - 2l + 1 \geq n + 2 \implies \text{cycle+star in same compon. of } H. \]

2-deck $\implies \leq n - 1 \text{ edges } \implies H \text{ is disconnected.}$

Girth $\geq 4 \implies \text{star & cycle share } \leq 3 \text{ verts.}$
Exclusions

Def. ambiguous deck \mathcal{D} = the $(n - \ell)$-deck of both an acyclic F and non-acyclic H with n vertices.

Lem. ambiguous \mathcal{D} and $n \geq 2\ell + 2 \Rightarrow \hat{k} > 1$.

Pf. If $\hat{k} = 1$, then short card is a star with $n - \ell$ vertices.
All cards are acyclic $\Rightarrow H$ has girth $\geq n - \ell + 1$,
$2n - 2\ell + 1 \geq n + 2 \Rightarrow$ cycle + star in same compon. of H.
2-deck $\Rightarrow \leq n - 1$ edges $\Rightarrow H$ is disconnected.
Girth $\geq 4 \Rightarrow$ star & cycle share ≤ 3 verts.
Now $(n - \ell + 1) + (n - \ell) - 3 \leq n - 1 \Rightarrow n \leq 2\ell + 1$.

Exclusions

Def. ambiguous deck $\mathcal{D} = \text{the (}n-\ell\text{)-deck of both an acyclic } F \text{ and non-acyclic } H \text{ with } n \text{ vertices.}

Lem. ambiguous \mathcal{D} and $n \geq 2\ell + 2 \Rightarrow \hat{k} > 1$.

Pf. If $\hat{k} = 1$, then short card is a star with $n-\ell$ vertices. All cards are acyclic $\Rightarrow H$ has girth $\geq n-\ell+1$, $2n-2\ell+1 \geq n+2 \Rightarrow$ cycle+star in same compon. of H. 2-deck $\Rightarrow \leq n-1$ edges $\Rightarrow H$ is disconnected. Girth $\geq 4 \Rightarrow$ star & cycle share ≤ 3 verts. Now $(n-\ell+1)+(n-\ell)-3 \leq n-1 \Rightarrow n \leq 2\ell+1$.

Lem. ambig. \mathcal{D} & $n \geq 2\ell+2 \Rightarrow$ no card of diam $2k+1$.

Exclusions

Def. ambiguous deck $\mathcal{D} = \text{the } (n - l)\text{-deck of both an acyclic } F \text{ and non-acyclic } H \text{ with } n \text{ vertices.}

Lem. ambiguous \mathcal{D} and $n \geq 2l + 2 \Rightarrow \hat{k} > 1.$

Pf. If $\hat{k} = 1$, then short card is a star with $n - l$ vertices. All cards are acyclic $\Rightarrow H$ has girth $\geq n - l + 1$, $2n - 2l + 1 \geq n + 2 \Rightarrow$ cycle+star in same compon. of H. 2-deck $\Rightarrow \leq n - 1$ edges $\Rightarrow H$ is disconnected. Girth $\geq 4 \Rightarrow$ star & cycle share ≤ 3 verts. Now $(n - l + 1) + (n - l) - 3 \leq n - 1 \Rightarrow n \leq 2l + 1.$

Lem. ambigu. \mathcal{D} & $n \geq 2l + 2 \Rightarrow$ no card of diam $2k + 1$.

Pf. \mathcal{D} has connected cards (paths) $\Rightarrow 2\hat{k} \leq n - l,$
Exclusions

Def. ambiguous deck $\mathcal{D} = \text{the } (n - \ell)\text{-deck of both an acyclic } F \text{ and non-acyclic } H \text{ with } n \text{ vertices.}

Lem. ambiguous \mathcal{D} and $n \geq 2\ell + 2 \Rightarrow \hat{k} > 1$.

Pf. If $\hat{k} = 1$, then short card is a star with $n - \ell$ vertices. All cards are acyclic $\Rightarrow H \text{ has girth } \geq n - \ell + 1,$
 $2n - 2\ell + 1 \geq n + 2 \Rightarrow \text{cycle+star in same compon. of } H.$
 2-deck $\Rightarrow \leq n - 1 \text{ edges } \Rightarrow H \text{ is disconnected.}
$ Girth $\geq 4 \Rightarrow \text{star & cycle share } \leq 3 \text{ verts.}
$ Now $(n - \ell + 1) + (n - \ell) - 3 \leq n - 1 \Rightarrow n \leq 2\ell + 1.$

Lem. ambig. $\mathcal{D} \text{ & } n \geq 2\ell + 2 \Rightarrow \text{no card of diam } 2k + 1$.

Pf. \mathcal{D} has connected cards (paths) $\Rightarrow 2\hat{k} \leq n - \ell,$
 $\therefore \text{Girth}(H) \geq 2k + 3, \therefore F \text{ and } H \text{ have same } \#k\text{-centers.}$
Def. ambiguous deck D = the $(n - \ell)$-deck of both an acyclic F and non-acyclic H with n vertices.

Lem. ambiguous D and $n \geq 2\ell + 2$ \Rightarrow $\hat{k} > 1$.

Pf. If $\hat{k} = 1$, then short card is a star with $n - \ell$ vertices. All cards are acyclic \Rightarrow H has girth $\geq n - \ell + 1$, $2n - 2\ell + 1 \geq n + 2$ \Rightarrow cycle+star in same compon. of H. 2-deck \Rightarrow $\leq n - 1$ edges \Rightarrow H is disconnected. Girth ≥ 4 \Rightarrow star & cycle share ≤ 3 verts. Now $(n - \ell + 1) + (n - \ell) - 3 \leq n - 1$ \Rightarrow $n \leq 2\ell + 1$.

Lem. ambig. D & $n \geq 2\ell + 2$ \Rightarrow no card of diam $2k+1$.

Pf. D has connected cards (paths) \Rightarrow $2\hat{k} \leq n - \ell$, \therefore Girth(H) $\geq 2k + 3$, \therefore F and H have same # k-centers. Diameter $2k + 1$ \Rightarrow $d_C = 1$, \therefore F has $\leq 2 + \ell$ k-ctrs.
Exclusions

Def. ambiguous deck \(\mathcal{D} \) = the \((n - \ell)\)-deck of both an acyclic \(F \) and non-acyclic \(H \) with \(n \) vertices.

Lem. ambiguous \(\mathcal{D} \) and \(n \geq 2\ell + 2 \) \(\Rightarrow \hat{k} > 1 \).

Pf. If \(\hat{k} = 1 \), then short card is a star with \(n - \ell \) vertices.
All cards are acyclic \(\Rightarrow H \) has girth \(\geq n - \ell + 1 \),
\[2n - 2\ell + 1 \geq n + 2 \Rightarrow \text{cycle+star in same compon. of } H. \]
2-deck \(\Rightarrow \leq n - 1 \) edges \(\Rightarrow H \) is disconnected.
Girth \(\geq 4 \) \(\Rightarrow \) star & cycle share \(\leq 3 \) verts.
Now \((n - \ell + 1) + (n - \ell) - 3 \leq n - 1 \Rightarrow n \leq 2\ell + 1. \)

Lem. ambig. \(\mathcal{D} \) & \(n \geq 2\ell + 2 \) \(\Rightarrow \) no card of diam \(2k+1 \).

Pf. \(\mathcal{D} \) has connected cards (paths) \(\Rightarrow 2\hat{k} \leq n - \ell \),
\[\therefore \text{Girth}(H) \geq 2k + 3, \therefore F \text{ and } H \text{ have same } \#k\text{-centers}. \]
Diameter \(2k + 1 \) \(\Rightarrow d_C = 1, \therefore F \text{ has } \leq 2 + \ell \text{ } k\text{-ctrs.} \]
All verts. on cycle are \(k\)-ctrs, \(\therefore H \) has \(\geq n - \ell + 1 \) \(k\)-ctrs.
Exclusions

Def. ambiguous deck \mathcal{D} = the $(n - \ell)$-deck of both an acyclic F and non-acyclic H with n vertices.

Lem. ambiguous \mathcal{D} and $n \geq 2\ell + 2 \Rightarrow \hat{k} > 1$.

Pf. If $\hat{k} = 1$, then short card is a star with $n - \ell$ vertices. All cards are acyclic \Rightarrow H has girth $\geq n - \ell + 1$, $2n - 2\ell + 1 \geq n + 2 \Rightarrow$ cycle + star in same compon. of H. 2-deck \Rightarrow $\leq n - 1$ edges \Rightarrow H is disconnected. Girth $\geq 4 \Rightarrow$ star & cycle share ≤ 3 verts. Now $(n - \ell + 1) + (n - \ell) - 3 \leq n - 1 \Rightarrow n \leq 2\ell + 1$.

Lem. ambig. \mathcal{D} & $n \geq 2\ell + 2 \Rightarrow$ no card of diam $2k+1$.

Pf. \mathcal{D} has connected cards (paths) $\Rightarrow 2\hat{k} \leq n - \ell$, \therefore Girth$(H) \geq 2k + 3$, \therefore F and H have same $#k$-centers. Diameter $2k + 1 \Rightarrow d_C = 1$, \therefore F has $\leq 2 + \ell k$-ctrs. All verts. on cycle are k-ctrs, \therefore H has $\geq n - \ell + 1 k$-ctrs. Now $n - \ell + 1 \leq 2 + \ell \Rightarrow n \leq 2\ell + 1$.

Def. \textit{k-evine} = a tree with diameter $2k + 1$.
\textit{k-central edge} = the central edge of a \textit{k-evine}.
k-Central Edges and End of Proof

Def. *k*-evine = a tree with diameter $2k + 1$.

k-central edge = the central edge of a *k*-evine.

Lem. All cards acyclic w. radius $> k$, none w. diam $2k + 1$, and $2k + 2 \leq n - \ell \Rightarrow \mathcal{D}$ fixes $\#k$-central edges.
Def. *k*-evine = a tree with diameter $2k+1$.

k-central edge = the central edge of a *k*-evine.

Lem. All cards acyclic w. radius > *k*, none w. diam $2k+1$, and $2k+2 \leq n - \ell \Rightarrow \mathcal{D}$ fixes \#*k*-central edges.

Pf. No card w. diam $2k+1 \Rightarrow$ no *k*-evine has > $n-\ell$ vrts.
k-Central Edges and End of Proof

Def. k-evine = a tree with diameter $2k+1$.
k-central edge = the central edge of a k-evine.

Lem. All cards acyclic w. radius $> k$, none w. diam $2k+1$, and $2k + 2 \leq n - \ell \Rightarrow \mathcal{D}$ fixes $\#k$-central edges.

Pf. No card w. diam $2k+1 \Rightarrow$ no k-evine has $> n - \ell$ vrts. $2k+2 \leq n - \ell \Rightarrow$ any reconstruction has girth $\geq 2k+3$.
Def. *k-evine* = a tree with diameter $2k + 1$.

k-central edge = the central edge of a *k-evine*.

Lem. All cards acyclic w. radius $> k$, none w. diam $2k+1$, and $2k + 2 \leq n - l \Rightarrow \mathcal{D}$ fixes \#*k*-central edges.

Pf. No card w. diam $2k+1 \Rightarrow$ no *k-evine* has $> n - l$ vrts.

$2k + 2 \leq n - l \Rightarrow$ any reconstruction has girth $\geq 2k+3$.

$\therefore \{k\text{-evines}\}$ is absorbing; Counting Lemma applies. \(\blacksquare\)
Def. k-evine = a tree with diameter $2k + 1$. k-central edge = the central edge of a k-evine.

Lem. All cards acyclic w. radius $> k$, none w. diam $2k + 1$, and $2k + 2 \leq n - \ell \Rightarrow \mathcal{D}$ fixes $\#k$-central edges.

Pf. No card w. diam $2k + 1 \Rightarrow$ no k-evine has $>n-\ell$ vrts. $2k + 2 \leq n - \ell \Rightarrow$ any reconstruction has girth $\geq 2k + 3$. ∴ $\{k$-evines$\}$ is absorbing; Counting Lemma applies. ■

Thm. For $n \geq 2\ell + 2$, acyclicity is ℓ-recognizable.
k-Central Edges and End of Proof

Def. *k-evine* = a tree with diameter $2k + 1$.

k-central edge = the central edge of a *k-evine*.

Lem. All cards acyclic w. radius $> k$, none w. diam $2k + 1$, and $2k + 2 \leq n - \ell \Rightarrow \mathcal{D}$ fixes $\#k$-central edges.

Pf. No card w. diam $2k + 1 \Rightarrow$ no *k-evine* has $> n - \ell$ vrts. $2k + 2 \leq n - \ell \Rightarrow$ any reconstruction has girth $\geq 2k + 3$.

$\therefore \{k$-evines$\}$ is absorbing; Counting Lemma applies.

Thm. For $n \geq 2\ell + 2$, acyclicity is ℓ-recognizable.

Pf. No cards of diam $2k + 1 \Rightarrow \#k$-central edges fixed.
k-Central Edges and End of Proof

Def. k-evine = a tree with diameter $2k+1$. k-central edge = the central edge of a k-evine.

Lem. All cards acyclic w. radius > k, none w. diam $2k+1$, and $2k + 2 \leq n - l \Rightarrow \mathcal{D}$ fixes #k-central edges.

Pf. No card w. diam $2k+1 \Rightarrow$ no k-evine has $> n - l$ vrts. $2k+2 \leq n - l \Rightarrow$ any reconstruction has girth $\geq 2k+3$. $\therefore \{k$-evines\} is absorbing; Counting Lemma applies.

Thm. For $n \geq 2l + 2$, acyclicity is l-recognizable.

Pf. No cards of diam $2k+1 \Rightarrow$ #k-central edges fixed. Card C: edge is k-central \iff end away from z is k-cntr.
k-Central Edges and End of Proof

Def. k-evine = a tree with diameter $2k + 1$.

k-central edge = the central edge of a k-evine.

Lem. All cards acyclic w. radius $> k$, none w. diam $2k+1$, and $2k + 2 \leq n - \ell \Rightarrow \mathcal{D}$ fixes $\#k$-central edges.

Pf. No card w. diam $2k+1 \Rightarrow$ no k-evine has $>n-\ell$ vrts.

$2k+2 \leq n-\ell \Rightarrow$ any reconstruction has girth $\geq 2k+3$.

$\therefore \{k$-evines\} is absorbing; Counting Lemma applies.

Thm. For $n \geq 2\ell + 2$, acyclicity is ℓ-recognizable.

Pf. No cards of diam $2k + 1 \Rightarrow \#k$-central edges fixed.

Card C: edge is k-central \iff end away from z is k-cntr.

$\therefore \#k$-centers $\leq 1 + d + \ell \Rightarrow \#k$-central edges $\leq d + \ell$.
k-Central Edges and End of Proof

Def. \(k \)-evine = a tree with diameter \(2k + 1 \).

k-central edge = the central edge of a \(k \)-evine.

Lem. All cards acyclic w. radius > \(k \), none w. diam \(2k + 1 \), and \(2k + 2 \leq n - l \) \(\Rightarrow \) \(D \) fixes \(\#k \)-central edges.

Pf. No card w. diam \(2k + 1 \) \(\Rightarrow \) no \(k \)-evine has > \(n - l \) vrts.

\(2k + 2 \leq n - l \) \(\Rightarrow \) any reconstruction has girth \(\geq 2k + 3 \).

\(\therefore \) \(\{ k \text{-evines}\} \) is absorbing; Counting Lemma applies. ■

Thm. For \(n \geq 2l + 2 \), acyclicity is \(l \)-recognizable.

Pf. No cards of diam \(2k + 1 \) \(\Rightarrow \) \(\#k \)-central edges fixed.

Card \(C \): edge is \(k \)-central \(\iff \) end away from \(z \) is \(k \)-cntr.

\(\therefore \) \(\#k \)-centers \(\leq 1 + d + l \) \(\Rightarrow \) \(\#k \)-central edges \(\leq d + l \).

\(C \) \(\Rightarrow \) \(H \) has \(d \) \(k \)-central edges w. common endpoint.
k-Central Edges and End of Proof

Def. *k-evine* = a tree with diameter $2k + 1$.

k-central edge = the central edge of a *k-evine*.

Lem. All cards acyclic w. radius $> k$, none w. diam $2k + 1$, and $2k + 2 \leq n - l \Rightarrow \mathcal{D}$ fixes $\#k$-central edges.

Pf. No card w. diam $2k + 1 \Rightarrow$ no *k-evine* has $> n - l$ vrts. $2k + 2 \leq n - l \Rightarrow$ any reconstruction has girth $\geq 2k + 3$.

$\therefore \{k$-evines$\}$ is absorbing; Counting Lemma applies.

Thm. For $n \geq 2l + 2$, acyclicity is l-recognizable.

Pf. No cards of diam $2k + 1 \Rightarrow \#k$-central edges fixed.

Card C: edge is k-central \iff end away from z is k-cntr.

$\therefore \#k$-centers $\leq 1 + d + l \Rightarrow \#k$-central edges $\leq d + l$.

$C \Rightarrow H$ has $d k$-central edges w. common endpoint. Only two can be on a cycle.
\textbf{Def.} \textit{k-evine} = a tree with diameter $2k + 1$.
\textit{k-central edge} = the central edge of a \textit{k-evine}.

\textbf{Lem.} All cards acyclic w. radius > \textit{k}, none w. diam $2k+1$, and $2k + 2 \leq n - \ell \Rightarrow \mathcal{D}$ fixes \#\textit{k-central} edges.

\textbf{Pf.} No card w. diam $2k+1 \Rightarrow$ no \textit{k-evine} has > \textit{n}−\textit{l} vrts.
$2k+2 \leq n-\ell \Rightarrow$ any reconstruction has girth $\geq 2k+3$.
\therefore \{\textit{k-evines}\} is absorbing; Counting Lemma applies. \hfill \blacksquare

\textbf{Thm.} For \textit{n} $\geq 2\ell + 2$, acyclicity is \textit{l}-recognizable.

\textbf{Pf.} No cards of diam $2k + 1 \Rightarrow$ \#\textit{k-central} edges fixed.
Card \textit{C}: edge is \textit{k}-central \iff end away from \textit{z} is \textit{k}-cntr.
\therefore \#\textit{k-centers} $\leq 1 + \text{d} + \ell \Rightarrow$ \#\textit{k-central} edges $\leq \text{d} + \ell$.
\textit{C} \Rightarrow \textit{H} has \textit{d} \textit{k}-central edges w. common endpoint.
Only two can be on a cycle.
Girth $\geq 2k + 3 \Rightarrow$ every edge on a cycle is \textit{k}-central.
k-Central Edges and End of Proof

Def. *k-evine* = a tree with diameter $2k + 1$.

k-central edge = the central edge of a *k-evine*.

Lem. All cards acyclic w. radius $> k$, none w. diam $2k + 1$, and $2k + 2 \leq n - l \Rightarrow D$ fixes #*k*-central edges.

Pf. No card w. diam $2k + 1 \Rightarrow$ no *k*-evine has $> n - l$ vrts.

$2k + 2 \leq n - l \Rightarrow$ any reconstruction has girth $\geq 2k + 3$.

∴ \{*k*-evines}\ is absorbing; Counting Lemma applies.

Thm. For $n \geq 2l + 2$, acyclicity is *l*-recognizable.

Pf. No cards of diam $2k + 1 \Rightarrow$ #*k*-central edges fixed.

Card C: edge is *k*-central \iff end away from z is *k*-cntr.

∴ #*k*-centers $\leq 1 + d + l \Rightarrow$ #*k*-central edges $\leq d + l$.

$C \Rightarrow H$ has d *k*-central edges w. common endpoint.

Only two can be on a cycle.

Girth $\geq 2k + 3 \Rightarrow$ every edge on a cycle is *k*-central.

∴ $n - l + 1 + d - 2 \leq d + l$.

Hence $n \leq 2l + 1$.

\[\blacksquare\]
Ideas for $n = 2\ell + 1$

Lemmas again show (1) $\hat{k} > 1$, (2) $2\hat{k} \leq \ell = n - \ell - 1$, (3) Same $#k$-centers and same $#k$-central edges.
Ideas for $n = 2\ell + 1$

Lemmas again show (1) $\hat{k} > 1$, (2) $2\hat{k} \leq \ell = n - \ell - 1$, (3) Same $\#k$-centers and same $\#k$-central edges.

Def. spider = a tree with at most one branch vertex.
Ideas for $n = 2\ell + 1$

Lemmas again show (1) $\hat{k} > 1$, (2) $2\hat{k} \leq \ell = n - \ell - 1$, (3) Same $\#k$-centers and same $\#k$-central edges.

Def. spider = a tree with at most one branch vertex.

Lem. When $n \geq 2\ell + 1$ (except $(5, 2)$), an n-vertex spider has at most $\ell + 3$ paths w. exactly $n - \ell$ vertices (cards).
Ideas for $n = 2\ell + 1$

Lemmas again show (1) $\hat{k} > 1$, (2) $2\hat{k} \leq \ell = n - \ell - 1$, (3) Same $\#k$-centers and same $\#k$-central edges.

Def. spider = a tree with at most one branch vertex.

Lem. When $n \geq 2\ell + 1$ (except $(5, 2)$), an n-vertex spider has at most $\ell + 3$ paths w. exactly $n - \ell$ vertices (cards).

Lem. Ambiguous $D \Rightarrow$ no card with diameter $2k + 1$.
Ideas for $n = 2\ell + 1$

Lemmas again show (1) $\hat{k} > 1$, (2) $2\hat{k} \leq \ell = n - \ell - 1$, (3) Same $\#k$-centers and same $\#k$-central edges.

Def. spider = a tree with at most one branch vertex.

Lem. When $n \geq 2\ell + 1$ (except $(5, 2)$), an n-vertex spider has at most $\ell + 3$ paths w. exactly $n - \ell$ vertices (cards).

Lem. Ambiguous $D \Rightarrow$ no card with diameter $2k + 1$.

Two pages, using reduction to F being spider and then H having at least $\ell + 4$ paths with exactly $n - \ell$ vertices.
Ideas for $n = 2\ell + 1$

Lemmas again show (1) $\hat{k} > 1$, (2) $2\hat{k} \leq \ell = n - \ell - 1$, (3) Same $\#k$-centers and same $\#k$-central edges.

Def. spider = a tree with at most one branch vertex.

Lem. When $n \geq 2\ell + 1$ (except $(5, 2)$), an n-vertex spider has at most $\ell + 3$ paths w. exactly $n - \ell$ vertices (cards).

Lem. Ambiguous $D \Rightarrow$ no card with diameter $2k + 1$.

Two pages, using reduction to F being spider and then H having at least $\ell + 4$ paths with exactly $n - \ell$ vertices.

Using diameter $2k + 2$ for short cards, in both F and H no \hat{k}-vine has more than $n - \ell$ vertices, so Counting Lemma applies to get $\#\hat{k}$-centers (determined by D).
Ideas for $n = 2\ell + 1$

Lemmas again show (1) $\hat{k} > 1$, (2) $2\hat{k} \leq \ell = n - \ell - 1$, (3) Same $\#k$-centers and same $\#k$-central edges.

Def. spider = a tree with at most one branch vertex.

Lem. When $n \geq 2\ell + 1$ (except (5, 2)), an n-vertex spider has at most $\ell + 3$ paths w. exactly $n - \ell$ vertices (cards).

Lem. Ambiguous $D \Rightarrow$ no card with diameter $2k+1$. Two pages, using reduction to F being spider and then H having at least $\ell + 4$ paths with exactly $n - \ell$ vertices.

Using diameter $2k+2$ for short cards, in both F and H no \hat{k}-vine has more than $n - \ell$ vertices, so Counting Lemma applies to get $\#\hat{k}$-centers (determined by D).

By marking argument, F has at most $\ell + 1 \hat{k}$-centers.
Ideas for $n = 2\ell + 1$

Lemmas again show (1) $\hat{k} > 1$, (2) $2\hat{k} \leq \ell = n - \ell - 1$, (3) Same $\#k$-centers and same $\#k$-central edges.

Def. spider = a tree with at most one branch vertex.

Lem. When $n \geq 2\ell + 1$ (except (5, 2)), an n-vertex spider has at most $\ell + 3$ paths w. exactly $n - \ell$ vertices (cards).

Lem. Ambiguous $D \Rightarrow$ no card with diameter $2k+1$.

Two pages, using reduction to F being spider and then H having at least $\ell + 4$ paths with exactly $n - \ell$ vertices.

Using diameter $2k+2$ for short cards, in both F and H no \hat{k}-vine has more than $n - \ell$ vertices, so Counting Lemma applies to get $\#\hat{k}$-centers (determined by D).

By marking argument, F has at most $\ell + 1 \hat{k}$-centers. Use of the cycle in H yields at least $\ell + 2 \hat{k}$-centers.
Further Questions

Conj. Trees with $n \geq 2\ell + 1$ are ℓ-reconstructible. (We have shown that the family is ℓ-recognizable.)
Further Questions

Conj. Trees with $n \geq 2\ell + 1$ are ℓ-reconstructible.
(We have shown that the family is ℓ-recognizable.)

Conj. Connectedness is ℓ-recognizable for $n \geq 2\ell + 1$.
(Known for $\ell = 3$; general upper bound $2\ell(\ell+1)^2$.)
Further Questions

Conj. Trees with $n \geq 2\ell + 1$ are ℓ-reconstructible. (We have shown that the family is ℓ-recognizable.)

Conj. Connectedness is ℓ-recognizable for $n \geq 2\ell + 1$. (Known for $\ell = 3$; general upper bound $2\ell(\ell+1)^2$.)

The 2-deck gives $|E(G)|$, so we can also ask:

Prob. Given c and ℓ, find N such that when $n \geq N$, all acyclic $(n - \ell)$-decks of n-vertex graphs with $n + c$ edges determine whether the reconstructions are connected.
Further Questions

Conj. Trees with $n \geq 2\ell + 1$ are ℓ-reconstructible. (We have shown that the family is ℓ-recognizable.)

Conj. Connectedness is ℓ-recognizable for $n \geq 2\ell + 1$. (Known for $\ell = 3$; general upper bound $2\ell^{(\ell+1)^2}$.)

The 2-deck gives $|E(G)|$, so we can also ask:

Prob. Given c and ℓ, find N such that when $n \geq N$, all acyclic $(n - \ell)$-decks of n-vertex graphs with $n + c$ edges determine whether the reconstructions are connected.

$c = -1 \Rightarrow N = 2\ell + 1$, done here.

$c = 0 \Rightarrow N = 2\ell - 1$ for $\ell \geq 42$ (Zirlin [2021+]).

$c = 1 \Rightarrow N \leq 2\ell$.
Further Questions

Conj. Trees with \(n \geq 2\ell + 1 \) are \(\ell \)-reconstructible. (We have shown that the family is \(\ell \)-recognizable.)

Conj. Connectedness is \(\ell \)-recognizable for \(n \geq 2\ell + 1 \). (Known for \(\ell = 3 \); general upper bound \(2\ell(\ell+1)^2 \).

The 2-deck gives \(|E(G)|\), so we can also ask:

Prob. Given \(c \) and \(\ell \), find \(N \) such that when \(n \geq N \), all acyclic \((n - \ell)\)-decks of \(n \)-vertex graphs with \(n + c \) edges determine whether the reconstructions are connected.

- \(c = -1 \Rightarrow N = 2\ell + 1 \), done here.
- \(c = 0 \Rightarrow N = 2\ell - 1 \) for \(\ell \geq 42 \) (Zirlin [2021+]).
- \(c = 1 \Rightarrow N \leq 2\ell \).

The thresholds in the more general setting where the cards need not all be acyclic are also unknown.